МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 11

УТВЕРЖДАЮ
Руководитель направления
проф.,д.т.н.,проф.
(должность, уч. степень, звание)
В.П. Ларин
(инициалы, фамилия)
(подпись)
«_23_»06 2020_ г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Информационно-статистическая теория измерений» (Наименование дисциплины)

Код направления подготовки/ специальности	12.03.01 Приборостроение	
Наименование направления подготовки/ специальности		
Наименование направленности	Авиационные приборы и измерительно-вычислительные комплексы	
Форма обучения	очная	

Лист согласования рабочей программы дисциплины

Программу составил (а)		1	
доц., к.т.н., доц.	N1- B	17.06.2020	Ю. П. Иванов
(должность, уч. степень, звание)	(подпис	сь, дата)	(инициалы, фамилия)
Программа одобрена на засед	ании кафедры Ј	№ 11	
« 17 » 06 2020 г, п	потокол № 6		
<u></u>	porokosi 312o		
2 1 22.11			
Заведующий кафедрой № 11	,		
	MALLA		
д.т.н.,проф.	May	17.06.2020	А.В. Небылов
(уч. степень, звание)	(родпис	сь, дата)	(инициалы, фамилия)
Ответственный за ОП ВО 12.0	03.01(01)		
ст. преподаватель	BEE	17.06.2020	Б.Л. Бирюков
(должность, уч. степень, звание)	(подпис	сь, дата)	(инициалы, фамилия)
	34.4		
Заместитель директора инсти	тута №1 по мет	одической рабо	оте
ст. преподаватель	111 Buy	17.06.2020	В.Е. Таратун
(должность, уч. степень, звание)	(подпис	сь, дата)	(инициалы, фамилия)

Аннотация

Дисциплина «Информационно-статистическая теория измерений» входит в образовательную программу высшего образования по направлению подготовки/ специальности 12.03.01 «Приборостроение» направленности «Авиационные приборы и измерительно-вычислительные комплексы». Дисциплина реализуется кафедрой «№11».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ПК-1 «Способность применять методы анализа и синтеза измерительных и управляющих систем, систем контроля параметров при проектировании и конструировании, приборов и комплексов».

Содержание дисциплины охватывает круг вопросов, связанных с изучением моделей сигналов, помех и информационно-измерительных систем; методов статистического анализа и синтеза систем на основе структурной и параметрической оптимизации, алгоритмов оценок и классификации измеряемых величин, использования калмановской и винеровской фильтрации сигналов как алгоритмических средств повышения точности и достоверности систем в условиях необходимой априорной определённости.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практические занятия, самостоятельная работа обучающегося, консультации.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 4 зачетные единицы, 144 часа.

Язык обучения по дисциплине «русский».

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Основными задачами изучения дисциплины являются приобретение бакалаврами теоретических знаний и практических навыков по использованию в задачах обработки информации, математических моделей сигналов, помех и информционно-измерительных систем, а также умение выбрать наиболее рациональный алгоритм оценки сигналов на фоне различного вида помех в соответствии с исходными данными и ограничениями исследуемой задачи.

- 1.2. Дисциплина входит в состав части, формируемой участниками образовательных отношений, образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа) компетенции	Код и наименование компетенции	Код и наименование индикатора достижения компетенции
Профессиональные компетенции	ПК-1 Способность применять методы анализа и синтеза измерительных и управляющих систем, систем контроля параметров при проектировании и конструировании, приборов и комплексов	ПК-1.Д.1 применяет знания по методам анализа и синтеза измерительновычислительных комплексов ПК-1.Д.2 выполняет оптимальный и параметрический синтез измерительных систем и систем контроля параметров ПК-1.Д.3 определяет показатели качества функционирования измерительных и управляющих систем, систем контроля параметров

2. Место дисциплины в структуре ОП

Дисциплина базируется на знаниях, ранее приобретенных студентами при изучении следующих дисциплин: "Введение в приборостроение", "Математика 1", "Математика 2", "Информатика", "Компьютерная технология в приборостроении", "Марковские модели сигналов и систем".

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и используются при изучении других дисциплин:

«Комплексирование информационно-измерительных устройств», «Основы автоматического управления», «Авиационные приборы и измерительновычислительные комплексы» «Надежность авиационных приборов и измерительновычислительных комплексов», и других дисциплин

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

Вид учебной работы	Всего	Трудоемкость по семестрам
--------------------	-------	------------------------------

		№6
1	2	3
Общая трудоемкость дисциплины, 3E/ (час)	4/ 144	4/ 144
Аудиторные занятия, всего час.	51	51
в том числе:		
лекции (Л), (час)	34	34
практические/семинарские занятия (ПЗ), (час)	17	17
лабораторные работы (ЛР), (час)		
курсовой проект (работа) (КП, КР), (час)		
экзамен, (час)	54	54
Самостоятельная работа, всего (час)	39	39
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Экз.	Экз.

Примечание: ** кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины и их трудоемкость

Разделы, темы дисциплины	Лекции	П3	ЛР	КП	CPC
	(час)	(C3)	(час)	(час)	(час)
Семестр 6					
Раздел 1. Основные понятия, назначение					
и классификация информационно-	3				10
измерительных систем.					
Тема 1.1. Основные понятия и					
назначение информационно-					
измерительных систем.					
Тема 1.2 - Классификация					
информационно-измерительных систем.					
Тема 1.3-Основные свойства и качество					
информационно-измерительных систем.					
Раздел 2. – Модели сигналов.	7	4			14
Тема 2.1 Характеристики, параметры и					
классификация сигналов и помех.					
Тема 2.2- Описание типовых сигналов.					
Тема 2.3 Пространство сигналов.					
Тема 2.4 Дискретные представления					
сигналов в виде рядов.					
Тема 2.5 Спектральное представление					
сигналов.					
Тема 2.6 Интегральные представления					
сигналов.					
Тема 2.7 Представление сигналов в					
пространстве состояний.					
Тема 2.8 Представление дискретных во					
времени сигналов					
Раздел 3. Статистический анализ и					

оценка точности линейных систем. Тема 3.1 Общие правила преобразования случайных сигналов линейными системами. Тема 3.2 Статистические характеристики выходных сигналов во временном представлении. Тема 3.3 Статистические характеристики выходных случайных стационарных сигналов в частотном представлении. Промежуточный контроль	7	7			8
Раздел 4. Оптимальный синтез информационно-измерительных систем. Тема 4.1—Задачи и основные этапы синтеза информационно-измерительных систем. Тема 4.2 —Критерии оптимальности информационно-измерительных систем. Тема 4.3 —Теоретические основы оптимальной оценки сигналов при использовании простых допустимых функций потерь. Тема 4.4 —Оптимальные оценки сигналов по критерию минимума среднего квадрата ошибки оценки. Итого в семестре:	17 34	17			39
Итого:	34	17	0	0	39

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционных занятий

Номер раздела	Название и содержание разделов и тем лекционных занятий					
1	Общая характеристика информационно-					
	измерительных систем.					
	Тема 1.1 - Основные понятия, назначение и					
	классификация информационно-измерительных систем.					
	Задачи, назначение и место в контуре управления					
	летательным аппаратом бортовых информацинно-					
	измерительных систем.					
	Тема 1.2 - Классификация информационно-					
	измерительных систем летательных аппаратов.					
	Классификация осуществляется по назначению,					
	принципу действия, по характеру представления выходного					
	сигнала, по принципу передачи измерительной информации,					
	по виду математической модели и по способу индикации					
	выходной информации в информационно-измерительных					
	системах					

	T 12 0 V				
	Тема 1.3 -Основные свойства и качество информационно-измерительных систем (ИИС)				
	В качестве основных свойств ИИС рассматриваются				
	следующие: эффективность, точность, достоверность,				
	надёжность, помехозащищённость, робастность,				
	инвариантность, адаптивность.				
2	Модели сигналов Тема 2.1 Характеристики, параметры и классификация				
	сигналов и помех.				
	Характеристики и параметры реализаций случайных				
	сигналов и моделей сигналов и помех в виде случайных				
	процессов. Классификация моделей случайных сигналов.				
	Тема 2.2 Описание типовых сигналов.				
	Функция знака., единичная функция, дельта-функция,				
	,прямоугольный стробирующий импульс, модулированные				
	сигналы, квазидетерминированные сигналы,				
	дискретизированные сигналы, цифровые сигналы.				
	Тема 2.3 Пространство сигналов.				
	Пространство детерминированных и случайных				
	сигналов.				
	Тема 2.4 Дискретные представления сигналов в виде				
	рядов. Модели сигналов и помех в виде обобщённых рядов				
	Фурье, Карунена-Лоэва, канонических рядов Пугачёва,				
	рядов Котельникова.				
	Тема 2.5 Спектральное представление сигналов.				
	Частотное представление случайных сигналов на				
	конечном интервале времени. Частотное представление				
	стационарных случайных процессов на бесконечном				
	интервале времени. Соотношения Винера-Хинчина. Понятие				
	формирующего фильтра. Белый шум.				
	Тема 2.6 Интегральные представления сигналов.				
	Интегралы Фурье и преобразование Гильберта.				
	Тема 2.7 Представление сигналов в пространстве				
	состояний.				
	Представление модели реализаций сигналов в				
	пространстве состояний. Представление случайных				
	сигналов в пространстве состояний.				
	Тема 2.8 Представление дискретных во времени сигналов.				
3	Статистический анализ и оценка точности				
	линейных систем.				
	3.1 Общие правила преобразования случайных				
	сигналов линейными системами.				
	Постановка задачи анализа ИИС. Анализ линейных				
	систем в одномерном и многомерном случае.				
	Тема 3.2 Статистические характеристики выходных				
	сигналов во временном представлении.				
	Анализ линейных, в общем случае, нестационарных				
	линейных систем в случае использования моделей входных				
	1				
	сигналов в виде нестационарных случайных процессов.				
	сигналов в виде нестационарных случайных процессов. Тема 3.3 Статистические характеристики выходных				

	представлении.					
	Методы анализа линейных стационарных систем после					
	окончания переходного процесса при воздействии входных					
	сигналов, модели которых стационарные случайные					
	процессы.					
	процессы.					
4	0					
4	Оптимальный синтез ннформационно-					
	измерительных систем.					
	Тема 4.1 –Задачи и основные этапы синтеза					
	информационно-измерительных систем.					
	Методы представления сигналов и помех, структура					
	информационной модели обработки сигналов в ИИС.					
	Тема 4.2 – Критерии оптимальности информационно-					
	измерительных систем.					
	Простая допустимая функция потерь, правила					
	решений, средний риск, апостериорный и априорный риски,					
	условия существования и единственности оптимальных					
	(несмещённость, состоятельность, регулярность,					
	достаточность, эффективность).					
	Тема 4.3 – Теоретические основы оптимальной оценки сигналов					
	при использовании простых допустимых функций потерь					
	Теорема о байесовой оценке сигнала, теорема Шермана					
	теорема Калмана					
	Тема 4.4 –Оптимальные оценки сигналов по критерик					
	минимума среднего квадрата ошибки оценки.					
	Теорема Дуба, оптимальные оценки сигнала, принадлежащие					
	данному классу оценок, оптимально-инвариантная линейная					
	оценка, оптимальная линейная фильтрация сигналов (фильтр					
	Винера), фильтр Калмана-Бьюси.					
	·					

4.3. Практические (семинарские) занятия Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

№ π/π	Темы практических занятий	Формы практических занятий Семестр 6	Трудоемкость, (час)	№ раздела дисцип-лины
1	I a	Cowice ip 0		
1	Спектральное представление		2	2
	сигналов.	выполнение		
		упражнений, решение		
2	Представление сигналов в	типовых задач	2	2
	пространстве состояний.	типовый зиди т		
		выполнение		
		упражнений, решение		
3	Статистические	типовых задач	2	3
	характеристики выходных			
	сигналов во временном	выполнение		
	представлении.	упражнений, решение		

		типовых задач.		
4			3	3
	Статистические			
	характеристики выходных			
	случайных стационарных			
	сигналов в частотном	выполнение		
5	представлении.	упражнений, решение	1	4
		типовых задач		
	Задачи и основные этапы			
	синтеза информационно-			
6	измерительных систем.		1	4
		выполнение		
		упражнений, решение		
	Критерии оптимальности	типовых задач		
	информационно-			
	измерительных систем.			4
7			2	
		выполнение		
		упражнений, решение		
	Теоретические основы	типовых задач		
	оптимальной оценки			4
8	сигналов при использовании		4	
	простых допустимых			
	функций потерь.			
	Оптимальные оценки	выполнение		
	сигналов по критерию	упражнений, решение		
	минимума среднего квадрата	типовых задач		
	ошибки оценки.			
		ринолионио		
		выполнение		
		упражнений, решение		
Всего	o. 	типовых задач	17	
DCCI	U.		1/	

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

№ п/п	Наименование лабораторных работ	Трудоемкость, (час)	№ раздела дисцип лины
	Учебным планом не предусмотрено		
	Всего		

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

	1 2	
Вид самостоятельной работы	Всего,	Семестр 6,
Вид самостоятельной расоты	час	час
1	2	3
Изучение теоретического материала	21	21
дисциплины (ТО)	21	21
Курсовое проектирование (КП, КР)		
Расчетно-графические задания (РГЗ)		
Выполнение реферата (Р)		
Подготовка к текущему контролю	6	6
успеваемости (ТКУ)	U	U
Домашнее задание (ДЗ)		
Контрольные работы заочников (КРЗ)		
Подготовка к промежуточной	12	12
аттестации (ПА)	12	12
Всего:	39	39

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8. Таблица 8– Перечень печатных и электронных учебных изланий

таолица о- перечень печатных и электронных учесных издании		
Шифр/ URL адрес	Библиографическая ссылка	Количество экземпляров в библиотеке (кроме электронных экземпляров)
519.1/2	1.Иванов Ю.П. Бирюков Б.Л.	(P · · · · · · · · · · · · · · · · · ·
И20	Информационно-статистическая теория	107
	измерений Модели сигналов и анализ	
	точности: учебное пособие -Санкт-	
519/2	Петербург: СПГУАП, 2008160с.	157
И20	2.Иванов Ю.П.,Никитин В.Г.	
	Информационно-статистическая теория	
621.37	измерения:. учебное пособие -Санкт-	56
T46	Петербург: СПГУАП, 2011102с.	
	3. Тихонов В.И., Харисов В.Н.	
	Статистический анализ и синтез	
	радиотехнических устройств и систем	
	М.: Радио и связь, 2004608с.	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационно-

телекоммуникационной сети «Интернет»

URL адрес	Наименование
http://window.edu.ru/	Единое окно доступа к образовательным ресурсам

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10– Перечень программного обеспечения

№ п/п	Наименование
	Не предусмотрено

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11– Перечень информационно-справочных систем

№ п/г	Наименование
	Не предусмотрено

9. Материально-техническая база

Состав материально-технической базы, необходимой осуществления ДЛЯ образовательного процесса по дисциплине, представлен в таблице 12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Лекционная аудитория	
2	Мультимедийная лекционная аудитория	
3	Аудитория для семинарских и практических занятий	

10. Оценочные средства для проведения промежуточной аттестации

10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Экзамен	Список вопросов к экзамену;
	Экзаменационные билеты;
	Задачи;
	Тесты.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

таолица 14 - Критерии	оценки уровня сформированности компетенции	
Оценка компетенции	Характеристика сформированных компетенций	
5-балльная шкала		
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий. 	
- обучающийся твердо усвоил программный материал, грам по существу излагает его, опираясь на знания ос литературы; - не допускает существенных неточностей; - увязывает усвоенные знания с практической деятель направления; - аргументирует научные положения; - делает выводы и обобщения; - владеет системой специализированных понятий.		
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий. 	
- обучающийся не усвоил значительной части программи материала; - допускает существенные ошибки и неточности рассмотрении проблем в конкретном направлении; - испытывает трудности в практическом применении знаний; - не может аргументировать научные положения; - не формулирует выводов и обобщений.		

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена
1	Сингулярные сигналы.
2	Представление случайных функций при помощи обобщённых рядов
3	Фурье.
4	Свойства оценок (несмещённость, состоятельность регулярность).
5	Представление случайных функций по методу Карунена Лоэва.
6	Теорема о байесовой оценке
7	Представление случайных функций при помощи канонического

8	Теорема Шермана и её следствия.
	Частотное разложения стационарных случайных процессов на
9	конечном интервале времени.
10	Теорема Дуба и её следствия.
11	Частотное представление _случайного процесса на бесконечном
12	интервале времени.
13	Теорема Калмана. Теорема ортогонального проецирования.
14	Квантование непрерывных реализаций по уровне.
15	Представление сигналов в виде ряда Котельникова.
16	Лемма об оптимально-инвариантной оценке.
17	Представление сигналов в пространстве состояний.
18	Свойства байесовых оценок.
19	Белый шум
20	Решение уравнения Винера_Хопфа
21	Общие правила преобразования случайных сигналов линейным
22	оператором.
	Идеология фильтрации сигналов.
23	Статистические характеристики выходных сигналов ИИС при
	задании динамических линейных операторов в форме весовых
24	функций (одномерный_случай)_
25	Решение уравнения Винера_Хопфа.
26	Статистические характеристики выходных сигналов ИИС при
	задании динамических _линейных операторов в форме весовых
27	функций (многомерный случай).
28	Статистические характеристики выходных сигналов в частотном
29	представлении (одномерный случай).
30	Дисперсия ошибки оценки оптимальной системы
31	Статистические характеристики стационарных выходных сигналов
	вчастотном представлении (многомерный случай).
	Фильтрация Калмана Бьюси.
	Постановка задачи анализа ИИС
	Интегральные у равнения Винера и Винера Хопфа_
	Статистические характеристики_выходных сигналов ИИС в
	частотном представлении (многомерный_случай).
	Методика синтеза линейной оптимальной нестационарной ИИС.

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16.

Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета
	Учебным планом не предусмотрено

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

№ п/п	Примерный перечень вопросов для тестов	

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п	Перечень контрольных работ	
	Не предусмотрено	

10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

11. Методические указания для обучающихся по освоению дисциплины

11.1. Методические указания для обучающихся по освоению лекционного материала

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- вводная часть показывает перечень рассматриваемых в лекции вопросов, их актуальность для практики приборостроения, связь лекционного материала с предыдущим и последующим материалами; дается перечень основной и дополнительной литературы по теме, включая руководящие документы;
- основная часть последовательно показываются выносимые вопросы, раскрываются теоретические положения; показываются основные расчетные формулы;

- итоговая часть подводятся итоги занятия, актуализируются наиболее важные вопросы; определяется тематика будущих практических занятий по теме; даётся задание на самостоятельную подготовку; производятся ответы на вопросы.
- 11.2. Методические указания для обучающихся по участию в семинарах (если предусмотрено учебным планом по данной дисциплине)
- 11.3. Методические указания для обучающихся по прохождению практических занятий (если предусмотрено учебным планом по данной дисциплине)

Практическое занятие является одной из основных форм организации учебного процесса, заключающаяся в выполнении обучающимися под руководством преподавателя комплекса учебных заданий с целью усвоения научно-теоретических основ учебной дисциплины, приобретения умений и навыков, опыта творческой деятельности.

Целью практического занятия для обучающегося является привитие обучающимся умений и навыков практической деятельности по изучаемой дисциплине.

Планируемые результаты при освоении обучающимся практических занятий:

- закрепление, углубление, расширение и детализация знаний при решении конкретных задач;
- развитие познавательных способностей, самостоятельности мышления, творческой активности;
- овладение новыми методами и методиками изучения конкретной учебной дисциплины;
- выработка способности логического осмысления полученных знаний для выполнения заданий;
- обеспечение рационального сочетания коллективной и индивидуальной форм обучения.

Требования к проведению практических занятий

Практические занятия направлены на формирование у студентов профессиональных и практических умений, необходимых для изучения последующих учебных дисциплин: действия, операции, определенные необходимые последующей профессиональной деятельности (в процессе учебной и производственной практики, написания выпускной квалификационной работы). Наряду с формированием умений и навыков в процессе практических занятий обобщаются, систематизируются, углубляются и конкретизируются теоретические знания, вырабатывается способность и готовность использовать теоретические знания на практике, развиваются интеллектуальные умения. При выборе содержания и объема практических занятий следует исходить из сложности учебного материала для усвоения, из внутрипредметных и межпредметных связей, из значимости изучаемых теоретических положений для предстоящей профессиональной деятельности, из того, какое место занимает конкретная работа в процессе формирования целостного представления о содержании учебной дисциплины.

- 11.4. Методические указания для обучающихся по выполнению лабораторных работ (если предусмотрено учебным планом по данной дисииплине)
- 11.5. Методические указания для обучающихся по прохождению курсового проектирования/выполнения курсовой работы (если предусмотрено учебным планом по данной дисциплине)
- 11.6. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихсяявляются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ (для обучающихся по заочной форме обучения).
- 11.7. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

Методы текущего контроля выбираются преподавателем самостоятельно исходя из специфики дисциплины.

Возможные методы текущего контроля обучающихся:

- -устный опрос на занятиях;
- -систематическая проверка выполнения индивидуальных заданий;
- -защита отчётов по лабораторным работам;
- –проведение контрольных работ;
- -тестирование;
- -контроль самостоятельных работ (в письменной или устной формах);
- -контроль выполнения индивидуального задания на практику;
- -контроль курсового проектирования и выполнения курсовых работ; иные виды, определяемые преподавателем.

В течение семестра обучающийся оформляет отчётные материалы в соответствии с установленными требованиями и методами проведения текущего контроля, и преподаватель оценивает представленные материалы.

При подведении итогов текущего контроля успеваемости в ведомость обучающимся выставляются аттестационные оценки: «аттестован», «не аттестован». Система и возможные критерии оценки учитывает знания, умения, навыки и (или) опыт деятельности, характеризующие этапы формирования компетенций дисциплины. Результаты текущего контроля должны учитываться при промежуточной аттестации.

11.8. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

— экзамен — форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в

период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Результаты промежуточной аттестации заносятся деканатами в журнал учёта промежуточной аттестации, учебную карточку и автоматизированную информационную систему ГУАП.

Аттестационные оценки по факультативным дисциплинам вносятся в зачётную книжку, ведомость, учебную карточку, АИС ГУАП и, по согласованию с обучающимся, в приложение к документу о высшем образовании и о квалификации.

После прохождения промежуточной аттестации обучающийся обязан предоставить в деканат зачётную книжку, полностью заполненную преподавателем.

По результатам успешного прохождения промежуточной аттестации обучающимися и выполнения учебного плана на соответствующем курсе, деканаты готовят проект приказа о переводе обучающихся с курса на курс.

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой