министерство науки и высшего образования российской федерации

федеральное государственное автономное образовательное учреждение высшего образования

«САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

Кафедра №32

«УТВЕРЖДАЮ»

Руководитель направления

д.т.н.,проф.

(полжность, уч. степень, звание)

В.Ф. Шишлаков

(полинсь)

«28» мая 2019 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Диагностика электромеханических устройств» (Название дасциплацы)

Код направления	16.03.01
Наименование направления/ специальности	Техническая физика
Наименование направленности	Физические методы контроля качества и диагностики
Форма обучения	очная

Санкт-Петербург 2019 г.

Лист согласования рабочей программы дисциплины

Программу составил(а)

доц., к.т.н.

должность, уч. степень, звание

22.05.2019

Булагов В.В.

Программа одобрена на заседании кафедры № 32 « 22 » мая 2019 г, протокол № 8

Заведующий кафедрой № 32

проф.,д.т.н.,проф. должность, уч. степень. звание 22 05 2019

А.Л. Ронжин инициям. фамиция

Ответственный за ОП 16.03.01(01)

доц.,к.т.н.,доц.

польяюсть, уч, степень, звание

128.05.2019

М.В. Бураков инициалы фанили

Заместитель директора института (декана факультета) № 3 по методической работе

доц.,к.т.н.,доц.

должность, уч. степень, знание

28.05,2019

М.В. Бураков

Аннотация

Дисциплина «Диагностика электромеханических устройств» входит в базовую часть образовательной программы подготовки обучающихся по направлению 16.03.01 «Техническая физика» направленность «Физические методы контроля качества и диагностики». Дисциплина реализуется кафедрой №32.

Дисциплина нацелена на формирование у выпускника

общепрофессиональных компетенций:

ОПК-8 «способность самостоятельно осваивать современную физическую, аналитическую и технологическую аппаратуру различного назначения и работать на ней»;

профессиональных компетенций:

ПК-9 «способность использовать технические средства для определения основных параметров технологического процесса, изучения свойств физико-технических объектов, изделий и материалов»,

ПК-11 «способность использовать нормативные документы по качеству, стандартизации и сертификации изделий, элементы экономического анализа в практической деятельности»,

ПК-14 «способность разрабатывать функциональные и структурные схемы элементов и узлов экспериментальных и промышленных установок, проекты изделий с учетом технологических, экономических и эстетических параметров».

Содержание дисциплины охватывает круг вопросов, связанных с диагностикой и мониторингом состояния электромеханических систем (ЭС), оценкой параметров надежности ЭС в процессе эксплуатации.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, самостоятельная работа обучающегося.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 4 зачетных единицы, 144 часа.

Язык обучения по дисциплине «русский».

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Целью дисциплины является формирование у студентов необходимых знаний и умений в области диагностики электромеханических систем, а также по их эксплуатационным режимам, что позволит им успешно решать теоретические и практические задачи в их профессиональной деятельности.

1.2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП

В результате освоения дисциплины обучающийся должен обладать следующими компетенциями:

ОПК-8 «способность самостоятельно осваивать современную физическую, аналитическую и технологическую аппаратуру различного назначения и работать на ней»:

знать - <u>сущность происходящих в электрооборудовании процессов преобразования энергии</u> уметь - <u>самостоятельно проводить статистический анализ неисправностей и дефектов электрооборудования</u>

владеть навыками - оценки технического состояния электромеханических систем.

ПК-9 «способность использовать технические средства для определения основных параметров технологического процесса, изучения свойств физико-технических объектов, изделий и материалов»:

уметь - проводить типовую диагностику электрооборудования знать - основы технической диагностики и неразрушающих методов контроля владеть навыками - ориентироваться в схемных решениях, математических моделях, свойствах и характеристиках электрооборудования.

ПК-11 «способность использовать нормативные документы по качеству, стандартизации и сертификации изделий, элементы экономического анализа в практической деятельности»:

знать – <u>государственные и международные стандарты в области технической диагностики и</u> эксплуатационной надежности

владеть навыками – применения нормативных документов по качеству, стандартизации и сертификации изделий.

ПК-14 «способность разрабатывать функциональные и структурные схемы элементов и узлов экспериментальных и промышленных установок, проекты изделий с учетом технологических, экономических и эстетических параметров»:

уметь – <u>разрабатывать схемы автоматизации промышленных установок</u> владеть навыками – составления FME(C)A, FTA и HAZOP

иметь опыт деятельности - <u>при решении практических задач по определению параметров</u> надежности устройств и систем.

2. Место дисциплины в структуре ОП

Дисциплина базируется на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- Физика
- Математические методы моделирования физических процессов

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и используются при изучении других дисциплин:

– Физические принципы конструирования приборов контроля и диагностики.

3. Объем дисциплины в ЗЕ/академ. час

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 1

Таблица 1 – Объем и трудоемкость дисциплины

Вид учебной работы	Всего	Трудоемкость по семестрам №7
1	2	3
Общая трудоемкость дисциплины, 3E/(час)	4/ 144	4/ 144
Аудиторные занятия, всего час., В том числе	51	51
лекции (Л), (час)	17	17
Практические/семинарские занятия (ПЗ), (час)		
лабораторные работы (ЛР), (час)	34	34
курсовой проект (работа) (КП, КР), (час)		
Экзамен, (час)	45	45
Самостоятельная работа, всего	48	48
Вид промежуточного контроля: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.)	Экз.	Экз.

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий

Разделы и темы дисциплины и их трудоемкость приведены в таблице 2.

Таблица 2. – Разделы, темы дисциплины и их трудоемкость

Разделы, темы дисциплины	Лекции (час)	ПЗ (СЗ) (час)	ЛР (час)	КП (час)	СРС (час)
	Семестр 7	<u>l</u>		I	ı
Раздел 1. Основы теории надежности технических систем	4		8		10
Раздел 2. Статистические методы оценки, анализа и контроля надежности.	2		4		8
Раздел 3. Техническая диагностика. Основные понятия.	4		8		8
Раздел 4. Дефекты элементов ЭС и оборудования высокого напряжения.	2		4		6
Раздел 5. Неразрушающие методы контроля	3		4		10
Раздел 6. Особенности диагностики электрических машин и кабельных линий	2		6		6
Итого в семестре:	17		34		48
Итого:	17	0	34	0	48

4.2. Содержание разделов и тем лекционных занятий

Содержание разделов и тем лекционных занятий приведено в таблице 3.

Таблица 3 - Содержание разделов и тем лекционных занятий

тистици с седериши	е разделов и тем лекционных запитии		
Номер раздела	Название и содержание разделов и тем лекционных занятий		
1.	Понятие надежности. Факторы, влияющие на надежность технических систем. Законы распределения в надежности. Компоненты надежности. Расчет надежности технических систем при проектировании. Резервирование		
2	Элементы теории вероятности. Математическая статистика. Оценка надежности по статистическим данным из эксплуатации.		
3	Техническая диагностика. Основные термины и понятия. Метод статистических решений. Метод Байеса. Методы разделения в пространстве признаков. Контролеспособность и получение диагностической информации.		
4	Понятие дефекта ЭС. Классификация дефектов. Процессы электрического разрушения твердых диэлектриков и полупроводников. Старение материалов.		
5	Технический контроль. Виды контроля. Неразрушающие методы контроля материалов и изделий : акустические (ультразвуковые),		

	капиллярные, магнитные (или магнитопорошковые), оптические (визуально-оптические), радиационные, радиоволновые, тепловые, контроль течеисканием, электромагнитные, или токовихревые (методы вихревых токов).
6	Вибрационная диагностика электрических машин. Диагностика асинхронных двигателей на основе спектрального анализа токов статора. Импульсные методы дистанционного определения повреждений в кабельных линиях.

4.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 4.

Таблица 4 – Практические занятия и их трудоемкость

	· 1	T-Jrn			
№ п/п	Темы практических занятий	Формы практических занятий	Трудоемкость, (час)	№ раздела дисцип- лины	
	Учебным планом не предусмотрено				
	Bcero:				

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Лабораторные занятия и их трудоемкость

Таолиг	ца 5 – Лаоораторные занятия и их трудоемкость		
№ π/π	Наименование лабораторных работ	Трудоемкость, (час)	№ раздела дисциплины
	Семестр 7		
1	Расчет показателей надежности нерезервированных невосстанавливаемых систем (ч.1)	4	1
2	Расчет показателей надежности нерезервированных невосстанавливаемых систем (ч.2)	4	2
3	Анализ видов, причин и последствий потенциальных отказов (FMEA)	4	1,3
4	Моделирование и расчет показателей надежности технической системы	4	1,2
	Исследование HAZOP	4	1,3,4
	Таблица проверок	2	5
	Применение НМК для диагностики и мониторинга электрооборудования	4	5,6
	Оценка состояния изоляции электрооборудования	4	6
	Методы поиска дефектов с одиночной проверкой	4	5

компонентов		
Всего:	34	

4.5. Курсовое проектирование (работа)

Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся

Виды самостоятельной работы и ее трудоемкость приведены в таблице 6.

Таблица 6 Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего, час	Семестр 7, час
1	2	2
1	2	3
Самостоятельная работа, всего	48	48
изучение теоретического материала	40	40
дисциплины (ТО)		
курсовое проектирование (КП, КР)		
расчетно-графические задания (РГЗ)		
выполнение реферата (Р)		
Подготовка к текущему контролю (ТК)	8	8
домашнее задание (ДЗ)		
контрольные работы заочников (КРЗ)		

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 8-10.

6. Перечень основной и дополнительной литературы 6.1. Основная литература

Перечень основной литературы приведен в таблице 7.

Таблица 7 – Перечень основной литературы

Шифр	Библиографическая ссылка /	Количество экземпляров в библиотеке
	URL адрес	(кроме электронных экземпляров)
ISBN 978-5-16-005711-	Основы технической	http://znanium.com/catalog.php?bookinfo=
ISBN 978-3-10-003711-	Основы технической	nttp.//znamum.com/catalog.pmp?000km10=
8	диагностики: Учебное пособие /	391424
	В.А. Поляков М.: НИЦ Инфра-	
	M, 2013 118 c.: 60x88 1/16	
	(Высшее образование:	

	Бакалавриат)	
	Михеев Г.М. Диагностика, защита и надежность устройств и систем. Издательство: Додэка XXI. Серия: Электротехника и энергетика. 2008 г 304 с.	
	Калявин В.П., Рыбаков Л.М. Надежность и диагностика элементов электро-установок. Издательство: Элмор. 2009 г 336 с.	
	Хошмухамедов, Игорь Маджидович. Эксплуатационная надежность и техни-ческая диагностика электросилового оборудования / И. М. Хошмухамедов М.: Горная книга Изд-во Московского гос. горного ун-та, 2010 307 с.: ил Горная электромеханика; Вып. 10.	
ISBN 5-94157-541-6	Половко А.М. Основы теории надежности / А.М. Половко, С.В Гуров БХВ.: Санкт-Петербург, 2006 - 704 с.	
ISBN: 5-217-03300-2	Неразрушающий контроль и диагностика. Справочник. под редакцией Клюева В.В., 2005. – 656 с.	

6.2. Дополнительная литература Перечень дополнительной литературы приведен в таблице 8.

Таблица 8 – Перечень дополнительной литературы

Шифр	Библиографическая ссылка/ URL адрес	Количество экземпляров в библиотеке (кроме электронных экземпляров)
ISBN 978-5-8114-1269-3	Носов В. В. Диагностика машин и оборудования: Учебное пособие. 2е изд., испр. и доп. — СПб. : Издательство «Лань», 2012. — 384 с.	
ISBN 5-7399-0035-2	Калявин В.П. Основы теории	

	надежности и диагностики.	
!	Учебник СПб.: Элмор,	
!	1998 - 172 c.	

7. Перечень ресурсов информационно-телекоммуникационной сети ИНТЕРНЕТ, необходимых для освоения дисциплины

Перечень ресурсов информационно-телекоммуникационной сети ИНТЕРНЕТ, необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень ресурсов информационно-телекоммуникационной сети ИНТЕРНЕТ, необходимых для освоения дисциплины

URL адрес	Наименование
	Не предусмотрено

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине 8.1. Перечень программного обеспечения

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10 – Перечень программного обеспечения

№ п/п	Наименование	
1.	Microsoft Office	
2.	PTC Mathcad Prime 3.0	

8.2. Перечень информационно-справочных систем

Перечень используемых информационно-справочных систем представлен в таблице 11. Таблица 11 – Перечень информационно-справочных систем

№ п/п	Наименование
	Не предусмотрено

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине

Состав материально-технической базы представлен в таблице 12.

Таблица 12 – Состав материально-технической базы

			Номер аудитории
	№ п/п	Наименование составной части материально-технической базы	(при
		необходимости)	
	1	Лекционная аудитория	21-18, 21-21
	2	Специализированная лаборатория	21-27

10. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

Состав фонда оценочных средств приведен в таблице 13
 Таблица 13 - Состав фонда оценочных средств для промежуточной аттестации

Вид промежуточной аттестации	Примерный перечень оценочных

	средств
Экзамен	Список вопросов к экзамену; Задачи;
	Тесты.

10.2. Перечень компетенций, относящихся к дисциплине, и этапы их формирования в процессе освоения образовательной программы приведены в таблице 14.

Таблица 14 — Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

Hayran agyraamna	Этапы формирования компетенций по	
Номер семестра	дисциплинам/практикам в процессе освоения ОП	
ОПК-8 «способность самостоятельно осваивать современную физическую, аналитическую		
технологическую аппаратуру различного назначения и работать на ней»		
3	Электротехника	
3	Материаловедение	
4	Электротехника	
6	Силовая электроника	
6	Схемотехника средств контроля	
6	Системы управления приводом	
6	Физические методы получения информации	
7	Диагностика электромеханических устройств	
7 Системы управления приводом		
7	7 Микропроцессорные средства контроля и диагностики	
7	Физические принципы конструирования приборов контроля	
и диагностики		
7	Силовая электроника	
7	Микропроцессорные устройства систем управления	
8	Накопители электромагнитной энергии	
8	1 1	
	овать технические средства для определения основных	
	процесса, изучения свойств физико-технических объектов,	
изделий и материалов»		
3	Материаловедение	
	Производственная практика по получению	
4	профессиональных умений и опыта профессиональной	
	деятельности (технологическая)	
6	Физические методы получения информации	
6	Производственная практика научно-исследовательская	
	работа	
6	Экспериментальные методы исследований	
6	Схемотехника средств контроля	
	7 Микропроцессорные устройства систем управления	
7	Электромагнитная совместимость	
·	7 Диагностика электромеханических устройств	
7	Физические принципы конструирования приборов контроля	

	и диагностики	
7	7 Микропроцессорные средства контроля и диагностики	
8 Технические средства систем управления		
8	Электрические аппараты	
8	Накопители электромагнитной энергии	
	вать нормативные документы по качеству, стандартизации и	
	гы экономического анализа в практической деятельности»	
3	Теоретическая механика	
3	Материаловедение	
4	Метрология, стандартизация и сертификация	
4	Экономика	
6	Экспериментальные методы исследований	
7	Контроль качества и испытания продукции	
7	Надежность электромеханических и электроэнергетических	
7	систем и комплексов	
7	Диагностика электромеханических устройств	
8	Технико-экономические риски при создании новой техники	
ПК-14 «способность разрабат	ывать функциональные и структурные схемы элементов и	
	промышленных установок, проекты изделий с учетом	
технологических, экономических	их и эстетических параметров»	
3	Электротехника	
4	Электротехника	
5	Теория автоматического управления	
5	Электромеханические и полупроводниковые	
5	преобразователи электрической энергии	
6	Силовая электроника	
6	Схемотехника средств контроля	
6	Теория автоматического управления	
6	Системы управления приводом	
6	Физические методы получения информации	
7	Диагностика электромеханических устройств	
7	Системы управления приводом	
7	Теория автоматического управления	
7	Микропроцессорные средства контроля и диагностики	
7	Физические принципы конструирования приборов контроля	
/	и диагностики	
7	7 Силовая электроника	
7	Микропроцессорные устройства систем управления	
7	Контроль качества и испытания продукции	
Контроль и диагностика электромеханичес		
8	электроэнергетических систем и комплексов	
8	Технические средства систем управления	
8	Электрические аппараты	
L	ONORTHI IOORIIO MIIIMPMIDI	

10.3. В качестве критериев оценки уровня сформированности (освоения) у обучающихся компетенций применяется шкала модульно-рейтинговой системы университета. В таблице 15 представлена 100-балльная и 4-балльная шкалы для оценки сформированности компетенций.

Таблица 15 – Критерии оценки уровня сформированности компетенций

Оценка н	компетенции	
100- балльная шкала	4-балльная шкала	Характеристика сформированных компетенций
85 ≤K ≤ 100	«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий.
70 ≤ K ≤ 84	«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий.
55 ≤ K ≤ 69	«удовлетво- рительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий.
K≤54	«неудовлетво рительно» «не зачтено»	- обучающийся не усвоил значительной части программного материала; - допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; - испытывает трудности в практическом применении знаний; - не может аргументировать научные положения; - не формулирует выводов и обобщений.

- 10.4. Типовые контрольные задания или иные материалы:
- 1. Вопросы (задачи) для экзамена (таблица 16)

Таблица 16 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	
	1. Понятие надежности. Факторы, влияющие на надежность технических изделий.	
	2. Компоненты надежности.	
	3. Отказы. Классификация отказов.	

- 4. Математический аппарат теории надежности. Теория вероятности. Случайные процессы и их характеристики.
- 5. Законы распределения в надежности.
- 6. Показатели безотказности.
- 7. Показатели ремонтопригодности.
- 8. Показатели сохраняемости и долговечности.
- 9. Комплексные показатели надежности.
- 10. Метод анализа надежности по среднегрупповым интенсивностям отказов.
- 11. Метод анализа надежности с использованием данных эксплуатации.
- 12. Коэффициентный метод анализа надежности.
- 13. Структурная схема надежности. Соединение элементов в системе.
- 14. Резервирование технических систем. Виды резервирования.
- 15. Эффективность АСУ. Особенности надежности электромеханических и автоматизированных систем.
- 16. Надежность системы «человек-машина».
- 17. FTA.
- 18. FMECA.
- 19. HAZOP.
- 20. Техническая диагностика. Основные понятия. Задачи технического диагностирования.
- 21. Виды диагностирования. Параметры диагностирования. Средства диагностирования.
- 22. Математические основы технической диагностики.
- 23. Методы поиска дефектов с одиночной проверкой компонентов.
- 24. Методы поиска дефектов с групповой проверкой компонентов.
- 25. Табличные методы построения тестов диагностирования.
- 26. Показатели диагностирования. Ошибки диагностирования.
- 27. Диагностирование трансформаторов.
- 28. Эксплуатационные свойства трансформаторных масел и современ-ные приборы для их испытания.

- 30. Применимость методик к диагностики оборудования подстанций, воздушных линий (ВЛ) и кабельных линий (КЛ).
- 31. Технический контроль. Виды технического контроля.
- 32. Дефекты электромеханических систем. Классификация дефектов.
- 33. НМК. Классификация. Статистическая обработка результатов неразрушающего контроля.
- 34. Оптические методы неразрушающего контроля.
- 35. Капиллярный метод неразрушающего контроля.
- 36. Тепловые методы контроля электромеханических систем.
- 37. Магнитные методы неразрушающего контроля.
- 38. Радиационный контроль.
- 39. Токовихревой контроль.
- 40. Контроль течеисканием.
- 41. Ультразвуковые методы контроля.
- 42. Радиоволновые методы контроля.
- 43. Вибрационные методы контроля состояния оборудования ВН.
- 44. Диагностика механического состояния обмоток.
- 45. Методы и средства, применяемы при диагностике линий электропередач.

2. Вопросы (задачи) для зачета / дифференцированного зачета (таблица 17)

Таблица 17 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п Перечень вопросов (задач) для зачета / дифференцированного зачета	
	Учебным планом не предусмотрено

3. Темы и задание для выполнения курсовой работы / выполнения курсового проекта (таблица 18)

Таблица 18 — Примерный перечень тем для выполнения курсовой работы / выполнения курсового проекта

№ п/п	Примерный перечень тем для выполнения курсовой работы / выполнения курсового проекта
	Учебным планом не предусмотрено

4. Вопросы для проведения промежуточной аттестации при тестировании (таблица 19)

Таблица 19 – Примерный перечень вопросов для тестов

•	
№ п/п	Примерный перечень вопросов для тестов
	Учебным планом не предусмотрено

5. Контрольные и практические задачи / задания по дисциплине (таблица 20) Таблица 20 – Примерный перечень контрольных и практических задач / заданий

№ п/п	Примерный перечень контрольных и практических задач / заданий
	Учебным планом не предусмотрено

10.5. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и / или опыта деятельности, характеризующих этапы формирования компетенций, содержатся в Положениях «О текущем контроле успеваемости и промежуточной аттестации студентов ГУАП, обучающихся по программам высшего образования» и «О модульнорейтинговой системе оценки качества учебной работы студентов в ГУАП».

11. Методические указания для обучающихся по освоению дисциплины

Целью дисциплины является — получение студентами необходимых знаний, умений и навыков в области диагностики и мониторинга электрооборудования, создание поддерживающей образовательной среды преподавания, предоставление возможности студентам развить и продемонстрировать навыки в области оценки технического состояния электротехнического оборудования электрических сетей с применением эффективных методов инструментального контроля и технической диагностики.

Методические указания для обучающихся по прохождению лабораторных работ

В ходе выполнения лабораторных работа обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом и относится к средствам, обеспечивающим решение следующих основных задач у обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;

- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.
 - 1. Приступать к работе можно только после ознакомления с рабочим местом.
- 2. Перед сборкой схем убедиться в том, что лабораторное оборудование отключено от источника питания.
- 3. Перед включением схемы убедиться в том, что вся включенная в схему коммутационная аппаратура (кнопки и др.) находится в исходном положении.
- 4. При включении и в процессе регулирования следить за показаниями основных измерительных приборов (цифровой осциллограф, мультиметр и др.) схемы.
- 5. В процессе работы не оставлять без присмотра рабочее место, которое находится под напряжением.
- 6. Не касаться неизолированных частей приборов и аппаратов, которые находятся под напряжением.
- 7. К лабораторным занятиям допускаются только те студенты, которые усвоили правила безопасности.
- 8. Лабораторные работы выполняются бригадой студентов в составе не менее двух человек.
- 9. Каждый студент должен подготовиться к лабораторной работе. При недостаточной подготовке студент не допускается к ее выполнению.
- 10. Собранная схема и написанная программа должна быть проверена преподавателем, который после проверки дает разрешение на проведение опытов.
- 11. Перед включением схемы студент, производящий данную операцию, должен предупредить членов своей бригады об этом фразой «Начинаем эксперимент».
- 12. После включения схемы без записи показаний приборов проверяется возможность выполнения лабораторной работы во всем заданном диапазоне изменения характеристик и показаний. Только после этого приступают к работе.
- 13. Результаты измерений по каждой характеристике должны быть проверены преподавателем.
- 14. Все переключения в схеме и ее окончательная разборка делается только с разрешения преподавателя. В случае неверности полученных данных работа переделывается.
 - 15. После переключения схема должна быть проверена преподавателем.
- 16. В случае возникновения аварийной ситуации (появление дыма, запаха гари, несвойственных звуков, искры и др.) на рабочем месте необходимо немедленно отключить схему от напряжения и сообщить об этом событии преподавателю без любых изменений в схеме. Вместе с преподавателем надо найти причину аварии и устранить ее.
- 17. Студент должен бережно обращаться с предоставляемым ему оборудованием и компьютерной техникой, запрещается делать надписи мелом, карандашом или чернилами. Нельзя загромождать рабочее место приборами и аппаратами, которые не используются в лабораторной работе, оставлять на них книги, тетради и др. предметы.
- 18. К следующему занятию каждый студент должен составить отчет по предыдущей лабораторной работе в соответствии с установленной формой.

Структура и форма отчета о лабораторной работе

- 1. Титульный лист
- 2. Цель работы
- 3. Основные теоретические положения

- 4. Порядок выполнения работы, с представлением формул, графических зависимостей и скриншотов
- 5. Выводы

Требования к оформлению отчета о лабораторной работе

Результаты выполненных лабораторных работ, оформляются в виде отчета по одному образцу. Отчет пишут с одной стороны листа формата A4 (размером 210×297 мм). Основные надписи выполняют в соответствии с Госстандартом.

Все выполненные и подписанные руководителем отчеты по лабораторным работам складывают в логической последовательности и брошюруют. При большом количестве страниц (более десяти) составляют содержание отчета, который размещают в альбоме после титульного листа. Титульный лист должен иметь надпись «Журнал лабораторных работ (отчеты)» с фамилией руководителя (преподаватель) и исполнителя (студент).

Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихся являются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ (для обучающихся по заочной форме обучения).

Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихся являются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ (для обучающихся по заочной форме обучения).

Методические указания для обучающихся по прохождению промежуточной аттестации

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

— экзамен — форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Система оценок при проведении промежуточной аттестации осуществляется в соответствии с требованиями Положений «О текущем контроле успеваемости и промежуточной аттестации студентов ГУАП, обучающихся по программы высшего образования» и «О модульно-рейтинговой системе оценки качества учебной работы студентов в ГУАП».

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой