МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 23

УТВЕРЖДАЮ

Руководитель направления

доц.,к.т.н.,доц.

(должность, уч. степень, звание)

Л.Н. Пресленев

(инициалы, фамилия)

(подпись)

« 19 » июня_ 2019 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Кристаллооптика и электронные оптические устройства» (Наименование дисциплины)

Код направления подготовки/ специальности	12.03.05	
Наименование направления подготовки/ специальности	Лазерная техника и лазерные технологии	
Наименование направленности	Лазерная техника и лазерные технологии	
Форма обучения	очная	

Лист согласования рабочей программы дисциплины

Программу составил	Olllen	O.D. III.
Доцент, к.т.н., доцент (должность, уч. степень, звание)	(подпись, дата)	О.В. Шакин (инициалы, фамилия)
Программа одобрена на заседани «_20_»мая 2019 г, протокол	ии кафедры № 23	(лінциалы, фамилия)
Заведующий кафедрой № 23 д.т.н.,проф.	Ja	А.Р. Бестугин
(уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Ответственный за ОП ВО 12.04.0 доц.,к.т.н.,доц.	05(01) Epup	Л.Н. Пресленев
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Заместитель директора институт доц.,к.т.н.,доц.	Obaclan	О.Л. Балышева
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)

Аннотация

Дисциплина «Кристаллооптика и электронные оптические устройства» входит в образовательную программу высшего образования по направлению подготовки/ специальности 12.03.05 «Лазерная техника и лазерные технологии» направленности «Лазерная техника и лазерные технологии». Дисциплина реализуется кафедрой «№23».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ПК-1 «Способен к разработке технологических процессов изготовления типовых узлов и деталей лазерной техники, лазерных оптико-электронных приборов и систем»

ПК-5 «Способен к расчёту, проектированию и конструированию типовых систем, приборов, узлов и деталей лазерной техники, лазерных оптико-электронных приборов и систем»

Содержание дисциплины охватывает круг вопросов, связанных с принципами работы и применением кристаллооптических приборов в научных исследованиях и современной элементной базы, к анализу поставленной задачи исследований при изучении физических процессов и явлений, происходящих в оптическом диапазоне электромагнитных волн в кристаллических анизотропных средах, монтаже, наладке настройке, юстировке, испытаниях, сдаче в эксплуатацию опытных образцов, сервисном обслуживании и ремонте техники.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, практические занятия, самостоятельная работа студента.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме зачета.

Общая трудоемкость освоения дисциплины составляет 3 зачетных единицы, 108 часов.

Язык обучения по дисциплине «русский »

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Дель преподавания дисциплины «Кристаллооптика и электрооптические устройства» формирование теоретической и технической подготовки студентов направления 12.03.05 «Лазерная техника и лазерные технологии» по принципам работы и применении кристаллооптических приборов в научных исследованиях и современной технике.

- 1.2. Дисциплина входит в состав части, формируемой участниками образовательных отношений, образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

	1	каторов их достижения
Категория (группа) компетенции	Код и наименование	Код и наименование индикатора достижения компетенции
Компетенции	компетенции	компетенции
	ПК-1 Способен к	ПК-1.Д.2 анализирует технические
	разработке	требования, предъявляемые к
	технологических	разрабатываемым оптическим узлам и
	процессов	элементам лазерных приборов и систем;
Профессиональные	изготовления	разрабатывает технологические процессы
компетенции	типовых узлов и	изготовления типовых оптических деталей из
компетенции	деталей лазерной	стекла и кристаллов; проектирует оснастку для
	техники, лазерных	изготовления деталей лазерной техники;
	оптико-	определяет, формулирует и обосновывает
	электронных	параметры, режимы и условия реализации
	приборов и систем	разрабатываемых деталей
	ПК-5 Способен к	ПК-5.Д.1 знает основные типы и
	расчёту,	характеристики оптических систем лазерных
	проектированию и	оптико-электронных приборов, оборудования
	конструированию	и технологий; элементную базу, используемую
	типовых систем,	в изделиях лазерной техники; оптические
Профессиональные	приборов, узлов и	материалы и технологии; методы работы с
компетенции	деталей лазерной	научно-технической литературой и
	техники, лазерных	информацией; правила оформления чертежей
	оптико-	и конструкторской документации;
		компьютерные технологии моделирования и
	электронных приборов и систем	конструирования лазерных оптико-
	приооров и систем	электронных приборов

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин: - Математика-1 (Аналитическая геометрия и линейная алгебра);

- Математика-1 (Математический анализ);
- Физика:
- Радиотехнические цепи и сигналы;
- Электроника;

Знания и навыки, полученные при изучении материала данной дисциплины в соответствии с учебным планом направления 20050062Ф, имеют как самостоятельное значение, так и используются при изучении других дисциплин:

- Основы квантовой электроники;
- Оптика;
- Нелинейная оптика;
- Лазерные измерения.

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблипе 2.

Таблица 2 – Объем и трудоемкость дисциплины

		Трудоемкость по
Вид учебной работы	Всего	семестрам
, -		№5
1	2	3
Общая трудоемкость дисциплины, 3E/ (час)	3/ 108	3/ 108
Аудиторные занятия, всего час.	51	51
в том числе:		
лекции (Л), (час)	17	17
практические/семинарские занятия (ПЗ), (час)	17	17
лабораторные работы (ЛР), (час)	17	17
курсовой проект (работа) (КП, КР), (час)		
экзамен, (час)		
Самостоятельная работа, всего (час)	57	57
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Зачет	Зачет

Примечание: **кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины и их трудоемкость

Разделы дисциплины	Лекци	ПЗ (СЗ)	ЛР	CPC
	И	(час)	(час)	(час)
Раздел 1. Распространение электромагнитных волн в	4	4	4	9
анизотропных средах				
Раздел 2. Характеристики анизотропных сред.	4	4	4	16
Раздел 3. Электрооптическая модуляция света,	4	4	4	16
Раздел 4. Электрооптические устройства	5	5	5	16
Итого в семестре:	17	17	17	57
Итого:	17	17	17	57

4.2. Содержание разделов и тем лекционных занятий.

Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционных занятий

	14— Содержание разделов и тем лекционных занятии			
Номер	Название и содержание тем лекционных занятий			
раздела				
1	 Тема 1.1. Введение Предмет кристаллооптика и его задачи. Симметрия кристаллов. Трансляционная и точечная симметрия Тема 1.2. Электромагнитные волны в анизотропных средах. Тензор диэлектрической проницаемости анизотропной среды. Тема 1.3. Распространение плоских волны в анизотропной среде Тема 1.4. Распространение плоских волны в анизотропной среде. Главные направления в кристалле. Плоские волны в анизотропной среде. Лучевой и волновой векторы. Поверхность нормалей и лучевая (волновая) поверхность. Классификация анизотропных сред 			
2	Тема 2.1. Эллипсоид показателей преломления. Тема 2.2. Классификация анизотропных сред. Тема 2.3. Распространение света в одноосных кристаллах. Тема 2.4. Двойное лучепреломление на границе раздела.			
3	Тема 3.1. Вращение плоскости поляризации. Тема 3.2. Электрооптический эффект. Тема 3.3. Продольная и поперечная электрооптическая модуляция.			
4	Тема 4.1. Интерферометр Маха-Цандера на ниобате лития. Тема 4.2 Электрооптический модулятор добротности и синхронизатор мод резонатора лазера Тема 4.3. Электрооптические эффекты в нематических жидких кристаллах. Устройства на жидких кристаллах			

4.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

No	Темы практических занятий	Формы	Трудоем	$\mathcal{N}_{\underline{0}}$
Π/Π		практи-	кость,	раздела
		ческих	(час)	дисципл
		занятий		ины
	Семестр 5			
1	Тема 1.1. Симметрия кристаллов.		1	1
2	Тема 1.2. Тензор диэлектрической проницаемости		1	1
	анизотропной среды.			
3	Тема 1.3. Распространение плоских волны в		1	1
	анизотропной среде			
	Тема 1.4. Лучевой и волновой векторы. Поверхность		1	1
	нормалей и лучевая (волновая) поверхность.			
4	Тема 2.1. Эллипсоид показателей преломления.		1	2
5	Тема 2.2 Классификация анизотропных сред.		1	2
6	Тема 2.3. Распространение света в одноосных		1	2
	кристаллах.			

7	Тема 2.4. Двойное лучепреломление на границе	1	2
	раздела		
8	Тема 3.1 Вращение плоскости поляризации.	1	3
9	Тема 3.2 Электрооптический эффект.	1	3
10	Тема 3.3. Продольная и поперечная	1	3
	электрооптическая модуляция.		
11	Тема 4.1. Интерферометр Маха-Цандера на ниобате	2	4
	лития.		
12	Тема 4.2. Электрооптический модулятор	2	4
	добротности и синхронизатор мод резонатора лазера		
13	Тема 4.3. Электрооптические эффекты в	2	4
	нематических жидких кристаллах. Устройства на		
	жидких кристаллах		
	Всего:	17	

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

No	Наименование лабораторных занятий	Трудоемко	№ раздела
Π/Π		сть (час)	дисциплин
			Ы
	Семестр 5		
1	Поляризационные характеристики света	4	1
2	Интерференция некогерентного света	4	2
3	Интерференция когерентного света	4	3
4	Дисперсия в оптическом волокне	5	4
	Всего	17	

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

- 11 - 11 - 11 - 11 - 11 - 11 - 11 - 1				
Вид самостоятельной работы	Всего, час	Семестр 5, час		
Самостоятельная работа, всего	57	57		
Изучение теоретического материала дисциплины (ТО)	40	40		
Подготовка к практическим занятиям (ПЗ)	8	8		
Подготовка к текущему контролю (ТК)	1	1		
Подготовка к лабораторным работам (ЛР)	8	8		

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8.

Таблица 8- Перечень основной литературы

Шифр	Библиографическая ссылка / URL адрес	Количество
		экземпляров
		в библиотеке
	Салех, М.Тейх Оптика и фотоника. Принципы и применения.	ФО (2),
	Пер. с. Англ.: Учебное пособие. В 2 т. Т. 2 / Б. Салех, М. Тейх –	ГС(14), ГСЧЗ
	Долгопрудный: Издательский Дом «Интеллект», 2012. – 784 с.: цв. вкл. ISBN 978-5-91559-135-5	(1).
	2. Ярив А., Юх П. Оптические волны в кристаллах – М.:	ФО (2),
	Мир, 1987 – 616 с.	ГС(14), ГСЧЗ
		(1).

1.1. Дополнительная литература

Перечень дополнительной литературы приведен в таблице 8.

Таблица 8 – Перечень дополнительной литературы

Шифр	Библиографическая ссылка/ URL адрес	Количество
		экземпляров в
		библиотеке
	1. Москалец О.Д. Электромагнитные сигналы в квантовой	
	электронике: квантовое описание и классическое приближение //	
	Известия высших учебных заведений. Физика. 2001. Т. 44. №10. С. 5-	
	12.	
	2. Степанов Б.И. Введение в современную оптику. Минск: Наука и техника. 1989.	
	3 Перина Я. Когерентность света/ Пер. с англ. М.: Мир. 1974.	
	4. Виноградова М.Б., Руденко О.В., Сухоруков А.П. Теория волн. Изд. 2-е. М.: Наука. 1990.	

2. Перечень ресурсов информационно-телекоммуникационной сети ИНТЕРНЕТ, необходимых для освоения дисциплины

Перечень ресурсов информационно-телекоммуникационной сети ИНТЕРНЕТ, необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень ресурсов информационно-телекоммуникационной сети ИНТЕРНЕТ, необходимых для освоения дисциплины

No	URL адрес	На	аименование	
Π/Π				
1	http://guap.ru/guap/standart/pravila1.rtf	Правила оф документов по ГО	формления ОСТ 7.32-2001	текстовых

2	- http://regstands.guap.ru/db/docs/7.32-2001.pdf	ГОСТ 7.32-2001. Отчет о научно-	
		исследовательской работе. Структура и	
		правила оформления	
3	http://guap.ru/guap/standart/prim.doc	Примеры библиографического описания	
		(по ГОСТ 7.1-2003)	
4	ftp://ftp.radio.ru/pub/ugo /	Условные графические обозначения	
		элементов электрических схем	

7. Перечень информационных технологий

7.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

№ п/п	Наименование	
	Не предусмотрено	

7.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п	Наименование
	Не предусмотрено

8. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории
1	Мультимедийная лекционная аудитория	11-03
2	Специализированная лаборатория «Неодимовый лазер»	11-04

9. Оценочные средства для проведения промежуточной аттестации

9.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Зачет	Список вопросов;
	Тесты;
	Задачи.

9.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

	оценки уровня сформированности компетенции	
Оценка компетенции	Характеристика сформированных компетенций	
5-балльная шкала		
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий. 	
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 	
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий. 	
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 	

9.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	
	Учебным планом не предусмотрено	

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16. Таблица 16 — Вопросы (задачи) для зачета / дифф. зачета

Перечень вопросов (задач) для зачета / дифференцированного зачета

- 1. Симметрия кристаллов.
- 2. Тензор диэлектрической проницаемости анизотропной среды.
- 3. Распространение плоских волны в анизотропной среде

- 4. Лучевой и волновой векторы.
- 5. Поверхность нормалей и лучевая (волновая) поверхность.
- 6. Эллипсоид показателей преломления
- 7. Классификация анизотропных сред.
- 8. Распространение света в одноосных кристаллах.
- 9. Двойное лучепреломление на границе раздела
- 10. Вращение плоскости поляризации.
- 11. Электрооптический эффект.
- 12. Продольная и поперечная электрооптическая модуляция.
- 13. Интерферометр Маха-Цандера на ниобате лития.
- 14. Электрооптический модулятор добротности лазера
- 15. Синхронизатор мод резонатора лазера
- 16. Электрооптические эффекты в нематических жидких кристаллах.
- 17. Устройства на жидких кристаллах

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы	
Учебным планом не предусмотрено		

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

№ п/п	Примерный перечень вопросов для тестов
1	Симметрия кристаллов.
2	Тензор диэлектрической проницаемости анизотропной среды.
3	Распространение плоских волны в анизотропной среде
4	Лучевой и волновой векторы.
5	Поверхность нормалей и лучевая (волновая) поверхность.
6	Эллипсоид показателей преломления
7	Классификация анизотропных сред.
8	Распространение света в одноосных кристаллах.
9	Двойное лучепреломление на границе раздела
10	Вращение плоскости поляризации.
11	Электрооптический эффект.
12	Продольная и поперечная электрооптическая модуляция.
13	Интерферометр Маха-Цандера на ниобате лития.

14	Электрооптический модулятор добротности лазера
15	Синхронизатор мод резонатора лазера
16	Электрооптические эффекты в нематических жидких кристаллах.
17	Устройства на жидких кристаллах
I	

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п		Перечень контрольных работ
	Не предусмотрено	

- 9.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.
- 10. Методические указания для обучающихся по освоению дисциплины Целью дисциплины является формирование у студентов знаний о сущности физических процессов и принципов работы и применении кристаллооптических приборов в научных исследованиях и современной технике для активной производственной и творческой работе в области лазерных технологий. Получение студентами необходимых знаний, умений и навыков в области «Лазерной техники и лазерных технологий» по дисциплине «Кристаллооптика и электрооптические устройства».

Методические указания для обучающихся по освоению лекционного материала

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемы результаты при освоении обучающимся лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
- получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
- появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научится методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
- получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- презентация лекционного материала в мультимедийной аудитории;
- указание наиболее важных вопросов в данном курсе;
- краткая дискуссия по лекционному материалу;
- информация о дополнительных материалах, необходимых для понимания лекционного курса.

Методика проведения лекционных занятий представлены в методическом пособии на сайте каф.23

Методические указания для обучающихся по прохождению практических занятий

Практическое занятие является одной из основных форм организации учебного процесса, заключающаяся в выполнении обучающимися под руководством преподавателя комплекса учебных заданий с целью усвоения научно-теоретических основ учебной дисциплины, приобретения умений и навыков, опыта творческой деятельности.

Целью практического занятия для обучающегося является привитие обучающемся умений и навыков практической деятельности по изучаемой дисциплине.

Планируемые результаты при освоении обучающемся практических занятий:

- закрепление, углубление, расширение и детализация знаний при решении конкретных задач;
- развитие познавательных способностей, самостоятельности мышления, творческой активности;
- овладение новыми методами и методиками изучения конкретной учебной дисциплины;
- выработка способности логического осмысления полученных знаний для выполнения заданий;
- обеспечение рационального сочетания коллективной и индивидуальной форм обучения.

Функции практических занятий:

- познавательная;
- развивающая;
- воспитательная.

По характеру выполняемых обучающимся заданий по практическим занятиям подразделяются на:

- ознакомительные, проводимые с целью закрепления и конкретизации изученного теоретического материала;
- аналитические, ставящие своей целью получение новой информации на основе формализованных методов;
- творческие, связанные с получением новой информации путем самостоятельно выбранных подходов к решению задач.

Формы организации практических занятий определяются в соответствии со специфическими особенностями учебной дисциплины и целями обучения. Они могут проводиться:

- в интерактивной форме (решение ситуационных задач, занятия по моделированию реальных условий, деловые игры, игровое проектирование, имитационные занятия, выездные занятия в организации (предприятия), деловая учебная игра, психологический тренинг, кейс, мозговой штурм, групповые дискуссии);
- в не интерактивной форме (выполнение упражнений, решение типовых задач, решение ситуационных задач и другое).

Методика проведения практических занятий может быть различной, при этом важно достижение общей цели дисциплины.

Подготовка докладов,

Решение задач.

Требования к проведению практических занятий представлены в методическом пособии на сайте каф.23

Методические указания для обучающихся при проведении лабораторных работ

В ходе выполнения лабораторных работа обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом и относится к средствам, обеспечивающим решение следующих основных задач у обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
- получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задание и требования к проведению лабораторных работ

Изучение инструкции по эксплуатации лабораторного стенда Изучение техники безопасности при работе с лазерным излучением.

Структура и форма отчета о лабораторной работе

Ответы на вопросы, приведённые в таблице 19

Требования к оформлению отчета о лабораторной работе

Титульный лист Краткое описание цели лабораторной работы. Результаты Расчеты. Выводы.

Методические указания для обучающихся по проведению лабораторных работ представлены в методическом пособии на сайте каф.23

Методические указания для обучающихся по прохождению промежуточной аттестации

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

- экзамен форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».
- зачет это форма оценки знаний, полученных обучающимся в ходе изучения учебной дисциплины в целом или промежуточная (по окончании семестра) оценка знаний обучающимся по отдельным разделам дисциплины с аттестационной оценкой «зачтено» или «не зачтено».

Система оценок при проведении промежуточной аттестации осуществляется в соответствии с требованиями Положений «О текущем контроле успеваемости и промежуточной аттестации студентов ГУАП, обучающихся по программы высшего образования» и «О модульно-рейтинговой системе оценки качества учебной работы студентов в ГУАП».

Методические указания для обучающихся указания по прохождению промежуточной аттестации представлены в методическом пособии на сайте каф.23

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой