МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

Кафедра №13

«УТВЕРЖДАЮ»

Руководитель направления

ДОЦ.,К.Т.Н.,ДОЦ. (должность, уч. степень, звание)

В.К. Пономарев

(подпись)

«20»___06___2019 г,

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«МЭМС технологии в приборостроении»

(Название дисциплины)

Код направления	24.05.06
Наименование направления	Системы управления летательными аппаратами
Наименование направленности	Приборы систем управления летательными аппаратами
Форма обучения	очная

Санкт-Петербург 2019г.

Лист согласования рабочей программы дисциплины

Программу составил(а) доц., к.т.н., доц. должность, уч. степень, звание	Подпись, дата	В.К. Пономарев инициалы, фамилия
Программа одобрена на заседании в «20»062019 г, протокол №		
Заведующий кафедрой № 13 К.т.н. должность, уч. степень, звание	подпусьмата	Н.А. Овчинникова инициалы, фамилия
Ответственный за ОП 24.05.06(04) доц., к.т.н., доц. должность, уч. степень, звание	подпись, дата	В.К. Пономарев инициалы, фамилия
Заместитель директора института (о	факультета) № 1 по методич	еской работе
ассистент должность, уч. степень, звание	подпись, дата	В.Е. Таратун инициалы, фамилия

Аннотация

Дисциплина «МЭМС технологии в приборостроении» в качестве факультативной входит в вариативную часть образовательной программы подготовки студентов по направлению «24.05.06 «Системы управления летательными аппаратами» направленность «Приборы систем управления летательными аппаратами». Квалификация выпускника — специалист.

Дисциплина реализуется кафедрой №13.

Целью дисциплины «МЭМС технологии в приборостроении» является ознакомление подготавливаемых специалистов с основами технологии производства и использования микроэлектромеханических акселерометров и гироскопов в системах управления движением подвижных объектов различных классов и навигации.

Дисциплина нацелена на формирование у выпускника, освоившего программу специалитета, владение следующими общепрофессиональными компетенциями:

ОПК-3 способностью использовать базовые положения математики, естественных, гуманитарных и экономических наук при решении социальных и профессиональных задач и способностью критически оценить освоенные теории и концепции, границы их применимости;

профессионально-специализированных компетенций:

ПСК- 4.4 «способность создавать методику и производить комплекс испытаний, а также опытной эксплуатации приборов и датчиков систем управления летательных аппаратов.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме зачета.

Общая трудоемкость освоения дисциплины составляет 1 зачетных единиц, 36 часов.

Язык обучения по дисциплине «русский».

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Целью дисциплины «МЭМС технологии в приборостроении» является ознакомление подготавливаемых специалистов с основами технологии производства и использования микроэлектромеханических акселерометров и гироскопов в системах управления движением подвижных объектов различных классов и навигации.

1.2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

В результате освоения дисциплины студент должен обладать следующими компетенциями:

ОПК-3 способностью использовать базовые положения математики, естественных, гуманитарных и экономических наук при решении социальных и профессиональных задач и способностью критически оценить освоенные теории и концепции, границы их применимости

знать - базовые методы исследовательской деятельности, способы и средства получения, хранения, переработки информации, навыками работы с компьютером как средством управления информацией;

уметь - участвовать в работе над инновационными проектами, иметь навыки работы с компьютером как средством управления информацией;;

владеть навыками - использования базовых методов исследовательской деятельности; иметь опыт деятельности - над инновационными проектами.

ПСК-4.4 «способность создавать методику и производить комплекс испытаний, а также опытной эксплуатации приборов и датчиков систем управления летательных аппаратов»:

знать – Государственные стандарты на нормативные документы, техническую документацию;

уметь - разрабатывать методические и нормативные документы, техническую документацию, а также предложения и мероприятия по реализации разработанных проектов и программ;

владеть навыками - работы с Государственными стандартами;

иметь опыт деятельности - использования Государственных стандартов при разработке технической документации.

1.3 Место дисциплины в структуре ОП

Дисциплина базируется на знаниях, ранее приобретенных студентами при изучении следующих дисциплин:

- Математика;
- Технология;
- Физика;
- Теоретическая механика;
- Электроника;
- Методы теории фильтрации в задачах навигации и управления;
- Современная теория управления;

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и используются при изучении других дисциплин:

- Микромеханические инерциальные чувствительные элементы;
- Расчет и синтез гироприборов.

1.4 Объем дисциплины в ЗЕ/академ. час

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 1

Таблица 1 – Объем и трудоемкость дисциплины

Вид учебной работы	Всего	Трудоемкость по семестрам
		№6
1	2	3
Общая трудоемкость дисциплины, 1Е/(час)	1/36	1/ 36
Аудиторные занятия, всего час.,	17	17
В том числе		
лекции (Л), (час)	17	17
Практические/семинарские занятия (ПЗ), (час)	-	-
лабораторные работы (ЛР), (час)		
курсовой проект (работа) (КП, КР), (час)		
Экзамен, (час)		
<i>Самостоятельная работа</i> , всего (час)	19	19
Вид промежуточной аттестации: зачет, экзамен, дифференцированный зачет (Зачет. Экз. Дифф. зач)	Зачет.	Зачет.

2. Содержание дисциплины

2.1. Распределение трудоемкости дисциплины по разделам и видам занятий

Разделы и темы дисциплины и их трудоемкость приведены в таблице 2.

Таблица 2. – Разделы, темы дисциплины и их трудоемкость

Разделы, темы дисциплины	Лекции	П3 (С3)	ЛР	КП	CPC
	(час)	(час)	(час)	(час)	(час)
	Семестр	6			
Раздел 1 Основы технологии МЭМС	3				4
Раздел 2. Методы проектирования микромеханических гироскопов с заданными характеристиками.	4				4
Раздел 3. Элементы микромеханических гироскопов и их проектирование.	3				4

Раздел 4 Тестирование, калибровка	4			4
и компенсация микромеханических				
гироскопов и акселерометров.				
Раздел 5. Проектирование	3			3
встроенных контроллеров для				
стабилизации метрологических				
характеристик.				
Итого:	17		0	19

2.2. Содержание разделов и тем лекционных занятий

Содержание разделов и тем лекционных занятий приведено в таблице 3.

Таблица 3 - Содержание разделов и тем лекционных занятий

	ица 3 - Содержание разделов и тем лекционных занятий				
Номер раздела	Название и содержание разделов и тем лекционных занятий				
1	Основы технологии МЭМС				
	Материалы и технологии производства МЭМС. Структуры и				
	технологии производства микромеханических гироскопов и				
	акселерометров. Типы и физические основы работы				
	микромеханических гироскопов. Гироскопы типа L-L, R-R, L-R,				
	и R-L. Схемы с наружным карданным подвесом Схемы с внутренним карданным подвесом. Схемы со стержневыми подвесами. Схемы с				
	поступательными колебаниями. Схемы с угловыми колебаниями с одной и двумя осями чувствительности измерители. Твердотельные				
	волновые гироскопы. Схемы камертонных подвесов. Типы и				
	физические основы работы микромеханических акселерометров.				
	Основные характеристики микромеханических акселерометров и гироскопов.				
2	Методы проектирования микромеханических гироскопов с				
	заданными характеристиками.				
	Математические модели микромеханических гироскопов разных типов				
	и их анализ. Зависимость чувствительности и полосы пропускания от				
	конструктивных параметров гироскопов. Проектирование				
	микромеханических гироскопов с заданными метрологическими				
	YOM OVER ONLY OF YATON AVA				
	характеристиками.				
3	Элементы микромеханических гироскопов и их проектирование.				
3	Элементы микромеханических гироскопов и их проектирование. Электростатические датчики сил и моментов. Электростатические				
3	Элементы микромеханических гироскопов и их проектирование. Электростатические датчики сил и моментов. Электростатические датчики сил и моментов гребенчатой структуры Датчики сил и				
3	Элементы микромеханических гироскопов и их проектирование. Электростатические датчики сил и моментов. Электростатические датчики сил и моментов гребенчатой структуры Датчики сил и моментов плоской структуры. Емкостные датчики микроперемещений.				
3	Элементы микромеханических гироскопов и их проектирование. Электростатические датчики сил и моментов. Электростатические датчики сил и моментов гребенчатой структуры Датчики сил и моментов плоской структуры. Емкостные датчики микроперемещений. Система автогенераторного возбуждения первичных колебаний ММГ.				
3	Элементы микромеханических гироскопов и их проектирование. Электростатические датчики сил и моментов. Электростатические датчики сил и моментов гребенчатой структуры Датчики сил и моментов плоской структуры. Емкостные датчики микроперемещений. Система автогенераторного возбуждения первичных колебаний ММГ. Основные структуры микромеханических гироскопов.				
3	Элементы микромеханических гироскопов и их проектирование. Электростатические датчики сил и моментов. Электростатические датчики сил и моментов гребенчатой структуры Датчики сил и моментов плоской структуры. Емкостные датчики микроперемещений. Система автогенераторного возбуждения первичных колебаний ММГ.				

Тестирование, калибровка и компенсация микромеханических гироскопов и акселерометров. Методы и оборудование для тестирования микромеханических гироскопов и акселерометров. Однократное упрощенное тестирование. Статическое и динамическое тестирование. Тестирование на стабильность параметров. Особенности тестирования гироскопов на стендах вращения. Обработка результатов тестирования. Тестирование при изменении температуры. Тестирование при осциллирующей скорости вращения основания. Тестирование на вибрационные и ударные нагрузки. Тестирование па влияние магнитного поля. Калибровка и компенсация ошибок гироскопов и акселерометров

5 Проектирование встроенных контроллеров для стабилизации метрологических характеристик.

Алгоритмы оценивания параметров микромеханических гироскопов в реальном времени. Методы реализации этих алгоритмов во встроенных контроллерах. Стабилизация метрологических характеристик микромеханических гироскопов на основе результатов оценивания их параметров.

2.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 4.

Таблица 4 – Практические занятия и их трудоемкость

№ п/п	Темы практических занятий	Формы практических занятий	Трудоем кость, (час)	№ раздела дисцип- лины	
Учебным планом не предусмотрено					

2.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Лабораторные занятия и их трудоемкость

№ п/п	Наим	енование лабораторных работ	Трудоемкость, (час)	№ раздела дисциплины
Учебным планом не предусмотрено				

2.5. Курсовое проектирование (работа)

Учебным планом не предусмотрено

2.6. Самостоятельная работа студентов

Виды самостоятельной работы и ее трудоемкость приведены в таблице 6.

Таблица 6- Вилы самостоятельной работы и ее трудоемкость

гаолица о виды самостоительной расоты	1	ı
Вид самостоятельной работы	Всего час	Семестр 6, час
Bing camocronicianion paceria	Beer o, lac	comcerp o, iao
1	2	2
1	<i>L</i>	3
<u> </u>	10	1.0
Самостоятельная работа, всего	19	l 19 l
1 ′		
	l	

изучение теоретического материала дисциплины (TO)	16	16
курсовое проектирование (КП, КР)		
расчетно-графические задания (РГЗ)		
выполнение реферата (Р)		
Подготовка к текущему контролю (ТК)	3	3
домашнее задание (ДЗ)		
контрольные работы заочников (КРЗ)		

3. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю);

Учебно-методические материалы для самостоятельной работы студентов указаны в п.п. 8-10.

4. Перечень основной и дополнительной литературы 4.1. Основная литература

Перечень основной литературы приведен в таблице 7.

Таблица 7 – Перечень основной литературы

Шифр	Библиографическая ссылка / URL адрес	Количество
		экземпляров в
		библиотеке
521	Распопов, В. Я.	15
531		13
Л 84	Приборы первичной информации: Микромеханические приборы. : учебное пособие /	
	В. Я. Распопов; Тул. гос. ун-т Тула: [2002 390]	
	с. : - ISBN 5-8125-0239-0. Издание имеет гриф	
	Министерства образования РФ	
681.2	Распопов, В. Я.	7
	Микромеханические приборы. учебное пособие / В.	,
P 24	Я. Распопов М.: Машиностроение, 2007 400 с.:	
	рис., табл Библиогр.: - ISBN 5-217-03360-6. Имеет	
	гриф Минобрнауки России	
629.7	Матвеев В.А., Липатников В.И., Алехин А.В.	100
M 59	Проектирование волнового твердотельного	
101 39	гироскопа: Учеб. пособие для втузов М.: Изд-во	
	МГТУ им. Н.Э. Баумана, 1997. 168с	
629.7	Северов Л.А. Механика гироскопических системМ.:	52
C28	Изд. МАИ, 1996212с	
	Матвеев, В. В.	
	Основы построения бесплатформенных	
	инерциальных навигационных систем. учебное	
	пособие / В. В. Матвеев, В. Я. Распопов ; ред. В. Я.	
	Распопов ; ГНЦ РФ - ЦНИИ "Электроприбор".	
	СПб. : Изд-во ГНЦ РФ - ЦНИИ 2009 278 с. :	
	ISBN 978-5-900780-73-3.	

4.2. Дополнительная литература

Перечень дополнительной литературы приведен в таблице 8.

Таблица 8 – Перечень дополнительной литературы

Шифр	Библиографическая ссылка/ URL адрес	Количество
		экземпляров в
		библиотеке
629.7	Titterton D.H., Weston J.L. Strapdown Inertial	2
T. 64	Navigation Technology. Second edition. Ed. Paul	
T-64	Zarchan, MIT Lincoln Laboratory, 2009, 558 p.	
	Северов Л.А., Пономарев В.К., Панферов А.И.,	
	Сорокин А.В., Кучерков С.Г., Лучинин В.В.	
	Корляков А.В. Микромеханические	
	гироскопы: конструкции, характеристики,	
	технологии, пути развития Известия ВУЗов,	
	Приборостроение, т.41, №1-2, 1998. с.57-73.	
	Меркурьев И.В., Подалков В.В. Динамика	
	микромеханического и волнового твердотельного	
	гироскопов. – М.: ФИЗМАЕЛИТ, 2009. – 228 с. –	
	ISBN 987-5-9221-1125-6	
	Матвеев В.А., Басараб М.А., Ивойлов М.А.	
	Генетические алгоритмы балансировки	
	миниатюрного волнового твердотельного	
	гироскопа // Труды Девятого Международного	
	Симпозиума «Интеллектуальные системы»	
	INTELS'2010, Россия, Владимир, 28 июня – 2	
	июля 2010г., С. 516-519.	

5. Перечень ресурсов информационно-телекоммуникационной сети ИНТЕРНЕТ, необходимых для освоения дисциплины

Перечень ресурсов информационно-телекоммуникационной сети ИНТЕРНЕТ, необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 — Перечень ресурсов информационно-телекоммуникационной сети ИНТЕРНЕТ, необходимых для освоения дисциплины

URL адрес	Наименование
http://matlab.exponenta.ru/	E.B.Никульчев Control System Toolbox

6. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

6.1. Перечень программного обеспечения

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10 – Перечень программного обеспечения

№ п/п	Наименование	
	Не предусмотрено	

6.2. Перечень информационно-справочных систем

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11 – Перечень информационно-справочных систем

№ п/п	Наименование	
	Не предусмотрено	

7. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине

Состав материально-технической базы представлен в таблице 12.

Таблица 12 – Состав материально-технической базы

		Номер
№ п/п	Наименование составной части материально-	аудитории
Nº 11/11	технической базы	(при
		необходимости)
1	Лекционная аудитория	13-03a
2	Мультимедийная лекционная аудитория	13-04

8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

8.1. Состав фонда оценочных средств приведен в таблице 13 Таблица 13 - Состав фонда оценочных средств для промежуточной аттестации

Вид промежуточной аттестации	Примерный перечень оценочных
	средств
Зачет	Список вопросов к зачету;

8.2. Перечень компетенций, относящихся к дисциплине, и этапы их формирования в процессе освоения образовательной программы приведены в таблице 14.

Таблица 14 — Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

Цомор сомостро			Этапы формирования компетенций по							
	Номер семестра		ди	дисциплинам/практикам в процессе освоения ОП						
Г	ОПК-3 «способность использовать базовые положения математики, естественных,			ых,						
]	гумани	тар	оных и эконом	ических і	наук при реп	іении соі	циал	іьных и проф	ессионалы	ных
,	задач	И	критически	оценить	освоенные	теории	И	концепции,	границы	ИХ

применимости»	
1	Математика. Математический анализ
1	Физика
1	Математика. Аналитическая геометрия и линейная алгебра
2	Физика
2	Математика. Математический анализ
2	Математика. Аналитическая геометрия и линейная алгебра
2	Математика. Дифференциальные уравнения
3	Математика. Теория вероятностей и математическая статистика
3	Сопротивление материалов
3	Теоретическая механика
3	Материаловедение
3	Физика
3	Авиационные материалы
4	Метрология, стандартизация и сертификация
4	Математика. Теория вероятностей и математическая статистика
5	Аналитическая механика
5	Основы теории управления
6	Основы теории пилотажно-навигационных комплексов
6	Динамика полета
6	Теория гироскопов и гиростабилизаторов
7	Гироскопические приборы и системы
7	Системы управления летательными аппаратами
8	Системы управления летательными аппаратами
9	Микромеханические приборы и устройства
9	Надежность приборов и систем
9	Системы управления летательными аппаратами
9	Микромеханические инерциальные чувствительные элементы
10	Производственная преддипломная практика
ПСК- 4.4 «способность	создавать методику и производить комплекс испытаний, а
	гации приборов и датчиков систем управления летательных
9	Микромеханические инерциальные чувствительные элементы
9	Микромеханические приборы и устройства
9	Эксплуатация и испытания приборов и систем управления летательных аппаратов

8.3. В качестве критериев оценки уровня сформированности (освоения) у обучающихся компетенций применяется шкала модульно—рейтинговой системы университета. В таблице 15 представлена 100—балльная и 4-балльная шкалы для оценки сформированности компетенций.

Таблица 15 – Критерии оценки уровня сформированности компетенций

_		оценки уровня сформированности компетенции
Оценка компетенции		
100- бальн ая шкал а	4-бальная шкала	Характеристика сформированных компетенций
85≤K ≤100	«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий.
70 ≤ K ≤84	«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий.
55 ≤ K ≤ 69	«удовлетвори тельно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий.
K≤54	«неудовлетво рительно» «не зачтено»	- обучающийся не усвоил значительной части программного материала; - допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; - испытывает трудности в практическом применении знаний; - не может аргументировать научные положения; - не формулирует выводов и обобщений.

8.4. Типовые контрольные задания или иные материалы:

1. Вопросы (задачи) для экзамена (таблица 16)

Таблица 16 – Вопросы для подготовки к экзамену

№ п/п	Перечень вопросов (задач) для экзамена
	Учебным планом не предусмотрено

2. Вопросы (задачи) для зачета / дифференцированного зачета (таблица 17) Таблица 17 – Вопросы (задачи) для зачета / дифф. Зачета

Перечень вопросов (задач) для зачета

- 1. Классификация ММГ и ММА.
- 2. Принцип действия ММГ различных типов.
- 3. Модификации и принцип действия ММА.
- 4. Математическая модель динамики движения чувствительного элемента ММГ LL-типа.
- 5. Математическая модель динамики движения чувствительного элемента ММГ RR-типа.
- 6. Установившейся режим работы ММГ. Связь параметров колебаний с физическими параметрами чувствительного элемента.
- 7. Частотные характеристики ММГ и рабочая полоса частот.
- 8. Связь амплитудных и фазовых соотношений вторичных колебаний ММГ в установившемся режиме.
 - 9. Статические и динамические характеристики ММА.
 - 10. Источники ошибок в ММГ и ММА.
 - 11. Аналитические методы расчета механических характеристик ММГ и ММА.
- 12. Принцип действия емкостных датчиков перемещений чувствительного элемента в ММГ и ММА. Основные соотношения. Вопросы проектирования.
- 13. Электростатические датчики управляющей силы и момента. Расчет энергетических характеристик и линейности преобразования.
- 14. Преобразователи «емкость напряжение». Виды преобразователей и расчетные соотношения.
- 15. Структуры систем автогенераторного возбуждения первичных колебаний в ММГ. Расчет параметров установившихся колебаний.
- 16. Структура и принцип работы системы возбуждения первичных колебаний в ММГ с опорным генератором.
- 17. Формирование контура фазовой подстройки частоты опорного генератора. Выбор параметров контура.
- 18. Принципы формирования выходного сигнала в ММГ и ММА в приборах прямого измерения. Схемотехника измерительного канала.
- 19. Формирования выходного сигнала в ММГ и ММА в приборах компенсационного типа.
- 20. Стабилизация амплитуды первичных колебаний ММГ управлением амплитудой импульсов возбуждения.
- 21. Стабилизация амплитуды первичных колебаний ММГ управлением длительностью импульсов возбуждения.
- 22. Сопряжение частот первичных и вторичных колебаний. Схемотехника и варианты решения задачи.
 - 23. Основные технологические процессы производства ММГ и ММА.
 - 24. Методики экспериментальных исследований характеристик ММГ и ММА.
 - 25. Технологическое и специальное оборудование для производства испытаний.
- 26. Автоматизация экспериментальных исследований. Методы обработки данных эксперимента.
- 27. Оценка случайных погрешностей выходного сигнала ММГ и ММА методом вариации Алана.

3. Темы и задание для выполнения курсовой работы / выполнения курсового проекта (таблица 18)

Таблица 18 — Примерный перечень тем для выполнения курсовой работы / выполнения курсового проекта

№ п/п	Примерный перечень тем для выполнения курсовой работы / выполнения курсового проекта
	Учебным планом не предусмотрено

4. Вопросы для проведения промежуточной аттестации при тестировании (таблица 19)

Таблица 19 – Примерный перечень вопросов для тестов

№ п/п	Примерный перечень вопросов для тестов
	Учебным планом не предусмотрено

5. Контрольные и практические задачи / задания по дисциплине (таблица 20) Таблица 20 — Примерный перечень контрольных и практических задач / заданий

№ п/п	Примерный перечень контрольных и практических задач / заданий
	Учебным планом не предусмотрено

8.5. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и / или опыта деятельности, характеризующих этапы формирования компетенций, содержатся в Положениях «О текущем контроле успеваемости и промежуточной аттестации студентов ГУАП, обучающихся по программы высшего образования» и «О модульно-рейтинговой системе оценки качества учебной работы студентов в ГУАП».

9. Методические указания для обучающихся по освоению дисциплины

Методические указания для обучающихся по освоению лекционного материала

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими лисциплинами.

Планируемы результаты при освоении обучающимся лекционного материала:

- -получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - -получение опыта творческой работы совместно с преподавателем;
- -развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
- -появление необходимого интереса, необходимого для самостоятельной работы;
- -получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- -научится методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - -получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- -Изложение теоретических вопросов, связанных с рассматриваемой темой;
- -Описание методов и алгоритмов, применяемых для решения технических задач моделирования электромеханических систем навигации и управления подвижными объектами;
 - -Демонстрация примеров решения задач;
 - -Обобщение изложенного материала;
 - -Ответы на возникающие вопросы по теме лекции.

Методические указания по освоению лекционного материала имеются в изданном виде, в виде электронных следующих ресурсов библиотеки ГУАП:

М.И. Евстифеев, А.И. Панферов, В.К. Пономарев, Л.А. Северов, С.Ф. Скорина Микромеханические инерциальные чувствительные элементы. Микромеханические гироскопы. Учебное пособие. ГУАП. Санкт-Петербург, 2007

Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихся являются учебно-методические материалы по дисциплине.

Методические указания для обучающихся по прохождению промежуточной аттестации

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине в форме зачета с аттестационной оценкой «зачтено» или «не зачтено».

Система оценок при проведении промежуточной аттестации осуществляется в соответствии с требованиями Положений «О текущем контроле успеваемости и промежуточной аттестации студентов ГУАП, обучающихся по программы высшего образования» и «О модульно-рейтинговой системе оценки качества учебной работы студентов в ГУАП».

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпис ь зав. кафедро й