МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего бразования

«САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

Кафедра №13

«УТВЕРЖДАЮ» Руководитель направления доц.,к.т.н.,доц. ость, уч. степень, звание)

> В.К. Пономарев (подпись) 05 2020 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Цифровые системы управления» (Название дисциплины)

Код направления	24.03.02
Наименование направления	Системы управления движением и навигация
Наименование направленности	Приборы и системы ориентации, стабилизации и навигации
Форма обучения	очная

Санкт-Петербург 2020

Лист согласования рабочей программы дисциплины

Программу составил(а)

доц.,к.т.н.,доц. должность, уч. степень, звание

А.В. Лопарев нинциалы, фамилия 2

Программа одобрена на заседании кафедры № 13

«29» мая 2020 г, протокол № 7

Заведующий кафедрой № 13

К.т.н.

должность, уч. степень, звание

Н.А. Овчинникова инициалы, фамилия

Ответственный за ОП 24.03.02(01)

доц.,к.т.н.,доц.

должность, уч. степень, звания

В.К. Пономарев

Заместитель директора института (факультета) № 1 по методической работе

ассистент

должность, уч. степень, звание

В.Е. Таратун

инициалы, фамилия

инициалы, фамилия

Аннотация

Дисциплина «Цифровые системы управления» входит в образовательную программу высшего образования по направлению подготовки/ специальности 24.03.02 «Системы управления движением и навигация» направленности «Приборы и системы ориентации, стабилизации и навигации». Дисциплина реализуется кафедрой «№13».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ПК-2 «Способен разрабатывать проекты приборов ориентации, навигации и стабилизации летательных аппаратов и их составных частей».

Содержание дисциплины охватывает круг вопросов, связанных с изучением методов анализа и синтеза цифровых систем автоматического управления, ориентированных на реализацию алгоритмов в реальном времени.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практические занятия, самостоятельная работа студента, консультации.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 3 зачетных единицы (108часа),

Язык обучения по дисциплине «русский».

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Получение студентами необходимых навыков в области анализа и синтеза цифровых автоматических систем, развитие навыков проектирования систем автоматического управления.

1.2. Дисциплина входит в состав части, формируемой участниками образовательных отношений, образовательной программы высшего образования (далее – ОП ВО).

1.3.Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа) компетенции	Код и наименование компетенции	Код и наименование индикатора достижения компетенции
Профессиональные компетенции	ПК-2 Способен разрабатывать проекты приборов ориентации, навигации и стабилизации летательных аппаратов и их составных частей	ПК-2.3.1 знать основы проектирования, конструирования и производства приборов ориентации, навигации и стабилизации летательных аппаратов; виды проектной документации ПК-2.У.1 уметь анализировать варианты и принимать решения по объекту проектирования на основе системного подхода ПК-2.В.1 владеть навыками работы в информационно-коммуникационном пространстве, проводить компьютерное моделирование, расчеты с использованием программных средств общего и специального назначения

2. Место дисциплины в структуре ОП

Дисциплина базируется на знаниях, ранее приобретенных студентами при изучении следующих дисциплин:

- «Математический анализ»;
- «Информатика»;
- «Основы теории управления»;
- «Автоматизация инженерных расчетов».

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и используются при подготовке выпускной квалификационной работы.

3. Объем дисциплины в ЗЕ/академ. час

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2

Таблица 2 – Объем и трудоемкость дисциплины

Вид учебной работы	Всего	Трудоемкость по семестрам
		№ 8
1	2	3
Общая трудоемкость дисциплины, ЗЕ/(час)	3/108	3/108
Аудиторные занятия, всего час., В том числе	30	30
лекции (Л), (час)	20	20
Практические/семинарские занятия (ПЗ), (час)	10	10
лабораторные работы (ЛР), (час)		
курсовой проект (работа) (КП, КР), (час)		
Экзамен, (час)	36	36
Самостоятельная работа, всего (час)	42	42
Вид промежуточной аттестации	Экз.	Экз.

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий

Разделы и темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3. – Разделы, темы дисциплины и их трудоемкость

Разделы, темы дисциплины	Лекции (час)	П3 (час)	ЛР (час)	КП (час)	СРС (час)
	Семестр 8				
Раздел 1. Основы цифрового автоматического управления					
Тема 1.1. Принципы построения цифровых систем управления	2				2
Тема 1.2. Математические методы описания цифровых систем	2	3			4
Раздел 2. Анализ цифровых систем автоматического управления					
Тема 2.1. Передаточные функции	2	3			8

цифровых фильтров и систем				
Тема 2.2. Частотные характеристики цифровых систем	2	2		6
Тема 2.3 Устойчивость цифровых систем	2	_		6
Тема 2.4 Программная реализация цифровых алгоритмов обработки сигналов	2			3
Раздел 3. Синтез цифровых систем автоматического управления				
Тема 3.1. Синтез цифровых систем по непрерывному прототипу	3	2		6
Тема 3.2 Синтез модальных регуляторов	2			5
Итого в семестре:	20	10		42
Итого:	20	10	0	42

4.2. Содержание разделов и тем лекционных занятий

Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 - Содержание разделов и тем лекционных занятий

Номер раздела	Название и содержание разделов и тем лекционных занятий
1	Раздел 1. Основы цифрового автоматического управления Тема 1.1. Принципы построения цифровых систем управления
	Сущность цифровой обработки сигналов. Виды квантования. Достоинства и недостатки цифровых систем. Варианты построения цифровых автоматических систем. Виды импульсной модуляции. Шумы квантования АЦП и ЦАП.
	Тема 1.2. Математические методы описания цифровых систем
	Дискретные процессы. Разностные уравнения и их решение. Z-преобразование. Основные теоремы и свойства z-преобразования. Нахождение оригинала по z- преобразованию.
2	Раздел 2. Анализ цифровых систем автоматического управления
	Тема 2.1. Передаточные функции цифровых фильтров и систем
	Определение дискретной передаточной функции. Связь импульсной характеристики цифрового фильтра с передаточной функцией. Рекурсивные и нерекурсивные цифровые фильтры. Приведенная непрерывная часть. Формирующие элементы. Передаточная функция приведенной непрерывной части с амплитудно-импульсной модуляцией 1 рода; с экстраполятором нулевого порядка; с

экстраполятором 1 порядка. Структурная схема замкнутой линеаризованной цифровой системы. Передаточные функции разомкнутого контура; замкнутой системы; по ошибке.

Тема 2.2 Частотные характеристики цифровых систем Частотная передаточная функция. Амплитудно-частотная и фазо-частотная характеристики. Амплитудно-фазовая характеристика. Использование псевдочастоты. Логарифмические частотные характеристики цифровых систем.

Тема 2.3 Устойчивость цифровых систем

Необходимое и достаточное условие устойчивости. Характеристические уравнения. Использование билинейного преобразования. Применение критериев Гурвица и Найквиста при анализе устойчивости цифровых систем. Влияние на устойчивость квантования по уровню. Предельные циклы. Оценка запаса устойчивости. Перерегулирование. Запасы по амплитуде и фазе. Показатель колебательности. Построение запретных областей для АФХ по заданному показателю колебательности.

Тема 2.4 Программная реализация цифровых алгоритмов обработки сигналов

Схема прямого программирования. Каноническая схема. Транспонированные схемы. Параллельная и последовательная схемы. Учет ошибок, вызванных округлением коэффициентов разностных уравнений.

Раздел 3. Синтез цифровых систем автоматического управления

Тема 3.1. Синтез цифровых систем по непрерывному прототипу

Основные подходы к синтезу цифровых регуляторов. Применение методов численного интегрирования при дискретной аппроксимация регулятора. Частотная коррекция. Устойчивость переоборудованных регуляторов. Дискретная аппроксимация методом отображения нулей и полюсов. Дискретная аппроксимация методом фиктивного квантования. Методы дискретной аппроксимации непрерывных систем, основанные на аппроксимации частотных характеристик и переходных процессов. Выбор периода дискретности и единиц младших разрядов преобразователей.

Тема 3.2 Синтез модальных регуляторов

Задача размещения полюсов. Использование регуляторов низкого порядка. Стабилизация объектов управления с использованием цифровых П-, ПИ-, ПИД-регуляторов. Синтез цифровых систем по критерию оптимального быстродействия.

3

4.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

№ п / п	Темы практических занятий	Формы практических занятий	Трудоемк ость, (час)	№ раздела дисцип- лины
		Семестр 8		
1	Типовые динамические звенья систем управления. Показатели качества	Решение задач	2	1
2	Z-преобразования типовых дискретных сигналов	Решение задач	2	1
3	Нахождение передаточной функции дискретного фильтра по разностному уравнению	Решение задач	2	2
4	Нахождение установившихся процессов цифровых систем	Решение задач	2	2
5	Нахождение частотных характеристик цифровых систем	Решение задач	2	2
	Всего:			

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

№ п / п	Наименование лабораторных работ	Трудоемкость, (час)	№ раздела дисципли ны		
	Учебным планом не предусмотрено				

4.5. Курсовое проектирование (работа)

Учебным планом не предусмотрено

4.6. Самостоятельная работа студентов

Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего, час	Семестр 8, час
1	2	3
Самостоятельная работа, всего	42	42
изучение теоретического материала дисциплины (ТО)	22	22
курсовое проектирование (КП, КР)		
расчетно-графические задания (РГЗ)		
выполнение реферата (Р)		
Подготовка к текущему контролю (ТК)	20	20
домашнее задание (ДЗ)		
контрольные работы заочников (КРЗ)		

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

Учебно-методические материалы для самостоятельной работы студентов указаны в п.п. 7-11

6. Перечень печатных и электронных учебных изданий

Перечень печатных и электронных учебных изданий приведен в таблице 8.

Таблица 8- Перечень печатных и электронных учебных изданий

Шифр	Библиографическая ссылка / URL адрес	Количество экземпляров в библиотеке
681.5 Б53	Цифровые автоматические системы [Текст] : ЦАС. : монография / В. А.Бесекерский М. : Наука, 1976 575 с.	44
-	Основы теории цифровых систем управления: учеб. пособие / К.Ю. Поляков. – СПб.: СПбГМТУ, 2006 161 с. http://window.edu.ru/resource/527/58527/files/digsys.pdf	-
004.9 Ц 75	Цифровые системы управления и обработки информации [Текст]: методические указания к выполнению лабораторных работ / СПетерб. гос. ун-т аэрокосм. приборостроения; сост. А. В. Лопарев СПб.: Изд-во ГУАП, 2009 27 с	42

681.5 M59	Микропроцессорные системы автоматического управления [Текст]: монография / В. А. Бесекерский, Н. Б. Ефимов, С. И. Зиатдинов и др.; Ред. В. А. Бесекерский Л.: Машиностроение. Ленингр. отд-ние, 1988 365 с	101
681.5 K91	Теория и проектирование цифровых систем управления [Текст] = Diqital control systems : пер. с англ. / Б. Куо ; ред. П. И. Попов ; пер.: В. Г. Дунаев, Б. И. Копылов, А. Н. Косилов М. : Машиностроение, 1986 448 с.	6
681.5 P64	Линейная теория цифрового управления в непрерывном времени [Текст] / Е. Н.Розенвассер Науч. изд М.: Физматлит, 1994 464 с.	1
681.5 Ш 65	Основы автоматического управления [Текст]: учебное пособие / В. Ю. Шишмарев М.: Академия, 2008 352 с.	20
681.5 M 64	Теория автоматического управления. Линейные системы [Текст]: учебное пособие / И. В. Мирошник СПб.: ПИТЕР, 2006 334 с	5
681.5 И 36	Цифровые системы управления [Текст] = Digital cintrol systems / Р. Изерман; пер.: С. П. Забродин, А. И. Титков, А. В. Шалашов М.: Мир, 1984 544 с	3

7. Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети ИНТЕРНЕТ

Перечень ресурсов информационно-телекоммуникационной сети ИНТЕРНЕТ, необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень ресурсов информационно-телекоммуникационной сети ИНТЕРНЕТ,

URL адрес	Наименование
http://kpolyakov.spb.ru/uni/lecs.htm	Лекции. Цифровые системы управления
http://ideafix.co/UNIVERSITY/ASU/lectures/	Лекции. Теория управления

8.Перечень информационных технологий

8.1. Перечень программного обеспечения

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10 – Перечень программного обеспечения

№ п/п	Наименование		
1	Операционная система Microsoft Windows XP Professional		
2	Программный продукт MATLAB 6.5		

8.2.Перечень информационно-справочных систем

Перечень используемых информационно-справочных систем представлен в таблице 11. Таблица 11 – Перечень информационно-справочных систем

№ п/п		Наименован	ие
	Не предусмотрено		

9.Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине

Состав материально-технической базы представлен в таблице 12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально- технической базы	Номер аудитории
1	Лекционная аудитория	13-04
2	Компьютерный класс	13-03в

10. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

10.1.Состав оценочных средств приведен в таблице 13

Таблица 13 - Состав оценочных средств для промежуточной аттестации

Вид промежуточной аттестации	Примерный перечень оценочных средств
Экзамен	Список вопросов к экзамену Тесты

10.2.В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции	- Характеристика сформированных компетенций		
5-балльная шкала			
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий. 		
«хорошо» «зачтено»	 - обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; - не допускает существенных неточностей; - увязывает усвоенные знания с практической деятельностью направления; - аргументирует научные положения; - делает выводы и обобщения; - владеет системой специализированных понятий. 		

Оценка компетенции	Von overconversive of one grand possess we was greatered with		
5-балльная шкала	Характеристика сформированных компетенций		
«удовлетворительно» «зачтено»	 испытывает затруднения в практическом применении знании направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; 		
«неудовлетворительно» «не зачтено»	 - частично владеет системой специализированных понятий. - обучающийся не усвоил значительной части программного материала; - допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; - испытывает трудности в практическом применении знаний; - не может аргументировать научные положения; - не формулирует выводов и обобщений. 		

10.3.Типовые контрольные задания или иные материалы: Вопросы (задачи) для экзамена (таблица 15)

Таблица 15 – Вопросы (задачи) для экзамена

	(
№ п/п	Перечень вопросов (задач) для экзамена	Код индикатора
1	Виды квантования. Шумы квантования в АЦП и ЦАП.	ПК-2.3.1
2	Достоинства и недостатки цифровых систем. Варианты построения ЦАС.	ПК-2.У.1
3	Виды импульсной модуляции.	ПК-2.3.1
4	Разностные уравнения и их решение.	ПК-2.3.1; ПК-2.У.1
5	<i>Z</i> -преобразование.	ПК-2.У.1; ПК-2.В.1
6	Основные теоремы и свойства <i>z</i> -преобразования.	ПК-2.У.1; ПК-2.В.1
7	Нахождение оригинала по <i>z</i> -преобразованию.	ПК-2.У.1; ПК-2.В.1
8	Передаточные функции цифровых вычислителей.	ПК-2.У.1; ПК-2.В.1
9	Передаточные функции приведенной непрерывной части.	ПК-2.У.1; ПК-2.В.1
10	Передаточные функции замкнутых ЦАС.	ПК-2.У.1; ПК-2.В.1
11	Частотные характеристики цифровых систем.	ПК-2.У.1; ПК-2.В.1

12	Использование псевдочастоты.	ПК-2.У.1; ПК-2.В.1
13	Устойчивость цифровых систем. Показатели запаса устойчивости.	ПК-2.У.1; ПК-2.В.1
14	Схема прямого программирования.	ПК-2.У.1; ПК-2.В.1
15	Каноническая форма представления цифрового фильтра.	ПК-2.3.1; ПК-2.У.1
16	Транспонированные формы представления цифрового фильтра.	ПК-2.У.1;
17	Схемы последовательного и параллельного программирования.	ПК-2.У.1; ПК-2.В.1
18	Дискретная аппроксимация непрерывного регулятора.	ПК-2.У.1; ПК-2.В.1
19	Синтез ЦАС, основанный на аппроксимации частотных характеристик и переходных процессов.	ПК-2.У.1; ПК-2.В.1
20	Использование П-, ПИ- и ПИД-регуляторов.	ПК-2.У.1; ПК-2.В.1
21	Синтез ЦАС с конечной длительностью переходного процесса.	ПК-2.У.1; ПК-2.В.1

Вопросы (задачи) для зачета / дифференцированного зачета (таблица 16) Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифференцированного зачета
	Учебным планом не предусмотрено

Темы и задание для выполнения курсовой работы / выполнения курсового проекта (таблица 17)

Таблица 17 — Примерный перечень тем для выполнения курсовой работы / выполнения курсового проекта

№ п/п	Примерный перечень тем для выполнения курсовой работы / выполнения курсового проекта
	Учебным планом не предусмотрено

1. Вопросы для проведения промежуточной аттестации при тестировании (таблица 18)

Таблица 18 – Примерный перечень вопросов для тестов

№ п/п	Примерный перечень вопросов для тестов	Код индикатора
1	Какой из видов модуляции используется в системах с временным разделением каналов? АИМ-1	ПК-2.3.1; ПК-2.У.1

	АИМ-2	
	ШИМ	
	ВИМ	
	Diffivi	
2	Что из нижеперечисленного является преимуществом БИХ-фильтров?	ПК-2.3.1; ПК-2.У.1
	возможность точной реализации желаемой импульсной характеристики	
	возможность получения желаемых частотных характеристик с использованием фильтров невысокого порядка	
	такие фильтры всегда устойчивы	
	в таких фильтрах отсутствуют ошибки округления	
3	Желаемый алгоритм обработки дискретного сигнала имеет вид $H_0(z)=z^\ell$. Какую задачу должен решать цифровой фильтр?	ПК-2.3.1; ПК-2.У.1
	цифровое дифференцирование	
	цифровое интегрирование	
	прогнозирование на ℓ тактов вперед	
	сглаживание	
4	Какая из схем программирования позволяет одновременно реализовывать как операции умножения, так и операции сложения?	ПК-2.3.1; ПК-2.У.1
	схема прямого программирования	
	каноническая схема	
	транспонированная схема	
	схема параллельного программирования	
5	Какой из методов дискретной аппроксимации гарантирует устойчивость цифрового регулятора при условии устойчивости непрерывного аналога? любой	ПК-2.3.1; ПК-2.У.1
	никакой	
	метод Эйлера	
	метод Уилера	
6	Какая из приведенных передаточных функций соответствует устойчивому фильтру? $D(z) = \frac{z-1}{z+2}$	ПК-2.3.1; ПК-2.У.1
	$D(z) = \frac{z^2 - 1}{z^2 + 2}$	
	$D(z) = \frac{z - 1}{z}$	
7	$D(z) = \frac{1}{3} \frac{z^2 + 4z + 1}{z^2 - 1}$	HIC 2.2.1
7	Какая из перечисленных кривых остается неизменной при переходе от частоты к псевдочастоте?	ПК-2.3.1; ПК-2.У.1
	амплитудно-частотная характеристика	
	логарифмическая амплитудно-частотная характеристика	

	фазо-частотная характеристика амплитудно-фазовая характеристика	
8	Чему равно установившееся значение амплитуды выходной последовательности цифрового фильтра с передаточной функцией $D(z) = z^{-1}$ при подаче на его вход гармонического воздействия с единичной амплитудой и периодом 2 с? Период дискретности $0,15$ с. 1 0 ∞	ПК-2.3.1; ПК-2.У.1

Контрольные и практические задачи / задания по дисциплине (таблица 19) Таблица 19 – Примерный перечень контрольных и практических задач / заданий

№ п/п	Примерный перечень контрольных и практических задач / заданий
1	Учебным планом не предусмотрено

10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

11.Методические указания для обучающихся по освоению дисциплины

11.1.Методические указания для обучающихся по освоению лекционного материала

Основное назначение лекционного материала – логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемы результаты при освоении обучающимся лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально

 деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научится методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- изложение теоретических вопросов, связанных с рассматриваемой темой;
- описание методов и алгоритмов, применяемых в цифровых системах управления;
- демонстрация примеров решения задач анализа и синтеза цифровых систем управления;
 - обобщение изложенного материала;
 - ответы на возникающие вопросы по теме лекции.

11.2.Методические указания для обучающихся по прохождению практических занятий

Практическое занятие является одной из основных форм организации учебного процесса, заключающаяся в выполнении обучающимися под руководством преподавателя комплекса учебных заданий с целью усвоения научно-теоретических основ учебной дисциплины, приобретения умений и навыков, опыта творческой деятельности.

Целью практического занятия для обучающегося является привитие обучающемся умений и навыков практической деятельности по изучаемой дисциплине.

Планируемые результаты при освоении обучающемся практических занятий:

- закрепление, углубление, расширение и детализация знаний при решении конкретных задач;
- развитие познавательных способностей, самостоятельности мышления, творческой активности;
- овладение новыми методами и методиками изучения конкретной учебной дисциплины;
- выработка способности логического осмысления полученных знаний для выполнения заданий;
- обеспечение рационального сочетания коллективной и индивидуальной форм обучения.

Функции практических занятий:

- познавательная;
- развивающая;
- воспитательная.

По характеру выполняемых обучающимся заданий по практическим занятиям подразделяются на:

- ознакомительные, проводимые с целью закрепления и конкретизации изученного теоретического материала;
- аналитические, ставящие своей целью получение новой информации на основе формализованных методов;
- творческие, связанные с получением новой информации путем самостоятельно выбранных подходов к решению задач.

Формы организации практических занятий определяются в соответствии со специфическими особенностями учебной дисциплины и целями обучения. В рамках данной дисциплины практические занятия проводятся не в интерактивной форме: выполнение упражнений, решение типовых задач.

Требования к проведению практических занятий

При проведении практических занятий обучающиеся выполняют последовательность заданий (задач). В соответствии с последовательностью в списке группы один из обучающихся работает у доски. Успешная работа у доски, а также проявление инициативности при решении задач на рабочем месте поощряются баллами в соответствии со шкалой модульно-рейтинговой системы университета.

Вариант контрольной работы обучающийся получает в соответствии с номером в списке группы. В соответствии с заданием обучающийся должен выполнить предложенные задания, получить и обосновать требуемые результаты.

11.3.Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

В процессе выполнения самостоятельной работы у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихся, являются учебно-методические материалы по дисциплине.

11.4.Методические указания для обучающихся по прохождению промежуточной аттестации

Промежуточная аттестация обучающихся предусматривает оценивание окончательных результатов обучения по дисциплине в форме экзамена. Экзамен проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой