МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

Кафедра №13

«УТВЕРЖДАЮ»

Руководитель направления

ДОЦ., К.Т.Н., ДОЦ. (олжность, уч. степень, звание)

В.К. Пономарев (подпись)

«20»__05__ 2019 г,

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Гироскопические приборы и системы» (Название дисциплины)

Код направления	24.05.06
Наименование направления	Системы управления летательными аппаратами
Наименование направленности	Приборы систем управления летательных аппаратов
Форма обучения	очная

Санкт-Петербург 2019г.

Лист согласования рабочей программы дисциплины

Программу составил(а)

проф., д.т.н., проф. должность, уч. степень, звание

людинсь, дата

Л.А.Северов инициалы, фамилия 2

Программа одобрена на заседании кафедры № 13

«20»___05____2019 г, протокол № 9

Заведующий кафедрой № 13

K.T.H.

должность, уч. степень, звание

Mary nara

Н.А. Овчинникова

инициалы, фамилия

Ответственный за ОП 24.05.06(04)

доц.,к.т.н.,доц.

должность, уч. степень, звание

родпись, дата

В.К. Пономарев

Заместитель директора института (факультета) № 1 по методической работе

ассистент

должность, уч. степень, звание

В.Е. Таратун инициалы, фамилия

Аннотация

Дисциплина «Гироскопические приборы и системы» входит в базовую часть образовательной программы подготовки студентов по направлению «24.05.06 «Системы управления летательными аппаратами» направленность «Приборы систем управления летательных аппаратов». Дисциплина реализуется кафедрой №13

Дисциплина нацелена на формирование у выпускника

общепрофессиональных компетенций:

ОПК-3 «способность использовать базовые положения математики, естественных, гуманитарных и экономических наук при решении социальных и профессиональных задач и критически оценить освоенные теории и концепции, границы их применимости»;

профессиональных компетенций:

ПК-2 «способность самостоятельно выполнять теоретические, лабораторные и натурные исследования и эксперименты для решения конкурентоспособных научно-исследовательских и производственных задач с использованием современной аппаратуры»,

Содержание дисциплины охватывает круг вопросов, связанных с принципами построения теорией и основными характеристиками гироскопических приборов и систем ориентации подвижных объектов. В пяти разделах последовательно рассматриваются: параметры ориентации и описание вращения подвижных объектов; курсовые гироскопические приборы и системы; указатели направления вертикали; курсовертикали платформенного типа; бесплатформенные инерциальные системы ориентации. Основное внимание уделяется схемам и принципам функционирования, описания динамики, анализу погрешностей гироскопических приборов и систем ориентации.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, самостоятельная работа студента, консультации, Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме диффренцированного зачета.

Общая трудоемкость освоения дисциплины составляет 3 зачетных единицы, 108 часов. Язык обучения по дисциплине «русский».

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Целью дисциплины является получение студентами необходимых знаний по устройству, функционированию и математическому описанию движения гироскопических приборов и гироскопических систем, а так же умению анализировать их работу, включая экспериментальные исследования

1.2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

В результате освоения дисциплины студент должен обладать следующими компетенциями:

ОПК-3 «способность использовать базовые положения математики, естественных, гуманитарных и экономических наук при решении социальных и профессиональных задач и критически оценить освоенные теории и концепции, границы их применимости»;

знать – основы теории гироскопических приборов и систем;

уметь -анализировать характеристики гироприборов и систем;

владеть навыками моделирования гироприборов и систем;

иметь опыт деятельности — в области экспериментального исследования характеристик гироскопических приборов и систем.

ПК-2 «способность самостоятельно выполнять теоретические, лабораторные и натурные исследования и эксперименты для решения конкурентоспособных научно-исследовательских и производственных задач с использованием современной аппаратуры»:

знать – принципы действия гироскопических систем ориентации;

уметь -анализировать погрешности ГСО;

владеть навыками моделирования ГСО;

иметь опыт деятельности – в области экспериментального исследования характеристик гироскопических приборов и систем.

2. Место дисциплины в структуре ОП

Дисциплина базируется на знаниях, ранее приобретенных студентами при изучении следующих дисциплин:

- Аналитическая механика,
- Теория гироскопов и гиростабилизаторов,
- .Физика,
- Теоретическая механика.

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и используются при изучении других дисциплин:

- Инерциальные навигационные системы,
- Элементы гироскопических приборов и систем.

3. Объем дисциплины в ЗЕ/академ. час

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 1

Таблица 1 – Объем и трудоемкость дисциплины

Вид учебной работы	Всего	Трудоемкость по семестрам
		№7
1	2	3
Общая трудоемкость дисциплины, ЗЕ/(час)	3/ 108	3/ 108
Из них часов практической подготовки	17	17
Аудиторные занятия, всего час., В том числе	68	68
лекции (Л), (час)	34	34
Практические/семинарские занятия (ПЗ), (час)		
лабораторные работы (ЛР), (час)	34	34
курсовой проект (работа) (КП, КР), (час)		
Экзамен, (час)		
Самостоятельная работа, всего (час)	40	40
Вид промежуточной аттестации:	Дифф. Зач.	Дифф. Зач.

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий

Разделы и темы дисциплины и их трудоемкость приведены в таблице 2.

Таблица 2. – Разделы, темы дисциплины и их трудоемкость

Разделы, темы дисциплины	Лекции (час)	ПЗ (СЗ) (час)	ЛР (час)	КП (час)	СРС (час)
	Семестр 7				
Раздел 1. Гироскопические приборы и системы ориентации. Общие сведения.	2				
Раздел 2. Курсовые гироскопические приборы и системы	10		8		10
Тема 2.1 . Указатели направления ортодромии					
Тема 2.2. Маятниковые гирокомпасы					

Тема 2.3. Гиромагнитные компасы					
Тема 2.4. Гирокомпасы с косвенной коррекцией					
Тема 2.5. Орбитальный гирокомпас					
Тема 2.6 Авиационные курсовые системы					
Раздел 3. Указатели направления вертикали	6		10		10
Тема 3.1. Гирогоризонты					
Тема 3.2. Центральные гировертикали					
Тема 3.3. Инерциальные построители вертикали					
Раздел 4. Курсовертикали платформенного типа	8		8		10
Тема 4.1. Контуры построения\ вертикали					
Тема 4.2. Системы физического гирокомпасирования					
Tема 4.3. Системы аналитического гирокомпасирования					
Раздел 5. Бесплатформенные инерциальные системы ориентации (БИСО)	8		8		10
Тема 5.1. БИСО, основанная на интегрировании кинематических уравнений Эйлера					
Тема 5.2. БИСО, основанная на интегрировании уравнений Пуассона					
Тема 5.3. Методические и инструментальные погрешности БИСО					
Итого в семестре:	34		34		40
Итого:	34	0	34	0	40

4.2. Содержание разделов и тем лекционных занятий Содержание разделов и тем лекционных занятий приведено в таблице 3.

Таблица 3 - Содержание разделов и тем лекционных занятий

Номер раздела	Название и содержание разделов и тем лекционных занятий		
1	Раздел 1. Гироскопические системы ориентации.		
	Общие сведения. Базовые системы координат. Параметры ориентации описание вращения подвижных объектов. Кинематические уравнения Эйлера, уравнение Пуассона, описание		

	вращения в кватернионах
2	Раздел 2. Курсовые гироскопические системы
	Тема 2.1 .Указатели направления ортодромии
	Основные свойства ортодромических траекторий. Теорема Клеро. Схема и принцип действия гироскопа направления (ГН). Принцип широтной коррекции ГН. Методические и инструментальные погрешности ГН.
	Тема 2.2. Маятниковые гирокомпасы
	Схема и принцип действия маятникового гирокомпаса (МГК). Прецессионная теории МГК. Скоростные , баллистические и кардановые погрешности МГК. Принцип невозмущаемости МГК линейными ускорениями.
	Тема 2.3. Гиромагнитные компасы
	Схема и принцип действия гироиндукционного компаса (ГИК).
	Индукционный датчик магнитного курса. Оптимизация параметров ГИК при случайных погрешностях гироскопа и индукционного датчика.
	Тема 2.4. Гирокомпасы с косвенной коррекцией
	Схема и принцип действия гирокомпаса с косвенной коррекцией. Прецессионная теория ГК с косвенной коррекцией. Широтная погрешность ГК.
	Тема 2.5. Орбитальный гирокомпас
	Схема и принцип действия орбитального компаса (ОГК). Уравнения динамики ОГК. Инструментальные погрешности ОГК. Погрешности, обусловленные регрессией орбиты.
	Тема 2.6 Авиационные курсовые системы
	Принципы комплексирования УНО, датчиков магнитного курса, астрокомпасов в авиационных курсовых системах. Условие несмещенности оценки курса
3	Раздел 3. Указатели направления вертикали
	Тема 3.1. Гирогоризонты
	Схема и принцип действия гироскопической вертикали (ГВ). Прецессионная теория ГВ с пропорциональной коррекцией. Скоростные баллистические и моментные погрешности ГВ. Зоны застоя ГВ.
	Тема 3.2. Центральные гировертикали
	Схема и принцип действия центральной гировертикали (ЦГВ) на основе ДГС. Методические и инструментальные погрешности ЦГВ.
	Тема 3.3. Инерциальные построители вертикали
	Принцип интегральной коррекции гироскопа Левенталя-Кофмана. Схема и принцип действия инерциального построителя вертикали (ИПВ). Условие невозмущаемости ИПВ линейными ускорениями объекта. Инструментальные и методические погрешности ИПВ.

4 Раздел 4. Курсовертикали платформенного типа Тема 4.1. Контуры построения\ вертикали Структура контуров построения вертикали системы ориентации на основе ТГС. Варианты построителей вертикали в географической и ортодромической системах координат. Тема 4.2. Системы физического гирокомпасирования Структура системы физического гирокомпасирования платформы с датчиком угловой скорости. Структура системы физического гирокомпасирования, основанная на принципе гирокомпаса с косвенной коррекцией. Погрешности физического систем гирокомпасирования. Тема 4.3. Системы аналитического гирокомпасирования Структуры систем аналитического гирокомпасирования платформы Погрешности режиме начальной выставки. системы аналитического гирокомпасирования обусловленные погрешностями гироблоков и акселерометров. 5 Раздел 5. Бесплатформенные инерциальные системы ориентации (БИСО) Тема 5.1. БИСО, основанная на интегрировании кинематических уравнений Эйлера Структурная схема принцип функционирования И бесплатформенной инерциальной системы ориентации (БИСО), основанной на интегрировании кинематических уравнений Эйлера. Компенсация кориолисовых и центростремительных ускорений в показаниях акселерометров. Тема 5.2. БИСО, основанная на интегрировании уравнений Пуассона Структурная И принцип функционирования БИСО, основанной на интегрировании уравнений Пуассона. Тема 5.3. Методические и инструментальные погрешности БИСО Инструментальные погрешности БИСО обусловленные погрешностями интегральных чувствительных элементов алгоритмов погрешностями интегрирования. Методические погрешности БИСО обусловленные неточностью описания формы и гравитационного поля Земли.

4.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 4.

Таблица 4 – Практические занятия и их трудоемкость

№ п/п	Темы практических занятий	Формы практических занятий	Трудоемкость, (час)	№ раздела дисцип- лины	
	Учебным планом не предусмотрено				
	Всего:				

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Лабораторные занятия и их трудоемкость

TWOITIE	а 5 – Лаоораторные занятия и их трудосткость	1	1
№ п/п	Наименование лабораторных работ	Трудоемкость, (час)	№ раздела дисципли ны
	Семестр 7		
1	Исследование характеристик указателя направления ортодромии	4	2
2	Исследование кардановых погрешностей гироагрегата ГА-6.	4	2
3	Исследование характеристик малогабаритной гироскопической вертикали	4	3
4	Исследование погрешностей малогабаритной силовой гировертикали на качающемся основании	4	3
5	Анализ погрешностей инерциального построителя вертикали (моделирование)	2	3
6	Исследование бесплатформенной курсовертикали (моделирование)	4	4
7	Анализ систем гирокомпасирования (моделирование)	4	4
8	Контур определения параметров ориентации на основе интегрирования кинематических уравнений Эйлера (моделирование)	4	5
9	Контур определения параметров ориентации на основе интегрирования уравнений Пуассона (моделирование)	4	5
	Всего:	34	

4.5. Курсовое проектирование (работа)

Учебным планом не предусмотрено

4.6. Самостоятельная работа студентов

Виды самостоятельной работы и ее трудоемкость приведены в таблице 6.

Таблица 6 Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего, час	Семестр 7, час
1	2	3
Самостоятельная работа, всего	40	40
изучение теоретического материала дисциплины (TO)	30	30
курсовое проектирование (КП, КР)		
расчетно-графические задания (РГЗ)		
выполнение реферата (Р)		
Подготовка к текущему контролю (ТК)	10	10
домашнее задание (ДЗ)		
контрольные работы заочников (КРЗ)		

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю);

Учебно-методические материалы для самостоятельной работы студентов указаны в п.п. 8-10.

6. Перечень основной и дополнительной литературы 6.1. Основная литература

Перечень основной литературы приведен в таблице 7.

Таблица 7 – Перечень основной литературы

Шифр	Библиографическая ссылка / URL адрес	Количество экземпляров в библиотеке
629.7 C28	Северов Л.А.Механика гироскопических систем. – М.: МАИ, 1996, 212 с.	57
531 Л 84	Лукьянов, Д. П. Прикладная теория гироскопов [Текст]: учебник / Д. П. Лукьянов, В. Я. Распопов, Ю. В. Филатов; Концерн "ЦНИИ "Электроприбор" СПб.: Изд-во ЦНИИ Электроприбор", 2015 316 с.	15

629.7(ЛИАП) C28	Северов Л.А., Сазонов А.В. Комплексные гироскопические системы. Курсовые системы. – Л.: ЛИАП, 1985, 78 с.	48
	Ориентация и навигация подвижных объектов /Под ред. Алешина Б.С., Веремеенко К.К., Черноморского А.И. – М.: Физматгиз, 2006, 422 с. twirpx.com >file/126419/	

6.2. Дополнительная литература

Перечень дополнительной литературы приведен в таблице 8.

Таблица 8 – Перечень дополнительной литературы

Шифр	Библиографическая ссылка/ URL адрес	Количество экземпляров в библиотеке
629.7 Г51	Под ред. Пельпора Д.С. Гироскопические системы. Гироскопические приборы и системы, – М.: высшая школа, 1988, 424 с. Учебник для вузов.	11
	Матвеев В.В., Распопов В.Я. Основы построения бесплатформенных инерциальных навигационных систем. — СПб: ГНЦ РФ ОАО «Концерн «ЦНИИ «Электроприбор», 2009, 280 с. twirpx.com>file/688307/	
629.7 P41	Репников, А. В. Гироскопические системы [Текст]: учебное пособие / А. В. Репников, Г. П. Сачков, А. И. Черноморский; Ред. А. В. Репников М.: Машиностроение, 1983 319 с.	9
629.7.054 C 28	Северов Л.А., Быкова Г.М. Расчет и проектирование гироскопических систем ориентации и навигации. – Л.: ЛИАП, 1986, 58 с. Учебное пособие.	24

7. Перечень ресурсов информационно-телекоммуникационной сети ИНТЕРНЕТ, необходимых для освоения дисциплины

Перечень ресурсов информационно-телекоммуникационной сети ИНТЕРНЕТ, необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень ресурсов информационно-телекоммуникационной сети ИНТЕРНЕТ, необходимых для освоения дисциплины

	7 1 1
URL адрес	Наименование

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

8.1. Перечень программного обеспечения

Перечень используемого программного обеспечения представлен в таблице 10. Таблица 10 — Перечень программного обеспечения

No	Наименование
Π/Π	
	Не предусмотрено

8.2. Перечень информационно-справочных систем

Перечень используемых информационно-справочных систем представлен в таблице 11. Таблица 11 — Перечень информационно-справочных систем

№	Наименование
Π/Π	
	Не предусмотрено

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине

Состав материально-технической базы представлен в таблице 12.

Таблица 12 – Состав материально-технической базы

		Номер
№ п/п	Наименование составной части материально-технической базы	аудитории
1	Лекционная аудитория	13-04
2	Мультимедийная лекционная аудитория	13-04
3	Специализированная лаборатория «Гироскопических проборов	13-03
	и систем»	
4	Стенды с препарированными гироприборами	13-03

10. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

10.1. Состав фонда оценочных средств приведен в таблице 13 Таблица 13 - Состав фонда оценочных средств для промежуточной аттестации

Вид промежуточной аттестации	Примерный перечень оценочных средств
Дифференцированный зачёт	Список вопросов

10.2. Перечень компетенций, относящихся к дисциплине, и этапы их формирования в процессе освоения образовательной программы приведены в таблице 14.

Таблица 14 – Перечень компетенций с указанием этапов их формирования в процессе

освоения образовательной программы

освоения образовател	1 1
Номер семестра	Этапы формирования компетенций по дисциплинам/практикам в процессе освоения ОП
OFFIC 2	1
	ь использовать базовые положения математики, естественных,
_	номических наук при решении социальных и профессиональных
задач и критически оп	енить освоенные теории и концепции, границы их применимости»
1	Математика. Аналитическая геометрия и линейная алгебра
1	Математика. Математический анализ
1	Физика
2	Математика. Дифференциальные уравнения
2	Математика. Математический анализ
2	Физика
3	Авиационные материалы
3	Математика. Теория вероятностей и математическая статистика
3	Материаловедение
3	Сопротивление материалов
3	Теоретическая механика
3	Физика
4	Математика. Теория вероятностей и математическая статистика
4	Метрология, стандартизация и сертификация
5	Аналитическая механика
5	Основы теории управления
6	Динамика полета
6	Надежность приборов и систем
6	Основы теории пилотажно-навигационных комплексов
6	Теория гироскопов и гиростабилизаторов
7	Гироскопические приборы и системы
7	Системы управления летательными аппаратами
8	Системы управления летательными аппаратами
9	Микромеханические инерциальные чувствительные элементы
9	Микромеханические приборы и устройства
9	Системы управления летательными аппаратами
10	Производственная преддипломная практика
ПК-2 «способность са	мостоятельно выполнять теоретические, лабораторные и натурные
	ксперименты для решения конкурентоспособных научно-
	и производственных задач с использованием современной
аппаратуры»	1 1000000000000000000000000000000000000
4	Электроника
5	Электроника
	Информационно-измерительные устройства летательных
6	аппаратов
6	Основы теории пилотажно-навигационных комплексов
L	pm mann administration working.

6	Приборное оборудование самолетов и вертолетов
6	Электроника
7	Гироскопические приборы и системы
8	Производственная практика научно-исследовательская работа
9	Инерциальные навигационные системы
9	Обработка навигационной информации
9	Производственная практика научно-исследовательская работа
10	Производственная преддипломная практика

10.3. В качестве критериев оценки уровня сформированности (освоения) у обучающихся компетенций применяется шкала модульно-рейтинговой системы университета. В таблице 15 представлена 100-балльная и 4-балльная шкалы для оценки сформированности компетенций.

Таблица 15 – Критерии оценки уровня сформированности компетенций

Оценка компетенции		
100- бальная шкала	4-бальная шкала	Характеристика сформированных компетенций
85 ≤ K ≤ 100	«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий.
70 ≤ K ≤ 84	«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий.
55 ≤ K ≤ 69	«удовлетвори тельно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий.
K≤54	«неудовлетво рительно» «не зачтено»	- обучающийся не усвоил значительной части программного материала; - допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; - испытывает трудности в практическом применении знаний; - не может аргументировать научные положения; - не формулирует выводов и обобщений.

10.4. Типовые контрольные задания или иные материалы:

1. Вопросы (задачи) для экзамена (таблица 16)

Таблица 16 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена
	Учебным планом не предусмотрено

2. Вопросы (задачи) для зачета / дифференцированного зачета (таблица 17) Таблица 17 — Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифференцированного зачета
1	Основные свойства ортодромических траекторий. Теорема Клеро.
2	Схема и принцип действия указателя направления ортодромии
3	Схема и принцип действия маятникового гирокомпаса (МГК)
4	Скоростная погрешность МГК
5	Баллистическая погрешность МГК
6	Корректируемый гирокомпас
7	Схема и принцип действия орбитального гирокомпаса
8	Структура авиационных курсовых систем
9	Схема, принцип действия и основные погрешности гиромагнитного компаса
10	Схема, принцип действия и основные погрешности гировертикали (ГВ) с маятниковой коррекцией
11	Схема и принцип действия центральной гировертикали на основе двухосного гиростабилизатора
12	Скоростные, баллистические и моментные погрешности ГВ
13	Схема и принцип действия инерциального построителя вертикали
14	Схема и принцип действия курсовертикали на основе трехосного гиростабилизатора (ТГС)
15	Структура контуров построения вертикали систем ориентации на основе ТГС
16	Структуры систем физического гирокомпасирования курсовертикалей платформенного типа
17	Структуры систем аналитического гирокомпасирования курсовертикалей

	платформенного типа
18	Принцип построения бесплатформенных инерциальных систем ориентации (БИСО)
19	Структурная схема и принцип функционирования БИСО, основанная на интегрировании кинематических уравнений Эйлера
20	Структурная схема и принцип функционирования БИСО, основанная на интегрировании уравнений Пуассона
21	Структурная схема и принцип функционирования БИСО, основанная на использовании кватернионов
22	Инструментальные и методические погрешности БИСО

3. Темы и задание для выполнения курсовой работы / выполнения курсового проекта (таблица 18)

Таблица 18 — Примерный перечень тем для выполнения курсовой работы / выполнения курсового проекта

№ п/п	Примерный перечень тем для выполнения курсовой работы / выполнения курсового проекта
	Учебным планом не предусмотрено

4. Вопросы для проведения промежуточной аттестации при тестировании (таблица 19)

Таблица 19 – Примерный перечень вопросов для тестов

№ п/п	Примерный перечень вопросов для тестов
	Не предусмотрено

5. Контрольные и практические задачи / задания по дисциплине (таблица 20) Таблица 20 — Примерный перечень контрольных и практических задач / заданий

№ п/п	Примерный перечень контрольных и практических задач / заданий	
	Не предусмотрено	

10.5. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и / или опыта деятельности, характеризующих этапы формирования компетенций, содержатся в Положениях «О текущем контроле успеваемости и промежуточной аттестации студентов ГУАП, обучающихся по программы высшего образования» и «О модульно-рейтинговой системе оценки качества учебной работы студентов в ГУАП».

11. Методические указания для обучающихся по освоению дисциплины

Целью дисциплины является получение студентами необходимых знаний по устройству, функционированию и математическому описанию движения гироскопических приборов и гироскопических систем, а так же умению анализировать их работу, включая экспериментальные исследования.

Методические указания для обучающихся по освоению лекционного материала.

Основное назначение лекционного материала – логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемы результаты при освоении обучающимся лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научится методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- изложение теоретических вопросов, связанных с рассматриваемой темой;
- описание методов и алгоритмов, применяемых в современных системах ориентации, навигации и управления летательными аппаратами;
- демонстрация примеров решения конкретных задач пи теме;
- обобщение изложенного материала;
- ответы на возникающие вопросы по теме лекции.

Методические указания для обучающихся по прохождению лабораторных работ

В ходе выполнения лабораторных работа обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом и относится к средствам, обеспечивающим решение следующих основных задач у обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задание и требования к проведению лабораторных работ

Студенты разбиваются на подгруппы, по 3-4 человека. Перед проведением лабораторной работы обучающемся следует внимательно ознакомиться с методическими указаниями по ее выполнению. В соответствии с заданием обучающиеся должны подготовить необходимые данные, получить от преподавателя допуск к выполнению лабораторной работы, выполнить указанную последовательность действий, получить требуемые результаты, оформить и защитить отчет по лабораторной работе.

Структура и форма отчета о лабораторной работе

Отчет о лабораторной работе должен включать в себя: титульный лист, формулировку задания, теоретические положения, используемые при выполнении лабораторной работы, описание процесса выполнения лабораторной работы, полученные результаты и выводы.

Требования к оформлению отчета о лабораторной работе

По каждой лабораторной работе выполняется отдельный отчет. Титульный лист оформляется в соответствии с шаблоном (образцом) приведенным на сайте ГУАП (www.guap.ru) в разделе «Сектор нормативной документации». Текстовые и графические материалы оформляются в соответствии с действующими ГОСТами и требованиями, приведенными на сайте ГУАП (www.guap.ru) в разделе «Сектор нормативной документации».

Методические указания к выполнению лабораторной работы

- 1. Пономарев, В.К., Овчинникова, Н.А. / Исследование азимутального гироскопа направления (гироагрегат ГА-6), СПб.: ГУАП. 2015.
- 2. Сазонов, А.В, Скорина, С.Ф. / Гироскопические системы ориентации и навигации, СПб.: ГААП. 1994.

Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихся являются учебно-методический материал по дисциплине.

Методические указания для обучающихся по прохождению промежуточной аттестации

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине и проводится в форме дифференцированного зачета с аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Система оценок при проведении промежуточной аттестации осуществляется в соответствии с требованиями Положений «О текущем контроле успеваемости и промежуточной аттестации студентов ГУАП, обучающихся по программы высшего образования» и «О модульно-рейтинговой системе оценки качества учебной работы студентов в ГУАП».

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой