МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 11

УТВЕРЖДАЮ
Руководитель направления
проф.,д.т.н.,проф.

(должность, уч. степень, звание)

В.П. Ларин

(подпись)
« 20 » 05_____ 2019_ г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Комплексирование информационно-измерительных устройств» (Наименование дисциплины)

Код направления подготовки/ специальности	12.03.01
Наименование направления подготовки/ специальности	Приборостроение
Наименование направленности	Авиационные приборы и измерительно-вычислительные комплексы
Форма обучения	заочная

Лист согласования рабочей программы дисциплины

Программу составил (а)						
ст. преподаватель	TOTAL	13.05.2019	Б.Л. Бирюков			
(должность, уч. степень, звание)	(подпис	сь, дата)	(инициалы, фамилия)			
Программа одобрена на заседан	нии кафедры .	№ 11				
« 13 » 05 2019 г, пр	отокол № 6					
Заведующий кафедрой № 11						
заведующий кафедроп (2 11	22/					
д.т.н.,проф.	11/11/21	13.05.2019	А.В. Небылов			
(уч. степень, звание)	(подпис	сь, дата)	(инициалы, фамилия)			
	7	,,,	, , , , ,			
Ответственный за ОП ВО 12.03	3.01(01)					
ст. преподаватель	TAR	13.05.2019	Б.Л. Бирюков			
(должность, уч. степень, звание)	(подпис	сь, дата)	(инициалы, фамилия)			
			, , ,			
Заместитель директора института №1 по методической работе						
ст. преподаватель	Tu But	13.05.2019	В.Е. Таратун			
(должность, уч. степень, звание)	(подпис	сь, дата)	(инициалы, фамилия)			

Аннотация

Дисциплина «Комплексирование информационно-измерительных устройств» входит в образовательную программу высшего образования по направлению подготовки/специальности 12.03.01 «Приборостроение» направленности «Авиационные приборы и измерительно-вычислительные комплексы». Дисциплина реализуется кафедрой «№11».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

УК-1 «Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач».

УК-2 «Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений»

ПК-1 «Способность применять методы анализа и синтеза измерительных и управляющих систем, систем контроля параметров при проектировании и конструировании, приборов и комплексов»

ПК-4 «Способность разрабатывать и согласовывать исходные данные при проектировании (разработке) комплекса бортового оборудования и его подсистем для авиационных комплексов различного назначения».

Содержание дисциплины охватывает круг вопросов, связанных с с ознакомлением студентов о назначении, составе и основных тенденциях развития приборных комплексов и систем летательных аппаратов (ЛА) в условиях избыточности каналов измерения навигационных параметров. Содержание дисциплины включает в себя изучение методов синтеза и анализа эффективности измерительных систем, методологической основы для работы в области разработки приборных комплексов ЛА в соответствии с требованиями квалификационной характеристики.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, практические занятия, самостоятельная работа обучающегося, консультации.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 4 зачетные единицы, 144 часа.

Язык обучения по дисциплине «русский».

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Целью дисциплины является ознакомление студентов с назначением, составом и основными тенденциями развития измерительно-вычислительные комплексов и систем летательных аппаратов в условиях избыточности каналов измерения навигационных параметров, изучение методов синтеза и анализа эффективности измерительных систем, получение студентом методологической основы для работы в области разработки приборных комплексов ЛА в соответствии с требованиями квалификационной характеристики. В области воспитания личности целью подготовки по данной дисциплине является закрепление общекультурных и профессиональных компетенций для приобретения качеств, необходимых создателю новых приборов и технологий, таких как целеустремленность, организованность, трудолюбие, ответственность, гражданственность, коммуникативность и др.).

- 1.2. Дисциплина входит в состав части, формируемой участниками образовательных отношений, образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа) компетенции	Код и наименование компетенции	Код и наименование индикатора достижения компетенции
Универсальные компетенции	УК-1 Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач	УК-1.Д.1 анализирует задачу, выделяя ее базовые составляющие, осуществляет декомпозицию задачи УК-1.Д.2 находит и критически анализирует информацию, необходимую для решения поставленной задачи УК-1.Д.3 рассматривает возможные, в том числе нестандартные варианты решения задачи, оценивая их достоинства и недостатки, а также возможные последствия
Универсальные компетенции	УК-2 Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений	УК-2.Д.1 в рамках цели проекта формулирует совокупность взаимосвязанных задач, обеспечивающих ее достижение, определяет ожидаемые результаты решения поставленных задач
Профессиональные компетенции	ПК-1 Способность применять методы анализа и синтеза измерительных и	ПК-1.Д.2 выполняет оптимальный и параметрический синтез измерительных систем и систем контроля параметров ПК-1.Д.3 определяет показатели качества

	управляющих систем, систем, систем контроля параметров при проектировании и конструировании, приборов и комплексов	функционирования измерительных и управляющих систем, систем контроля параметров
Профессиональные компетенции	ПК-4 Способность разрабатывать и согласовывать исходные данные при проектировании (разработке) комплекса бортового оборудования и его подсистем для авиационных комплексов различного назначения	ПК-4.Д.2 разрабатывает исходные данные для проведения расчетов режимов функционирования бортового оборудования ПК-4.Д.3 выполняет комплексирование информационных приборов, применяет методы теории автоматического управления, определяет характеристики надёжности бортового оборудования

2. Место дисциплины в структуре ОП

Дисциплина базируется на знаниях, ранее приобретенных студентами при изучении следующих дисциплин: "Введение в приборостроение", "Математика 1", "Математика 2", "Информатика", "Компьютерная технология в приборостроении", "Марковские модели сигналов и систем", "Теория информационно-измерительных систем", "Системы автоматического управления летательными аппаратами и силовыми установками", "Авиационные приборы и информационно-измерительные комплексы".

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и используются при изучении других дисциплин:

«Основы автоматического управления», «Надежность авиационных приборов и измерительно-вычислительных комплексов», "Бортовые вычислительные комплексы навигации и самолётовождения", "Системы автоматического управления летательным аппаратом", "Контроль и диагностика измерительно-вычислительных комплексов"и других дисциплин.

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

Вид учебной работы	Всего	Трудоемкость по семестрам	
Вид учесной рассты		№9	№ 10
1	2	3	4
Общая трудоемкость дисциплины, 3E/ (час)	4/ 144	2/72	2/72
Аудиторные занятия, всего час.	32	16	16
в том числе:			

лекции (Л), (час)	16	8	8
практические/семинарские занятия (ПЗ),			
(час)			
лабораторные работы (ЛР), (час)	16	8	8
курсовой проект (работа) (КП, КР), (час)	*		*
экзамен, (час)	9		9
Самостоятельная работа, всего (час)	103	56	47
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач,	Зачет,	Зачет	Экз.
Экз.**)	Экз.		

Примечание: ** кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины и их трудоемкость Разделы, темы дисциплины ΚП CPC Лекции ПЗ ЛР (час) (C3)(час) (час) (час) Семестр 9 4 Раздел 1. Определение, 26 классификация, свойства и характеристики КИИУ. Тема 1.1- Определение, назначение, основные характеристики и методы комплексирования и свойства КИИУ. Тема 1.2 - Классификация КИИУ. Раздел 2. Безынерционные КИИУ. 4 4 30 Тема 2.1 Линейные безынерционные КИИУ. Тема 2.2 Нелинейные безынерционные КИИУ. Итого в семестре: 8 8 56 Семестр 10 Раздел 3. Линейные инерционные 4 27 КИИУ Тема 3.1 Постановка задачи синтеза линейной инерционной КИИУ. Тема 3.2 Двухканальные линейные КИИУ. Тема 3.3 Структурный оптимальноинвариантный синтез линейных КИИУ. Тема 3.4 Анализ и параметрический синтез линейных КИИУ. Раздел 4. Нелинейные инерционные 4 4 20 КИИУ. Тема 4.1 Нелинейные оптимальные и

^{* -} часы, не входящие в аудиторную нагрузку

оптимально-инвариантные инерционные КИИУ. Тема 4.2 Нелинейные оптимально-инвариантные КИИУ фильтрации сигналов с учётом надёжности измерителей.					
Выполнение курсовой работы				0	
Итого в семестре:	8		8		47
Итого:	15	0	16	0	103

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционных занятий

Таолица 4 — Содержани				
Номер раздела	Название и содержание разделов и тем лекционных занятий Определение, классификация, свойства и характеристики			
1				
	комплексных информационно-измерительных устройств			
	(КИИУ).			
	Тема 1.1 Определение, назначение, основные			
	характеристики и методы комплексирования и свойства КИИУ.			
	Основными целями использования КИИУ являются			
	повышение точности, надёжности, помехозащищённости,			
	достоверности, робастности измерительных систем,			
	преодоление априорной неопределённости и обеспечение			
	новых свойств приборных комплексов, таких как			
	инвариантность, астатизм, контролепригодности и других			
	свойств.			
	Тема 1.2 - Классификация информационно-			
	измерительных систем летательных аппаратов.			
2	Безынерционные КИИУ.			
	Тема 2.1 Линейные безынерционные КИИУ.			
	Рассматриваются оптимальные и оптимально-			
	инвариантные линейные КИИУ оценки навигационных			
	инвариантные линеиные кии у оценки навигационных			
	параметров в условиях рассмотрения линейной модели			
	±			
	параметров в условиях рассмотрения линейной модели			
	параметров в условиях рассмотрения линейной модели измерения с аддитивными, в общем случае,			
	параметров в условиях рассмотрения линейной модели измерения с аддитивными, в общем случае, коррелированными погрешностями измерения датчиков			
	параметров в условиях рассмотрения линейной модели измерения с аддитивными, в общем случае, коррелированными погрешностями измерения датчиков информации. Исследуются линейные алгоритмы обработки			
	параметров в условиях рассмотрения линейной модели измерения с аддитивными, в общем случае, коррелированными погрешностями измерения датчиков информации. Исследуются линейные алгоритмы обработки сигналов с учётом надёжности измерителей. Приводятся			
	параметров в условиях рассмотрения линейной модели измерения с аддитивными, в общем случае, коррелированными погрешностями измерения датчиков информации. Исследуются линейные алгоритмы обработки сигналов с учётом надёжности измерителей. Приводятся схемы реализации КИИУ.			
	параметров в условиях рассмотрения линейной модели измерения с аддитивными, в общем случае, коррелированными погрешностями измерения датчиков информации. Исследуются линейные алгоритмы обработки сигналов с учётом надёжности измерителей. Приводятся схемы реализации КИИУ. Тема 2.2 Нелинейные безынерционные КИИУ.			
	параметров в условиях рассмотрения линейной модели измерения с аддитивными, в общем случае, коррелированными погрешностями измерения датчиков информации. Исследуются линейные алгоритмы обработки сигналов с учётом надёжности измерителей. Приводятся схемы реализации КИИУ. Тема 2.2 Нелинейные безынерционные КИИУ. Рассматриваются нелинейные безынерционные			
	параметров в условиях рассмотрения линейной модели измерения с аддитивными, в общем случае, коррелированными погрешностями измерения датчиков информации. Исследуются линейные алгоритмы обработки сигналов с учётом надёжности измерителей. Приводятся схемы реализации КИИУ. Тема 2.2 Нелинейные безынерционные КИИУ. Рассматриваются нелинейные безынерционные оптимальные и оптимально-инвариантные алгоритмы			
	параметров в условиях рассмотрения линейной модели измерения с аддитивными, в общем случае, коррелированными погрешностями измерения датчиков информации. Исследуются линейные алгоритмы обработки сигналов с учётом надёжности измерителей. Приводятся схемы реализации КИИУ. Тема 2.2 Нелинейные безынерционные КИИУ. Рассматриваются нелинейные безынерционные оптимальные и оптимально-инвариантные алгоритмы оценки сигналов без учёта и с учётом надёжности			
	параметров в условиях рассмотрения линейной модели измерения с аддитивными, в общем случае, коррелированными погрешностями измерения датчиков информации. Исследуются линейные алгоритмы обработки сигналов с учётом надёжности измерителей. Приводятся схемы реализации КИИУ. Тема 2.2 Нелинейные безынерционные КИИУ. Рассматриваются нелинейные безынерционные оптимальные и оптимально-инвариантные алгоритмы оценки сигналов без учёта и с учётом надёжности измерителей. Описываются принципы мажоритарной			

4.3. Практические (семинарские) занятия Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

<u>№</u> п/п	Темы практических занятий	Формы практических занятий	Трудоемкость, (час)	№ раздела дисцип лины		
	Учебным планом не предусмотрено					
	Bce					

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

No	Наименование лабораторных работ	Трудоемкость,	№ раздела
Π/Π	Паименование лаоораторных раоот	(час)	дисциплины
	Семестр 9		
1	Линейная безынерционная комплексная оценка	4	1
	навигационных параметров, измеряемых двумя датчиками информации		
2 Мажоритарная безынерционная оценка		4	2
	Семестр 10		
3	Комплексная топливоизмерительная система	4	3
4	Комплексный система оценивания высоты полёта	4	4
	летательного аппарата		
Всего	:	16	

4.5. Курсовое проектирование/ выполнение курсовой работы

Цель курсовой работы:

Примерные темы заданий на курсовую работу приведены в разделе 10 РПД.

4.6. Самостоятельная работа обучающихся

Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего, час	Семестр 9, час	Семестр 10, час
1	2	3	4
Изучение теоретического материала дисциплины (TO)		28	12
Курсовое проектирование (КП, КР)			17
Расчетно-графические задания (РГЗ)			
Выполнение реферата (Р)			
Подготовка к текущему контролю успеваемости (ТКУ)		6	6
Домашнее задание (ДЗ)			
Контрольные работы заочников (КРЗ)		10	
Подготовка к промежуточной аттестации (ПА)		12	12

Deci 0. 103 30 47

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8.

Таблица 8- Перечень печатных и электронных учебных изданий

таолица о- перечень печатных и электронных учесных издании		
Шифр/ URL адрес	Библиографическая ссылка	Количество экземпляров в библиотеке (кроме электронных экземпляров)
629.7	1. Иванов Ю.П.,Синяков А.Н.,Филатов	107
И20	И.В. Комплексирование информационно-	
	измерительных устройств летательных	
	аппаратов:Учеб.пособиеЛ.:	
	Машиностроение,1984,-208с.	
519.1/2	1. Иванов Ю.П.,БирюковБ.Л.	107
И20	Информационно-статистическая теория	
	измерений Модели сигналов и анализ	
	точности: учебное пособие -Санкт-	
621,391	Петербург: СПГУАП, 2008160с.	157
C66	2. Иванов Ю.П.,Никитин В.Г.	
	Информационно-статистическая теория	
621,391	измерени:. учебное пособие -Санкт-	1
C28	Петербург:СПГУАП, 2011102с.	
	3. Сейдж Э., Мелс Дж. Теория оценивания	
629.7	и её приложения в связи и	9
Б12	управлении М.: Связь, 1973496с.	
	4. Бабич О.А. Обработка информации в	
	навигационных комплексах.	
	-М.:Машиностроение.1991510с	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет»

URL адрес	Наименование
http://window.edu.ru/	Единое окно доступа к образовательным ресурсам

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

№ п/п	Наименование
	Не предусмотрено

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11– Перечень информационно-справочных систем

№ п/п	Наименование	
	Не предусмотрено	

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Лекционная аудитория	
2	Мультимедийная лекционная аудитория	
3	Специализированная лаборатория	

10. Оценочные средства для проведения промежуточной аттестации

10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Экзамен	Список вопросов к экзамену;
	Экзаменационные билеты;
	Задачи;
	Тесты.
Выполнение курсовой работы	Экспертная оценка на основе требований к
	содержанию курсовой работы по
	дисциплине.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции	Характеристика сформированных компетенций
5-балльная шкала	

Оценка компетенции	Vanagranuarium adam grananuu vi kan granauurii
5-балльная шкала	Характеристика сформированных компетенций
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий.
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий.
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий.
— обучающийся не усвоил значительной части программного материала; — допускает существенные ошибки и неточности просмене зачтено» — испытывает трудности в практическом применении знаний; — не может аргументировать научные положения; — не формулирует выводов и обобщений.	

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена
1.	Основные идеи комплексирования измерительных устройств_Л.А
2.	Гиромагнитный компас.
3.	Основные комплексные информационно-измерительные системы
	(ИИС) летательных аппаратов (ЛА).
4.	Алгоритмы комплексной безынерционной линейной оптимальной
	оценки сигналов.
5.	Комплексные безынерционные линейные оптимальные алгоритмы
	оценки сигналов с учётом надежности измерителей. Критерий
6.	квазиэффективной точности.
	Комплексные безынерционные линейные алгоритмы оценки сигналов с
7.	учётом показаний контрольной аппаратуры о состояниях измерителей.
8.	Комплесные безынерционные нелинейные алгоритмы оценки
9.	сигналов.
	Комплексная нелинейная оптимально-инвариантная оценка сигналов.

10.	Комплексная безынерционная нелинейная оценка сигналов с учётом
11.	надёжности измерителей.
12.	Комплексная безынерционная нелинейная оценка сигналов с
	учётом показаний контрольной аппаратуры о состояниях
13.	измерителей.
14.	Принципы мажоритарной оценки сигналов.
15.	Оценка качества мажоритарной оценки сигналов (рассмотреть
16.	равномерный закон распределения погрешностей.)
17.	Реализация мажоритарного элемента с помощью операций
18.	элементарной логики.
19.	Схема реализации мажоритарного элемента с обратной связью.
20.	Основные критерии оптимизации комплексных систем принятия
21.	решений.
22.	Условия технической реализуемости свойства инвариантности в
23.	комплексной системе.
24.	Пример синтеза комплексного измерителя высоты полёта Л.А.
25.	Схема реализации мажоритарного алгоритма с обратной связью.
26.	Анализ комплексных линейных измерительных систем.
27.	Астатизм комплексных линейных систем с памятью.
28.	Параметрический синтез комплексных измерительных линейных
29.	систем.
	Принципы оптимального принятия решений в комплексной
	системе.
	Комплексная линейная система параллельной фильтрации.
	Комплексная система с фильтром разностного сигнала.
	Комплексная система с корректирующим контуром.
	Методы синтеза комплексных систем принятия решений.
	Общая структурная схема комплексной линейной системы оценки
	сигнала.
	Этапы параметрического синтеза комплексных систем оценки
	сигналов.

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16.

Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета
	Учебным планом не предусмотрено

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Синтез двухкомпонентной инвариантной комплексной измерительной системы, оптимальной по критерию минимума среднего квадрата ошибки. Исходные данные устанавливаются индивидуально в
	соответствии с номером варианта задания.

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

тионна	,	Tipinitepiiii iiepe ie	ting periperced Attraction
№ п/п		При	имерный перечень вопросов для тестов

~ ~			
НΔ	преду	CALOT	MATTO
110	пред	/ CIVIO I	DUHU

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п	Перечень контрольных работ		
	Требуется выполнить расчёт параметрически оптимальной двухкомпонентной		
	комплексной измерительной системы с астатизмом заданного порядка. Исходн		
	данные устанавливаются индивидуально в соответствии с номером варианта		
	.задания.		

10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

11. Методические указания для обучающихся по освоению дисциплины

11.1. Методические указания для обучающихся по освоению лекционного материала

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

 - вводная часть – показывает перечень рассматриваемых в лекции вопросов, их актуальность для практики приборостроения, связь лекционного материала с предыдущим и последующим материалами; дается перечень основной и дополнительной литературы по теме, включая руководящие документы;

- основная часть последовательно показываются выносимые вопросы, раскрываются теоретические положения; показываются основные расчетные формулы;
- итоговая часть подводятся итоги занятия, актуализируются наиболее важные вопросы; определяется тематика будущих практических занятий по теме; даётся задание на самостоятельную подготовку; производятся ответы на вопросы.
- 11.2. Методические указания для обучающихся по участию в семинарах (если предусмотрено учебным планом по данной дисциплине)
- 11.3. Методические указания для обучающихся по прохождению практических занятий (если предусмотрено учебным планом по данной дисциплине)
- 11.4. Методические указания для обучающихся по выполнению лабораторных работ (если предусмотрено учебным планом по данной дисциплине)

В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекшиях:
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задание и требования к проведению лабораторных работ

Лабораторные занятия направлены на формирование у студентов профессиональных и практических умений, необходимых для изучения последующих учебных дисциплин: определенные действия, операции, необходимые профессиональной деятельности (в процессе учебной и производственной практики, написания выпускной квалификационной работы). Наряду с формированием умений и навыков в процессе лабораторных занятий обобщаются, систематизируются, углубляются и конкретизируются теоретические знания, вырабатывается способность и готовность использовать теоретические знания на практике, развиваются интеллектуальные умения. При выборе содержания и объема лабораторных занятий следует исходить из сложности учебного материала для усвоения, из внутрипредметных и межпредметных связей, из значимости изучаемых теоретических положений для предстоящей профессиональной деятельности, из того, какое место занимает конкретная работа в процессе формирования целостного представления о содержании учебной дисциплины.

Материал, выносимый на лабораторные занятия должен:

- содержать современные достижения науки и техники в области изучаемой дисциплины;
- быть максимально приближен к реальной профессиональной деятельности выпускника;
- опираться на знания и умения уже сформированные у студентов на предшествующих занятиях по данной или обеспечивающей дисциплине, поддерживать связь теоретического и практического обучения;

- стимулировать интерес к изучению дисциплины;
- опираться на организованную самостоятельную работу студентов.

При подготовке к лабораторным работам обучающимся необходимо изучить основную литературу, ознакомиться с дополнительной литературой. При этом учесть рекомендации преподавателя и требования учебной программы. В ходе подготовки к лабораторным работам необходимо освоить основные понятия и методики расчета показателей, ответить на контрольные вопросы.

Структура и форма отчета о лабораторной работе

Отчет о лабораторной работе должен включать в себя: титульный лист, формулировку задания, теоретические положения, используемые при выполнении лабораторной работы, описание процесса выполнения лабораторной работы, полученные результаты и выводы.

Требования к оформлению отчета о лабораторной работе

По каждой лабораторной работе выполняется отдельный отчет. Титульный лист оформляется в соответствии с шаблоном (образцом) приведенным на сайте ГУАП (www.guap.ru) в разделе «Сектор нормативной документации». Текстовые и графические материалы оформляются в соответствии с действующими ГОСТами и требованиями, приведенными на сайте ГУАП (www.guap.ru) в разделе «Сектор нормативной документации».

11.5. Методические указания для обучающихся по прохождению курсового проектирования/выполнения курсовой работы (если предусмотрено учебным планом по данной дисциплине)

Курсовой проект/ работа проводится с целью формирования у обучающихся опыта комплексного решения конкретных задач профессиональной деятельности.

Курсовой проект/ работа позволяет обучающемуся:

- систематизировать и закрепить полученные теоретические знания и практические умения по профессиональным учебным дисциплинам и модулям в соответствии с требованиями к уровню подготовки, установленными программой учебной дисциплины, программой подготовки специалиста соответствующего уровня, квалификации;
- применить полученные знания, умения и практический опыт при решении комплексных задач, в соответствии с основными видами профессиональной деятельности по направлению/ специальности/ программе;
 - углубить теоретические знания в соответствии с заданной темой;
- сформировать умения применять теоретические знания при решении нестандартных задач;
- приобрести опыт аналитической, расчётной, конструкторской работы и сформировать соответствующие умения;
- сформировать умения работы со специальной литературой, справочной, нормативной и правовой документацией и иными информационными источниками;
- сформировать умения формулировать логически обоснованные выводы, предложения и рекомендации по результатам выполнения работы;
 - развить профессиональную письменную и устную речь обучающегося;
- развить системное мышление, творческую инициативу, самостоятельность, организованность и ответственность за принимаемые решения;

сформировать навыки планомерной регулярной работы над решением поставленных задач.

Требования к структуре пояснительной записки приведены в методических указаниях по выполнению курсового проекта.

Требования к оформлению пояснительной записки курсового проекта/ работы

Пояснительная записка оформляется в соответствии с требованиями. Титульный лист оформляется в соответствии с шаблоном (образцом) приведенным на сайте ГУАП (www.guap.ru) в разделе «Сектор нормативной документации». Текстовые и графические материалы оформляются в соответствии с действующими ГОСТами и требованиями, приведенными на сайте ГУАП (www.guap.ru) в разделе «Сектор нормативной документации».

11.6. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихсяявляются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ (для обучающихся по заочной форме обучения).
- 11.7. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

Методы текущего контроля выбираются преподавателем самостоятельно исходя из специфики дисциплины.

Возможные методы текущего контроля обучающихся:

- -устный опрос на занятиях;
- -систематическая проверка выполнения индивидуальных заданий;
- -защита отчётов по лабораторным работам;
- -проведение контрольных работ;
- -тестирование;
- -контроль самостоятельных работ (в письменной или устной формах);
- -контроль выполнения индивидуального задания на практику;
- -контроль курсового проектирования и выполнения курсовых работ; иные виды, определяемые преподавателем.

В течение семестра обучающийся оформляет отчётные материалы в соответствии с установленными требованиями и методами проведения текущего контроля, и преподаватель оценивает представленные материалы.

При подведении итогов текущего контроля успеваемости в ведомость обучающимся выставляются аттестационные оценки: «аттестован», «не аттестован». Система и возможные критерии оценки учитывает знания, умения,

навыки и (или) опыт деятельности, характеризующие этапы формирования компетенций дисциплины. Результаты текущего контроля должны учитываться при промежуточной аттестации.

11.8. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

- экзамен форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».
- зачет это форма оценки знаний, полученных обучающимся в ходе изучения учебной дисциплины в целом или промежуточная (по окончании семестра) оценка знаний обучающимся по отдельным разделам дисциплины с аттестационной оценкой «зачтено» или «не зачтено».

Результаты промежуточной аттестации заносятся деканатами в журнал учёта промежуточной аттестации, учебную карточку и автоматизированную информационную систему ГУАП.

Аттестационные оценки по факультативным дисциплинам вносятся в зачётную книжку, ведомость, учебную карточку, АИС ГУАП и, по согласованию с обучающимся, в приложение к документу о высшем образовании и о квалификации.

После прохождения промежуточной аттестации обучающийся обязан предоставить в деканат зачётную книжку, полностью заполненную преподавателем.

По результатам успешного прохождения промежуточной аттестации обучающимися и выполнения учебного плана на соответствующем курсе, деканаты готовят проект приказа о переводе обучающихся с курса на курс.

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой