МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего

образования "САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 14

УТВЕРЖДАЮ Руководитель направления

д.т.н.,проф.

(должность, уч. степень, звание)

М.Б. Сергеев

«24» июня 2021 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Микропроцессорные системы» (Наименование дисциплины)

Код направления подготовки/ специальности	09.03.01		
Наименование направления подготовки/ специальности	Информатика и вычислительная техника		
Наименование направленности	Автоматизированные системы обработки информации и управления очная		
Форма обучения			

Санкт-Петербург- 2021

Лист согласования рабочей программы дисциплины

Программу составил (а) доц.,к.т.н.,доц.	Tout of	
(должность, уч. степень, звание)	(подпись, дата)	С.И. Ковалев
	, , , , , , , , , , , , , , , , , , , ,	(инициалы, фамилия)
Программа одобрена на заседан	нии кафедры № 14	
«15» июня 2021 г, протокол N		
, ,	,	
Заведующий кафедрой № 14	16/1	
к.т.н., доцент	Miller	
(уч. степень, звание)	(подпись, дата)	В.Л. Оленев
/	J, manay	(инициалы, фамилия)
0		
Ответственный за ОП ВО 09.03.	01(01)	
доц.,к.т.н.,доц.	Makouen	А.В. Шахомиров
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
	,	
Ваместитель директора институт	а №1 но методической ра	аботе
ст.преподаватель		
(должность, уч. степень, звание)	(подпись, дата)	В.Е. Таратун

Аннотация

Дисциплина «Микропроцессорные системы» входит в образовательную программу высшего образования по направлению подготовки/ специальности 09.03.01 «Информатика и вычислительная техника» направленности «Автоматизированные системы обработки информации и управления». Дисциплина реализуется кафедрой «№14».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ПК-2 «Способен осуществлять концептуальное, функциональное и логическое проектирование систем среднего и крупного масштаба и сложности»

Содержание дисциплины охватывает круг вопросов, связанных с методами проектирования и реализации систем на базе современной микропроцессорной техники.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, самостоятельная работа студента, консультации, курсовое проектирование

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 5 зачетных единиц, 180 часов.

Язык обучения по дисциплине «русский»

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Целью преподавания дисциплины «Микропроцессорные системы» является получение студентами теоретических и практических знаний для формирования профессиональных навыков проектирования и реализации систем на базе современной микропроцессорной техники. Теоретическая часть включает изучение однокристальных микроконтроллеров, особенности их архитектуры и внешних интерфейсов. Практическая часть предполагает построение на их базе универсальных микроконтроллерных систем по сбору и обработки информации и управлению сложными системами.

- 1.2. Дисциплина входит в состав части, формируемой участниками образовательных отношений, образовательной программы высшего образования (далее OП BO).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа) компетенции	Код и наименование компетенции	Код и наименование индикатора достижения компетенции
Профессиональные компетенции	ПК-2 Способен осуществлять концептуальное, функциональное и логическое проектирование систем среднего и крупного масштаба и сложности	ПК-2.3.1 знать методы концептуального, функционального и логического проектирования, принципы разработки технико-экономических характеристик вариантов концептуальной архитектуры ПК-2.У.1 уметь разрабатывать технико-экономическое обоснование, определять ключевые свойства системы, определять ограничения системы, варианты концептуальной архитектуры системы ПК-2.В.1 владеть определением ключевых свойств системы, определением ограничений системы, вариантами концептуальной архитектуры системы, описанием технико-экономического обоснования

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- Информатика
- Основы программирования
- Технология программирования
- Программирование на языках высокого уровня
- Программирование на языке Ассемблера
- Организация ЭВМ и вычислительных систем

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и могут использоваться при изучении других дисциплин:

- Сетевые технологии
- Сети ЭВМ и телекоммуникации

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

таолица 2 — Оовем и трудоемкость дисциплины						
D	Трудоемкость по семестрам					
Beero	№6	№7				
2	3	4				
5/ 180	4/ 144	1/ 36				
51	34	17				
85	68	17				
34	34					
34	34					
17		17				
45	45					
50	31	19				
Экз.,	Экз.					
	Bcero 2 5/180 51 85 34 17 45 50	Всего Трудоемкость №6 2 3 5/180 4/144 51 34 85 68 34 34 17 45 45 31				

Примечание: **кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Разделы, темы дисциплины	Лекции	ПЗ (СЗ)	ЛР	КП	CPC
	(час)	(час)	(час)	(час)	(час)
	Семе	стр 6	- 1		
Раздел 1. Однокристальные микроконтроллеры Тема 1.1 Обзор рынка 8-разрядных	2				2
однокристальных микроконтроллеров Тема 1.2 Однокристальные микроконтроллеры Microchip Technology Области применения					
Раздел 2. Однокристальные 8-и разрядные микроконтроллеры Тема 2.1 Особенности однокристальных РІС-контроллеров Тема 2.2 Основные параметры РІС-контроллеров. Характеристики.	2				2
Раздел 3.Однокристальный микроконтроллер PIC16F84 Тема 3.1.Архитектура.Внутренние регистры Тема 3.2 Обозначения данного PIC-	4		8		8

контроллера					
Тема 3.3 Конфигурация памяти					
программ					
Тема 3.4 Конфигурация памяти данных					
Раздел 4. Система команды	4		4		2
микроконтроллера					
Тема 4.1 Команды микроконтроллера					
Тема 4.2 Примеры программирования					
Тема 4.3 Порты ввода-вывода					
Раздел 5. Приемы программирования	8		10		5
внутренней периферии PIC-контроллера					
Тема 5.1. Работа с массивами в памяти					
PIC16F84					
Тема 5.2 Макросы в ассемблере					
PIC16F84					
Тема 5.3 Механизм прерываний.					
Тема 5.4 Работа с энергонезависимой					
памятью в PIC16F84					
Тема 5.5 Режим Sleep					
Раздел 6. Однокристальный 8-и	4		8		5
разрядный микроконтроллер PIC16F87x					-
с расширенными возможностями					
Тема 8.1.Регистры общего назначения					
PIC16F87x					
Тема 8.2 Регистры специального					
назначения PIC16F87x					
Раздел 7. Режимы работы ССР-модуля	6				5
Тема 7.1 Режим Capture ССР-модуля					J
Тема 7.2 РежимСотрате ССР-модуля					
Тема 7.3 РежимРWM ССР-модуля					
Разлел 8. Работа с аналоговыми	4		4		2
сигналами.	•		•		2
Тема 8.1 Компораторы					
Тема 8.2 Многоканальный АЦП					
Tema 6.2 Ivinoi okanasisiisii 711411					
Итого в семестре:	34		34		31
Titoro B concerpe.	34		34		31
Семестр 7					
Выналия курсового проякто				17	
Выполнение курсового проекта				1 /	
Итого в семестре:				17	19
Maria	2.4	0	2.4	17	50
Итого:	34	0	34	17	50

4.2. Содержание разделов и тем лекционных занятий.

Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

контроллера

	таолица т содержание разделов и тем лекционного цикла							
	Номер раздела	Название и содержание разделов и тем лекционных занятий						
	Однокристальные микроконтроллеры							
		Тема 1.1 Обзор рынка 8-разрядных однокристальных						
		микроконтроллеров.						
		Микроконтроллеры компаний MICROCHIP PICmicro family,						
		ATMEL AVR, Scenix Semiconductors, XEMICS CoolRISC, OAO						

	«Ангстрем», CYGNAL Integrated			
	Тема 1.2 Однокристальные микроконтроллеры Microchip			
	Technology. Области применения в промышленной и бытовой			
	технике.			
2	Однокристальные 8-и разрядные микроконтроллеры			
	Тема 2.1 Особенности однокристальных РІС-контроллеров.			
	Достоинства. Недостатки.			
	Тема 2.2 Основные параметры РІС-контроллеров: размер памяти			
	программ и тип памяти программ, объем оперативной памяти,			
	количество портов, тип устройства, реализуемые особенности,			
	эксплуатации, тип корпуса, специальные дополнительные			
	обозначения . Условное обозначение на принципиальной схеме.			
	Основные понятия. Характеристики размера ОЗУ, ПЗУ,			
	EEPROM, максимальная и минимальная тактовые частоты,			
	температурный диапазон.			
3	Однокристальный микроконтроллер PIC16F84			
3	Тема 3.1. Архитектура. Внутренние регистры.			
	Обзор архитектуры РІС16F84. Структурная схема. Способы			
	1 1 11 11			
	формирования тактовой частоты.			
	Тема 3.2 Обозначение данного РІС-контроллера.			
	Условное обозначение на принципиальной схеме Назначение			
	выводов.			
	Тема 3.3 Конфигурация памяти программ. Программная модель.			
	Организация памяти ПЗУ РІС16F84. Структура			
	конфигурационного слова.			
	Тема 3.4 Конфигурация памяти данных .Структура оперативной			
	памяти РІС16F84. Организация косвенной адресации. Ввод-вывод			
	данных. Вспомогательные регистры. Регистры STATUS, OPTION,			
	TMRO, , INTCON			
4	Система команды микроконтроллера			
	Тема 4.1 Команды микроконтроллера.			
	Арифметические команды, Логические операции. Операции с			
	константами. Сдвиги. Пересылка. Команды с битами. Команды			
	передачи управления.			
	Тема 4.2 Примеры программирования.			
	Структура программы. Тело программы. Подпрограммы.			
	Тема 4.3 Порты ввода-вывода. PORT A/B. Регистры TRISx.			
5	Приемы программирования внутренней периферии РІС-			
	контроллера			
	Тема 5.1.Работа с массивами в памяти PIC16F84.			
	Работа с массивами в постоянной памяти. Подпрограммы-массивы.			
	Косвенная адресация. Работа с массивами в оперативной памяти.			
	Тема 5.2 Макросы в ассемблере PIC16F84. Примеры полезных			
	макросов.			
	Тема 5.3 Механизм прерываний.			
	Имитация внешних воздействий на PIC-контроллер. Внешние и			
	внутренние прерывания. Регистр INTCON			
	Тема 5.4 Работа с энергонезависимой памятью в PIC16F84.			
	Работа с энергонезависимой памятью EEPROM. Регистры EEADR,			
	EEDATA, EECON1, EECON2. Пример программы чтения и записи			
	данных.			
	Тема 5.5 Режим Sleep. Особенности Работы PIC16F в режиме Sleep.			
Í.				
6	Способы вывода микроконтроллера из режима Sleep. Однокристальный 8-и разрядный микроконтроллер PIC16F87x о			

	расширенными возможностями				
	* *				
	Тема 6.1.Регистры общего назначения PIC16F87x. Особенности				
	распределения по банкам памяти для различных представителей этого				
	семейства.				
	Тема 6.2 Регистры специального назначения PIC16F87x. Совместимость с				
	PIC16F84.				
	Регистр ОРТІОN, Регистр ТМRO , Регистр STATUS, Регистр				
	INTCON,Регистры энергонезависимой памяти, Порты ввода-вывода,				
	Конфигурационной регистр прерываний				
7	Режимы работы ССР-модуля				
	Тема 7.1 Режим Capture ССР-модуля. Схема поясняющая режим				
	работы.				
	Тема 7.2 Режим Compare ССР-модуля. Схема поясняющая режим				
	работы.				
	Тема 7.3 Режим PWM ССР-модуля. Схема поясняющая режим работы.				
8	Работа с аналоговыми сигналами.				
	Тема 8.1. Компараторы. Настройка микроконтроллера для работы с				
	аналоговым видом сигналов. Выбор источника опорного напряжения.				
	Тема 8.2. Многоканальный АЦП. Принцип работы. Способ				
	программного переключения каналов. Точность преобразования.				
	Время преобразования.				

4.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

№ п/п	Темь	і практических занятий	Формы практических занятий	Трудоемкость, (час)	№ раздела дисцип лины			
Учебным планом не предусмотрено								

4.4. Лабораторные занятия Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

№ /π	Наименование лабораторных работ	Трудое мкость, (час)	№ раздела дисциплины
	Семестр 6		
	MPLAВ –среда разработки программ для микропроцессорных систем.	4	1,2
	Архитектура PIC16F84. Основные приемы программирования.	4	1,3
	Архитектура PIC16F84. Вывод информации на светодиоды. Опрос кнопок.	4	3,4
	Прерывания.	4	5
	Динамическая индикация.	4	3,5
	Подпрограммы-массивы. ASCII код символа.	4	4
	Вывод информации на семисегментированный индикатор.	4	5,6,7
	Типы последовательных интерфейсов.	2	6

Связь	c	персональным	компьютером	ПО	4	6,7,8
последо	вател	ьному интерфейсу.				
]	Всего:	34	

4.5. Курсовое проектирование/ выполнение курсовой работы Цель курсового проекта:

Выполнение индивидуального проектного задания по теме: «Разработка и отладка взаимодействия микропроцессорной системы с различными видами источников информации и интерфейсов (указать тип информации и интерфейса)». Например, «Разработка и отладка системы ввода

Примерные темы заданий на курсовой проект приведены в разделе 10 РПД.

4.6. Самостоятельная работа обучающихся Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего,	Семестр 6, час	Семестр 7, час
1	2	3	4
Изучение теоретического материала дисциплины (TO)	15	15	
Курсовое проектирование (КП, КР)	19		19
Расчетно-графические задания (РГЗ)			
Выполнение реферата (Р)			
Подготовка к текущему контролю успеваемости (ТКУ)	15	15	
Домашнее задание (ДЗ)			
Контрольные работы заочников (КРЗ)			
Подготовка к промежуточной аттестации (ПА)	1	1	
Всего:	50	31	19

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8. Таблица 8— Перечень печатных и электронных учебных изданий

Шифр/ URL адрес	Библиографическая ссылка	Количество экземпляров в библиотеке (кроме электронных экземпляров)
004.312 Я	Яценков, В.С. Микроконтроллеры	2
92	MicroChip: практическое руководство/	
	В.С. Яценков. – 2-е изд – М.: Горячая	
	линия – Телеком, 2008. – 280с.	

004.312.46	Васильев, А.Е. Микроконтроллеры.	17
B19	Разработка встраиваемых приложений:	
	Учебное пособие/ А.Е. Васильев; с	
	Петерб. гос. политехн. ун-т. – СПб.: Изд-	
	во СПбГПУ,2003. – 211 с.	
004 M 12	Магда, Ю.С. Микроконтроллеры серии	2
	8051: практический подход/ Ю.С. Магда.	
	- M.: ДМК Пресс, 2008 228 c.	
004.3 E 26	Евстифеев, А.В. Микроконтроллеры AVR	1
	семейства Tiny и Mega фирмы ATMEL/	
	А.В. Евстифеев. – 4-е изд – М.:ДОДЭКА-	
	XXI, 2007. – 560 c.	
004.3 Γ 52	Гладштейн, М.А. Микроконтроллеры	7
	смешанного сигнала С8051 Fxxx фирмы	
	Silicon Laboratories и их применение :	
	описание алгоритмов ипрограмм / М. А.	
	Гладштейн. – Прогр М.: ДОДЭКА-	
	XXI, 2008.	
	Ковалев С.И. Методические указания к	Электронный ресурс кафедры
	выполнению лабораторных работ (Л.Р.1-	
	Л.Р.9). 2012г.	
	Ковалев С.И. Методические указания к	Электронный ресурс кафедры
	выполнению курсовых работ (Описание	
	лабораторного отладочного	
	комплекса). Учебное пособие в	
	электронном виде. 2008г.	
004.312 3-16	Заец, Н.И. Радиолюбительские	8
	конструкции на РІС-	
	микроконтроллерах.кн.4/Н.И. Заец. –	
	Киев: МК-Пресс, 2008. – 336 с.:	
681.511	Проектирование средств контроля и	10
(ГУАП)/П79	диагностики с элементами высокой	
	интеграции: Методические указания к	
	выполнению лабораторных работ / С	
	Петерб. гос. ун-т аэрокосм.	
	приборостроения; Сост. С. И. Ковалев, В.	
	А. Голубков СПб.: РИО ГУАП, 2005	
	22 с.: рис., табл	
C 71	Сперанский, В. С. Сигнальные	20
	микропроцессоры и их применение в	
	системах телекоммуникаций и	
	электроники: учебное пособие/ В. С.	
	Сперанский М.: Горячая линия -	
	Телеком, 2008 168 с	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационно-

телекоммуникационной сети «Интернет»

URL адрес	Наименование
www.microchip.ru	Microchip Technology.

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

№ п/п	Наименование	
1	программа отладчик Microchip MPLAB 8.5 – бесплатная для учебных целей	
1	OC Windows XP и выше	
2	Пакет MS Office	

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п	Наименование	
	Не предусмотрено	

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Лекционная аудитория	
2	Компьютерный класс	

10. Оценочные средства для проведения промежуточной аттестации

10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

тасянца та состав оцено ниях средств для	проведения промежуто топ аттестации
Вид промежуточной аттестации	Перечень оценочных средств
Экзамен	Список вопросов к экзамену
Выполнение курсового проекта	Экспертная оценка на основе требований к
	содержанию курсового проекта.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции	оценки уровня сформированности компетенции	
5-балльная шкала	Характеристика сформированных компетенций	
3-Оаппьная шкала	 обучающийся глубоко и всесторонне усвоил программный 	
«отлично» «зачтено»	 ооучающийся тлуооко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий. 	
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 	
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий. 	
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 	

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

Tuomique 15 Bonpoesi (suga in) Asia sissumenta	
№ п/п	Перечень вопросов (задач) для экзамена
1	Обзор рынка 8-и разрядных однокристальных микроконтроллеров
2	Семейства однокристальных микроконтроллеров фирмы Microchip
	Technology. Основные параметры PIC-контроллеров
3	Условные обозначения РІС-контроллеров
4	Обзор архитектуры РІС16F84
5	Условное обозначение PIC16F84. Назначение выводов.

6	Способы формирования тактовой частоты для PIC16F84
7	Структура конфигурационного слова РІС16F84
8	Структура оперативной памяти PIC16F84
9	Peructp STATUS PIC16F84
10	Peructp OPTION PIC16F84
11	Система команд РІС16F84
12	Работа с массивами в постоянной памяти PIC16F84
13	Работа с массивами в оперативной памяти PIC16F84
14	Макросы в ассемблере PIC16F84
15	Имитация внешних событий в MPLAB
16	Механизм прерываний в РІС16F84
17	Регистр INTCON в PIC16F84
18	Типы сбросов в PIC16F84
19	Работа с энергонезависимой памятью в PIC16F84
20	Работа РІС16F84 в режиме Sleep
21	Организация асинхронной последовательной передачи данных для
	PIC16F84
22	Основные характеристики семейства PIC16F87x
23	Внутренняя структура РІС16F87х
24	Описание выводов РІС16F87х
25	Организация памяти ПЗУ PIC16F87x
26	Организация памяти ОЗУ PIC16F87x
27	Peructp STATUS PIC16F87x
28	Peructp OPTION PIC16F87x
29	Perucтр INTCON в PIC16F87х
30	Особенности выполнения команды GOTO в PIC16F87x
31	Особенности выполнения команды CALL в PIC16F87x
32	Работа таймера-счетчика ТМR0 в PIC16F87x
33	Работа таймера-счетчика ТМR0 в PIC16F84
34	Работа таймера-счетчика TMR1 в PIC16F87x
35	Работа таймера-счетчика TMR2 в PIC16F87x
36	Структура конфигурационного слова T1CON
37	Структура конфигурационного слова T2CON
38	Режимы работы ССР-модуля
39	Режим Capture ССР-модуля
40	Режим Compare ССР-модуля
41	Режим PWM ССР-модуля
42	Организация асинхронной последовательности передачи в PIC16F87x

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16. Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета
	Учебным планом не предусмотрено

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

	№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы		
1 Часть 1. Выбор в ме		Часть 1. Выбор в меню. 2 яруса. Первый- 5 эл-тов, второй – 3 эл-та.		

	После выбора нижнего уровня – звонок. Т.е. примерно как в сотовом			
	телефоне. (например: в первом ярусе 5 фамилий, во втором ярусе – для			
	каждой фамилии 3 телефона (дом., раб., моб.), выбор телефона –			
	имитация тел. звонка)			
	Часть 2. Сохранение во внешней энергонезависимой памяти			
	1			
	промежуточных данных и последнего результата работы программы. Связь с внешней памятью – по протоколу I2C.			
2	Часть 1. Вводится шестнадцатеричное число в верхней строчке. При			
	нажатии на кнопку-окончание ввода и в нижней строке должно			
	появится 10-ичное число, равное верхнему.			
	Часть 2.Сохранение во внешней энергонезависимой памяти			
	промежуточных данных и последнего результата работы программы.			
	Связь с внешней памятью – по протоколу I2C.			
3	Часть 1. Реклама – организовать бегущую строку. 1-я кнопка			
3	управляет направлением бега, кн.2 – переводит строку вверх или вниз,			
	3-я кнопка режим циклического сдвига, когда две строки объединяются			
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
	в одну длинную 32-х символьную строку, по которой циклически			
	движется рекламная строка.			
	Часть 2.Сохранение во внешней энергонезависимой памяти			
	промежуточных данных и последнего результата работы программы.			
	Связь с внешней памятью – по протоколу I2C.			
4	Часть 1. Ввод и преобразование двоичного числа (в первой строке) в			
	десятичное (во второй строке)			
	Часть 2. Сохранение во внешней энергонезависимой памяти			
	промежуточных данных и последнего результата работы программы.			
	Связь с внешней памятью – по протоколу I2C.			
5	Часть 1. Произведение двух чисел. Ввод первого числа в первой строке,			
	второго - во второй, результат – во второй. Если результат не			
	помещается во вторую строку - звонок.			
	Часть 2. Сохранение во внешней энергонезависимой памяти			
	промежуточных данных и последнего результата работы программы.			
	Связь с внешней памятью – по протоколу І2С.			
6	Часть 1. Упорядочивание цифр в строке. Исходное число (десятичное)			
	вводится в верхней строке. По окончании ввода в нижней строке			
	появляется упорядоченный набор цифр этого числа. (доп. задание -			
	выбросить одинаковые цифры)			
	Часть 2. Сохранение во внешней энергонезависимой памяти			
	промежуточных данных и последнего результата работы программы.			
	Связь с внешней памятью – по протоколу I2C.			
7	Часть 1. Выводится строка "BOSS" в середине верхней строки.			
	Кнопками осуществляется сдвиг строки в четырех направлениях. Все			
	сдвиги циклические.			
	Часть 2. Сохранение во внешней энергонезависимой памяти			
	промежуточных данных и последнего результата работы программ			
	промежуточных данных и последнего результата расоты программы. Связь с внешней памятью – по протоколу I2C.			
	Связь с внешней памятью – по протоколу 12С.			

8	Часть 1. Вводится число, которое расценивается как десятичное			
	значение ASCII – кода (в интервале 3050). На второй строке			
	отображается символ с таким кодом. Можно вводить несколько чисел			
	подряд, при этом все, что ранее выведено, сдвигается вправо.			
	Часть 2. Сохранение во внешней энергонезависимой памяти			
	промежуточных данных и последнего результата работы программы.			
	Связь с внешней памятью – по протоколу I2C.			
9	Часть 1. В верхней строке выводится фраза (любая - придумать самим).			
	Кнопками курсор подводится под нужную букву, которая при ее выборе			
	опускается на нижнюю строку и сдвигается вплотную к левому краю (к			
	ранее выбранным буквам), где формируется слово из выбранных букв.			
	Часть 2. Сохранение во внешней энергонезависимой памяти			
	промежуточных данных и последнего результата работы программы.			
10	Связь с внешней памятью – по протоколу I2C.			
10	Часть 1. Вводится шестнадцатеричное число в верхней строчке. При			
	нажатии на кнопку-окончание ввода и в нижней строке появляется			
	двоичное число, равное верхнему.			
	Часть 2. Сохранение во внешней энергонезависимой памяти			
	промежуточных данных и последнего результата работы программы.			
	Связь с внешней памятью – по протоколу I2C.			
11	Часть 1. Вводится шестнадцатеричное число в верхней строчке. При			
	нажатии на кнопку-окончание ввода и в нижней строке появляется 8-			
	ричное число, равное верхнему.			
	Часть 2. Сохранение во внешней энергонезависимой памяти			
	промежуточных данных и последнего результата работы программы.			
	Связь с внешней памятью – по протоколу I2С.			
12	Часть 1. Вводится восьмеричное число в верхней строчке. При нажатии			
	на кнопку-окончание ввода и в нижней строке появляется 10-ичное			
	число, равное верхнему.			
	Часть 2. Сохранение во внешней энергонезависимой памяти			
	промежуточных данных и последнего результата работы программы.			
	Связь с внешней памятью – по протоколу 12С.			
13	Часть 1. Вводится восьмеричное число в верхней строчке. При			
	нажатии на кнопку-окончание ввода и в нижней строке появляется			
	троичное число, равное верхнему. Если не помещается в строку –			
	звонок.			
	Часть 2. Сохранение во внешней энергонезависимой памяти			
	промежуточных данных и последнего результата работы программы.			
	Связь с внешней памятью – по протоколу І2С.			
14	Часть 1. Вводятся два числа. Первое – в верхней строке – второе – в			
	нижней. Требуется определить, можно ли второе получить из первого			
	перестановкой цифр. Если да – звонок.			
	Часть 2. Сохранение во внешней энергонезависимой памяти			
	промежуточных данных и последнего результата работы программы.			
	Связь с внешней памятью – по протоколу І2С.			

15	Часть 1. Вводятся два числа. Первое – в верхней строке – второе – в				
	нижней. Требуется определить, можно ли второе получить из первого				
	зеркальным отражением последовательности цифр. (например: числа				
	127556 и 655721 - звонок)				
	Часть 2. Сохранение во внешней энергонезависимой памяти				
	промежуточных данных и последнего результата работы программы.				
	Связь с внешней памятью – по протоколу I2C.				
16	Часть 1. Вводятся число в верхней строке. Во второй строке надо				
	вывести сообщение - простое это число или нет. (Число <999.				
	Использовать список простых чисел до 31 и проверять их как делители				
	введенного числа.)				
	Часть 2. Сохранение во внешней энергонезависимой памяти				
	промежуточных данных и последнего результата работы программы.				
	Связь с внешней памятью – по протоколу І2С.				
17	Часть 1. Тест реакции человека. С помощью генератора				
	псевдослучайных чисел организовать вывод случайных двоичных чисел				
	в верхнюю строку. Время фиксации числа – 1 сек. За это время надо				
	определить четно или нет число единиц в числе и нажать одну из двух				
	кнопок. При неправильном нажатии – звонок. Во второй строке				
	выводятся числа правильных и неправильных нажатий.				
	Часть 2. Сохранение во внешней энергонезависимой памяти				
	промежуточных данных и последнего результата работы программы.				
	Связь с внешней памятью – по протоколу I2С.				
18	Часть 1. Тест реакции человека. С помощью генератора				
	псевдослучайных чисел организовать случайный вывод слов "левая				
	кнопка" и "правая кнопка". Время показа слова – 0.5 сек. За это время				
	надо нажать одну из двух кнопок. При неправильном нажатии – звонок.				
	Во второй строке выводятся числа правильных и неправильных				
	нажатий.				
	Часть 2. Сохранение во внешней энергонезависимой памяти				
	промежуточных данных и последнего результата работы программы.				
	Связь с внешней памятью – по протоколу I2С.				
19	Часть 1. Тест реакции человека. С помощью генератора				
	псевдослучайных чисел организовать случайный вывод слов "левая				
	кнопка" и "правая кнопка". Измеряется время до нажатия на				
	правильную кнопку. Во второй строке выводится среднее время				
	реакции (в десятых долях секунды.)				
	Часть 2.Сохранение во внешней энергонезависимой памяти				
	промежуточных данных и последнего результата работы программы.				
	Связь с внешней памятью – по протоколу I2C.				
20	Часть 1. Сложение двух чисел. Ввод первого числа в первой строке,				
	второго - во второй, результат – во второй. Если результат не				
	помещается во вторую строку - звонок.				
	Часть 2.Сохранение во внешней энергонезависимой памяти				
	промежуточных данных и последнего результата работы программы.				

	Связь с внешней памятью – по протоколу I2C.
21	Часть 1. Вычитание двух чисел. Ввод первого числа в первой строке,
	второго - во второй, результат – во второй. Если результат не
	помещается во вторую строку - звонок.
	Часть 2. Сохранение во внешней энергонезависимой памяти
	промежуточных данных и последнего результата работы программы.
	Связь с внешней памятью – по протоколу I2C.
22	Часть 1. Деление (целочисленное) двух чисел. Ввод первого числа в
	первой строке, второго - во второй, результат – во второй строке. При
	ненулевом остатке – короткий звонок.
	Часть 2. Сохранение во внешней энергонезависимой памяти
	промежуточных данных и последнего результата работы программы.
	Связь с внешней памятью – по протоколу I2C.
23	Часть 1. Определение наличия заданного фрагмента в массиве. Ввод
	первого числа в первой строке, второго - во второй. Если второе число
	является фрагментом первого – короткий звонок. (Например: первое
	число 11345832996, второе 329 - звонок)
	Часть 2. Сохранение во внешней энергонезависимой памяти
	промежуточных данных и последнего результата работы программы.
	Связь с внешней памятью – по протоколу I2C.
24	Часть 1. Ввод десятичного числа. Если цифры в нем упорядочены по
	возрастанию – короткий звонок, по убыванию – два звонка, если другое
	– один длинный звонок.
	Часть 2. Сохранение во внешней энергонезависимой памяти
	промежуточных данных и последнего результата работы программы.
	Связь с внешней памятью – по протоколу I2C.
25	Часть 1. Ввод десятичного числа. Во второй строке – сумма введенных
	цифр. Если сумма оканчивается на 0 - один длинный звонок.
	Часть 2. Сохранение во внешней энергонезависимой памяти
	промежуточных данных и последнего результата работы программы.
	Связь с внешней памятью – по протоколу I2C.
26	Часть 1. Вводятся 8 десятичных цифр. Определить, есть ли тройка
	цифр, которая в сумме дает число 20. Если есть – вывести эти три
	цифры во второй строке и один длинный звонок.
	Часть 2. Сохранение во внешней энергонезависимой памяти
	промежуточных данных и последнего результата работы программы.
	Связь с внешней памятью – по протоколу I2C.
27	Часть 1. Вводятся 8 десятичных цифр. Определить, три наибольшие
	цифры, Вывести эти три цифры во второй строке и дать столько
	коротких звонков, какова максимальная цифра.
	Часть 2. Сохранение во внешней энергонезависимой памяти
	промежуточных данных и последнего результата работы программы.
	Связь с внешней памятью – по протоколу I2C.
28	Часть 1. Вводятся 8 десятичных цифр. Вывести нечетные цифры во
	второй строке. Если их нет, то один длинный звонок.

	Часть 2. Сохранение во внешней энергонезависимой памяти				
	промежуточных данных и последнего результата работы программы.				
	Связь с внешней памятью – по протоколу I2C.				
29	Часть 1. Вводятся 5 десятичных цифр. Определить, равна ли их сумма				
	или разность нулю. Т.е. допускается любая комбинация знаков (плюс				
	или минус) перед каждой цифрой. Если =0 – вывести эти цифры во				
	второй строке с нужными знаками и дать один длинный звонок.				
	Часть 2. Сохранение во внешней энергонезависимой памяти				
	промежуточных данных и последнего результата работы программы.				
	Связь с внешней памятью – по протоколу I2C.				
30	Часть 1. Вводится число из 6 цифр, затем вводится второе число. Надо				
	поделить первое на второе и выдать сообщение : результат деления –				
	хххх.ххх. Если результат деления целый – звонок.				
	Часть 2. Сохранение во внешней энергонезависимой памяти				
	промежуточных данных и последнего результата работы программы.				
	Связь с внешней памятью – по протоколу I2C.				

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

3.5 /			U T	
№ П/П	Примерный перечень вопросов для тестов			

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п	Перечень контрольных работ
	Не предусмотрено

10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

11. Методические указания для обучающихся по освоению дисциплины

11.1. Методические указания для обучающихся по освоению лекционного материала

Основное назначение лекционного материала – логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат

конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- Изложение лекционного материала;
- Освоение теоретического материала по вопросам, представленным в таблице 15
- 11.2. Методические указания для обучающихся по выполнению лабораторных работ
- В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задание и требования к проведению лабораторных работ

- Каждая ЛР выполняется по индивидуальному заданию, выданному студенту преподавателем;
- В задании должно быть четко сформулирована задача, выполняемая в ЛР;
- Описаны входные и выходные данные для проведения ЛР;
- ЛР должна выполняться на основе полученных теоретических знаниях;
- Выполнение ЛР должно осуществляться на основе методических указаний, предоставляемых преподавателем;

- ЛР должна выполняться в специализированном компьютерном классе и может быть доработана студентом в домашних условиях, если позволяет ПО:
- Итогом выполнения ЛР является отчет или демонстрация результатов работы преподавателю в электронном виде (на усмотрение преподавателя) и демонстрация работы программы на лабораторном макете.

Структура и форма отчета о лабораторной работе

- Постановка задачи;
- Особенности решения и используемые методы (если они потребовались)
- ;Схема алгоритма
- Комментированный листинг программы
- Программа на языке программирования с комментариями
- Файл прошивки для лабораторного макета
- Список литературы

Требования к оформлению отчета о лабораторной работе

- ЛР представляется в печатном и электронном виде;
- ЛР должна соответствовать структуре и форме отчета, представленной выше;
- ЛР должна иметь титульный лист (ГОСТ 7,32-2001 издания 2008 года) с названием и подписью студента, который ее сделал и оформил;
- Студент должен защитить ЛР. Отметка о защите должна находиться на титульном листе вместе с подписью преподавателя.

Для выполнения лабораторных работ, помимо указанных в таблице 8 источников, студент может использовать следующие методические материалы, изданные кафедрой в электронном виде:

- Ковалев С.И. Методические указания к лабораторной работе №1. Ознакомление с интегрированной средой разработки MPLAB – СПб 2005
- Ковалев С.И. Методические указания к лабораторной работе №2,3. Изучение основ программирования для микроконтроллеров фирмы Microchip Technology. – СПб 2005.
- Ковалев С.И. Методические указания к лабораторной работе №4,5. Работа с прерываниями, сторожевой таймер, прескалер, универсальный таймер-счетчик. — СПб 2005.
- Ковалев С.И. Методические указания к лабораторной работе №6,7. Работа с массивами. Динамическая индикация. – СПб 2005.
- Ковалев С.И. Методические указания к лабораторной работе №8,9. Последовательная передача данных. – СПб 2005.
- 11.3. Методические указания для обучающихся по прохождению курсового проектирования/выполнения курсовой работы

Курсовой проект/ работа проводится с целью формирования у обучающихся опыта комплексного решения конкретных задач профессиональной деятельности.

Курсовой проект/ работа позволяет обучающемуся:

- систематизировать и закрепить полученные теоретические знания и практические умения по профессиональным учебным дисциплинам и модулям в соответствии с требованиями к уровню подготовки, установленными программой учебной дисциплины, программой подготовки специалиста соответствующего уровня, квалификации;
- применить полученные знания, умения и практический опыт при решении комплексных задач, в соответствии с основными видами профессиональной деятельности по направлению/ специальности/ программе;
 - углубить теоретические знания в соответствии с заданной темой;
- сформировать умения применять теоретические знания при решении нестандартных задач;
- приобрести опыт аналитической, расчётной, конструкторской работы и сформировать соответствующие умения;
- сформировать умения работы со специальной литературой, справочной, нормативной и правовой документацией и иными информационными источниками;
- сформировать умения формулировать логически обоснованные выводы, предложения и рекомендации по результатам выполнения работы;
 - развить профессиональную письменную и устную речь обучающегося;
- развить системное мышление, творческую инициативу, самостоятельность, организованность и ответственность за принимаемые решения;
- сформировать навыки планомерной регулярной работы над решением поставленных задач.

Структура пояснительной записки курсового проекта/ работы

- Формулировка задачи
- Описание возможных вариантов решения поставленной задачи. Обзор литературы. Обоснование выбора одного из методов.
- Детальное рассмотрение выбранного метода. Описание математических методов, применяемых в выбранном решении (если они есть)
- Формирование и описание структурной схемы устройства.
- Создание и подробное описание функциональной и (или) принципиальной схемы устройства.
- Написание фрагмента программного обеспечения (1-2 страницы на Ассемблере).
- Заключение (выводы по работе)
- Список используемой литературы.

Требования к оформлению пояснительной записки курсового проекта/ работы

- Курсовая работа предоставляется в печатном и электронном виде;
- Курсовая работа должна соответствовать структуре и форме пояснительной записки описанной выше;
- Курсовая работа должна иметь титульный лист (ГОСТ 7.32-2001 издания 2008 года) с названием и подписью студента, который ее сделал и оформил.
- Студент должен защитить курсовую работу. Отметка о защите должна находиться на титульном листе вместе с подписью преподавателя.

Для выполнения курсовой работы, помимо указанных в таблице 8 источников, студент может использовать следующие методические материалы, изданные кафедрой в электронном виде:

Ковалев С.И. Методические указания к выполнению лабораторных работ и курсового проектирования . Описание лабораторного-отладочного комплекса ЛОК-1 (ЛОК-2) .-СПб 2009

11.4. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихся являются учебно-методический материал по дисциплине.

11.5. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

11.6. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

— экзамен — форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Система оценок при проведении промежуточной аттестации осуществляется в соответствии с требованиями Положений «О текущем контроле успеваемости и промежуточной аттестации студентов ГУАП, обучающихся по программы высшего образования» и «О модульно-рейтинговой системе оценки качества учебной работы студентов в ГУАП».

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой