МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 32

УТВЕРЖДАЮ

Руководитель направления

проф.,д.т.н.,проф.

(должность, уч. степень, звание)

А.Л. Ронжин

(инициалы, фамилия)

(подпись)

«22» июня 2020 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Энергетическая электроника» (Наименование дисциплины)

Код направления подготовки/ специальности	13.03.02	
Наименование направления подготовки/ специальности	Электроэнергетика и электротехника	
Наименование направленности	Электромеханика	
Форма обучения	очная	

Лист согласования рабочей программы дисциплины

Программу составил (а)	0/	
Доц., к.т.н., доц.	Alapm3	А.А. Мартынов
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Программа одобрена на заседа	ании кафедры № 32	
«21» мая 2020 г, протокол №	. 9	
, 1		
Заведующий кафедрой № 32	110	
	«21» мая 2020 г	А.Л. Ронжин
<u>Д.т.н.,проф.</u> (уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
O 11 1 J 1 J 1 J 1		, , , , , , ,
Ответственный за ОП ВО 13.0	03.02(01)	
	222	
	Ch	
доц.,к.т.н.,доц.		С.В. Соленый
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Заместитель Директора инсти	тута №3 по методической рабо	те
, , 1	. 1	
	In .	
доц.,к.э.н	Main	Г.С. Армашова-Тельник
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)

Аннотация

Дисциплина «Энергетическая электроника» входит в образовательную программу высшего образования по направлению подготовки/ специальности 13.03.02 «Электроэнергетика и электротехника» направленности «Электромеханика». Дисциплина реализуется кафедрой «№32».

Дисциплина не является обязательной при освоении обучающимся образовательной программы и направлена на углубленное формирование следующих компетенций:

УК-1 «Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач»

Содержание дисциплины охватывает круг вопросов, связанных с:

- преобразованием электрической энергии посредством полупроводниковых преобразователей;

-расчетом основных параметров и характеристик полупроводниковых преобразователей.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, самостоятельная работа студента, консультации.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме зачета.

Общая трудоемкость освоения дисциплины составляет 2 зачетных единицы, 72 часа.

Язык обучения по дисциплине «русский»

1. Перечень планируемых результатов обучения по дисциплине 1.1. Цели преподавания дисциплины

Целью дисциплины является формирование у студентов необходимых знаний и умений по современным устройствам и системам энергетической электроники, что позволит им успешно решать теоретические и практические задачи в их профессиональной деятельности. Обучающиеся должны освоить дисциплину на уровне, позволяющем им ориентироваться в схемных решениях, математических моделях, свойствах и характеристиках устройств и систем энергетической электроники. Уровень освоения дисциплины должен позволять студентам проводить типовые расчеты основных параметров и характеристик устройств и систем энергетической электроники, проводить элементарные лабораторные испытания устройств и систем энергетической электроники.

1.2. Дисциплина является факультативной дисциплиной по направлению образовательной программы высшего образования (далее – $O\Pi\ BO$).

1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

T (1 T	J	
I anπuita I — Heneueut	. КОМПЕТЕЦЦИИ И ИЦПИКАТО	DUIDAWITAAN VII DAN
таолица і тісрочені	компетенций и индикато	ров их достижения

таолица т ттере тепь компетенции и индикаторов их достижения					
Категория (группа)	Код и наименование	Код и наименование индикатора достижения			
компетенции	компетенции	компетенции			
Универсальные компетенции	УК-1 Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач	УК-1.Д.2 использует системный подход для решения поставленных задач			

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- Физика;
- Электротехника.
 - Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и используются при изучении других дисциплин:
- Силовая электроника;
- Основы преобразовательной техники.

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

Вид учебной работы	Всего	Трудоемкость по семестрам
--------------------	-------	------------------------------

		№5
1	2	3
Общая трудоемкость дисциплины, 3E/ (час)	2/72	2/72
Аудиторные занятия, всего час.	17	17
в том числе:		
лекции (Л), (час)	17	17
практические/семинарские занятия (ПЗ), (час)		
лабораторные работы (ЛР), (час)		
курсовой проект (работа) (КП, КР), (час)		
экзамен, (час)		
Самостоятельная работа, всего (час)	55	55
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Зачет	Зачет

Примечание: ** кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Разделы, темы дисциплины	Лекц	П3	ЛР	КП	CPC
	ии	(C3)	(час)	(час)	(час)
C	Семестр 3				
Раздел 1.	2				6
Раздел 1. Полупроводниковые приборы силовой электроники					
Тема 1.1. Устройство, принцип работы, характеристики диодов, тиристоров, биполярных транзисторов					
Тема 1.2. Устройство, принцип работы, характеристики полевых транзисторов, IGBT транзисторов, драйверы- схемы подключения					
Раздел 2. Выпрямители	6				20
Тема 2.1.Классификация выпрямителей и основные параметры и характеристики выпрямителей.					
Тема 2.2. Многофазные выпрямители					
Тема 2.3. Активные выпрямители					
Тема 2.4. Коммутация тока в					

выпрямителях и влияние ее на характеристики выпрямителя					
Тема 2.5. Искажение формы тока, потребляемого выпрямителем из питающей сети					
Тема 2.6. Система импульсно-фазового управления					
Тема 2.7. Энергетические показатели выпрямителя.					
Раздел 3. Зависимые инверторы	2				6
Тема 3.1. Зависимый инвертор, выполненный на однооперационных тиристорах					
Тема 3.2. Зависимый инвертор, выполненный на управляемых вентилях					
Раздел 4. Регуляторы напряжения переменного тока	2				6
Тема 4.1. Однофазные регуляторы напряжения переменного тока					
Тема 4.2. Трехфазные регуляторы напряжения переменного тока					
Раздел 5. Инверторы	5				17
Тема 4.1. Зависимые инверторы					
Тема 4.2. Автономные инверторы					
Итого в семестре:	17				55
Итого:	17	0	0	0	55

4.2. Содержание разделов и тем лекционных занятий.

Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

	e exprision proxima in the standard man a dimen
Номер раздела	Название и содержание разделов и тем лекционных занятий
	Семестр 3
Раздел 1	Полупроводниковые приборы силовой электроники
Тема 1.1	Устройство, принцип работы, вольт-амперные характеристики диодов,

	тиристоров, биполярных транзисторов, потери мощности.
Тема 1.2	Устройство, принцип работы, вольт-амперные характеристики полевых транзисторов, IGBT транзисторов, потери мощности. Драйверы- схемы подключения драйвера к транзистору
Раздел 2.	Выпрямители
Тема 2.1	Классификация выпрямителей и основные параметры и характеристики выпрямителей.
Тема 2.2	Многофазные выпрямители: схемы, характеристики, достоинства и недостатки многофазных схем выпрямления. Внешние и регулировочные характеристики. Передаточная функция управляемого выпрямителя.
Тема 2.3	Активные выпрямители (AB). АВ тока, АВ напряжения: устройство, принцип работы, регулировочные и внешние характеристики
Тема 2.4.	Коммутация тока в выпрямителях и влияние ее на характеристики выпрямителя
Тема 2.5	Искажение формы тока, потребляемого выпрямителем из питающей сети. Коэффициент искажения формы тока, потребляемого выпрямителем из питающей сети
Тема 2.6	Система импульсно-фазового управления (СИФУ): устройство, принцип работы, регулировочные характеристики СИФУ при линейной и косинусоидальной форме опорного сигнала. Передаточная функция СИФУ.
Тема 2.7.	Энергетические показатели выпрямителей. Влияние фазности выпрямителя на энергетические показатели управляемого выпрямителя. Энергетические показатели активного выпрямителя.
Раздел 3	Зависимые инверторы
Тема 3.1	. Устройство, принцип работы, внешние характеристики зависимого инвертора, выполненного на однооперационных тиристорах
Тема 3.2	Устройство, принцип работы, внешние характеристики зависимого инвертора, выполненного на управляемых вентилях
Раздел 4	Автономные инверторы
Тема 4.1	Устройства, принцип работы, характеристики однофазных инверторов тока параллельного и последовательного типа
Тема 4.2	Устройства, принцип работы, характеристики однофазного инвертора тока последовательно- параллельного типа
Тема 4.3	Устройства, принцип работы, характеристики однофазного инвертора

	напряжения
Тема 4.4	Устройства, принцип работы, характеристики трехфазного инвертора напряжения с широтным регулированием выходного напряжения
Тема 4.5	Устройства, принцип работы, характеристики инвертора напряжения с ШИМ выходного напряжения
Раздел 5	Регуляторы напряжения переменного тока,
Тема 5.1	Регуляторы напряжения переменного тока, выполненные на однооперационных тиристорах и полностью управляемых вентилях: устройство, принцип работы, характеристики
Тема 5.2	Трехфазные регуляторы напряжения переменного тока: устройство, принцип работы, характеристики

4.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

№ п/п	Темы практических занятий	Формы практических занятий	Трудоемкость, (час)	№ раздела дисцип лины		
			1	липы		
	Учебным планом не предусмотрено					
	Всего					

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

№ п/п	Наименование лабораторных работ	Трудоемкость, (час)	№ раздела дисцип лины	
	Учебным планом не предусмотрено			
	Bcero			

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся

Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

Tuotingu / Bilgir camoc tontesibilon paootisi ii ce ipjgocimkoc is		
Вид самостоятельной работы	Всего,	Семестр 5,
Вид самостоятсявной расоты	час	час
1	2	3
Изучение теоретического материала	50	50

дисциплины (ТО)		
Курсовое проектирование (КП, КР)		
Расчетно-графические задания (РГЗ)		
Выполнение реферата (Р)		
Подготовка к текущему контролю	5	5
успеваемости (ТКУ)	3	3
Домашнее задание (ДЗ)		
Контрольные работы заочников (КРЗ)		
Подготовка к промежуточной		
аттестации (ПА)		
Bcero:	55	55

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий

Перечень печатных и электронных учебных изданий приведен в таблице 8. Таблица 8— Перечень печатных и электронных учебных изданий

Шифр	Библиографическая ссылка / URL адрес	Количество
		экземпляров в
		библиотеке
		(кроме
		электронных
		экземпляров)
621.311. M29	1. Мартынов А.А. Силовая электроника. Часть I. Выпрямители и регуляторы переменного напряжения. ГУАП. СПб. 2011. 186с.	70
621.311. M29	2.Мартынов А.А. Силовая электроника. Часть II. Инверторы и преобразователи частоты. ГУАП. СПб.2012. 144с.	70
621.314. M29	3. Мартынов А.А. Силовая электроника: учеб. –метод. Пособие/А.А. МартыновСПб.: ГУАП, 2015214с.	70

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 — Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет»

URL адрес	Наименование
-----------	--------------

URL:http://194.226.30/32/book.htm	Библиотека Администрации Президента РФ	
	[Электронный ресурс]	
URL:http://imin.urc.ac.ru	Виртуальные библиотеки [Электронный ресурс].	
URL:http://www.rsl.ru	Российская национальная библиотека [Электронный	
	pecypc].	
URL:http://web.ido.ru	Электронная библиотека [Электронный ресурс].	
URL:http://gpntb.ru	Государственная публичная научно-техническая	
	библиотека России [Электронный ресурс].	
http://window.edu.ru/	Информационный портал «Единое окно доступа к	
	образовательным ресурсам» [Электронный ресурс]	

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

- work	
№ п/п	Наименование
	Не предусмотрено

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п	Наименование
	Не предусмотрено

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Лекционная аудитория	21-18

10. Оценочные средства для проведения промежуточной аттестации

10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

	1 '' 1
Вид промежуточной аттестации	Перечень оценочных средств
Зачет	Список вопросов;
	Тесты;
	Задачи.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции	оценки уровня сформированности компетенции	
5-балльная шкала	Характеристика сформированных компетенций	
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий. 	
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 	
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий. 	
— обучающийся не усвоил значительной части программном материала; — допускает существенные ошибки и неточности прассмотрении проблем в конкретном направлении; — испытывает трудности в практическом применении знаний; — не может аргументировать научные положения; — не формулирует выводов и обобщений.		

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена
	Учебным планом не предусмотрено

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16.

Таблица 16 – Вопросы (задачи) для зачета / дифф. Зачета

№ п/п	Перечень вопросов (задач) для зачета
1	Реальные и идеальные вольтамперные характеристики
1.	полупроводниковых диодов, тиристоров и транзисторов.

2.	Однофазный мостовой выпрямитель: схема, временные диаграммы,
	принцип работы, вывод расчетных соотношений.
3.	Трехфазный однотактный выпрямитель: схема, временные диаграммы,
	принцип работы.
4.	Особенности работы трансформатора в трехфазном однотактном
	выпрямителе.
5.	Трехфазный однотактный управляемый выпрямитель: схема, принцип $U_{con} = f(x)$
	работы, вывод выражения $Ud\alpha = f(\alpha)$.
6.	Трехфазный мостовой управляемый выпрямитель: схема, временные
<u> </u>	диаграммы, вывод основных расчетных соотношений.
9	Шестифазный однотактный выпрямитель: схема, временные
,	диаграммы, вывод основных расчетных соотношений.
10	Влияние индуктивности нагрузки на работу управляемого
10	выпрямителя. Пояснить на примере любой схемы выпрямителя.
11	Коммутация тока в выпрямителях: влияние на величину
11	выпрямленного напряжения, вывод выражения для угла коммутации γ .
10	Внешняя характеристика управляемого выпрямителя, $Ud\alpha = f(Id)$ при $\alpha = const$.
12	$\alpha = const$
	Регулировочные характеристики управляемых выпрямителей
13	
	$Ud\alpha = f(\alpha)$ npu $Ld = 0$ u $Ld = Ld_N$, $Id = const$.
	Коэффициент пульсаций выпрямленного напряжения. Определение
14	коэффициента пульсаций графоаналитическим и аналитическим
	методами.
15	L-C фильтр, вывод выражения коэффициента сглаживания фильтра.
16	L-фильтр. Вывод выражения для коэффициента сглаживания фильтра.
17	Зависимый инвертор: схема, принцип работы, условия перевода
	управляемого выпрямителя в режим инвертирования.
18	Коэффициент мощности и коэффициент полезного действия
_	управляемого выпрямителя
19	Коэффициент мощности и коэффициент полезного действия
	зависимого инвертора
20	Тиристорный регулятор напряжения переменного тока: устройство,
	принцип работы
21	Трехфазный тиристорный регулятор напряжения переменного тока:
	устройства, принцип работы
22	Система импульсно-фазового управления: устройство, принцип работы
22	Однофазный мостовой инвертор тока параллельного типа: схема,
23	временные диаграммы, принцип работы, вывод основных расчетных
	соотношений
24	Однофазный мостовой инвертор последовательного типа: схема,
24	временные диаграммы, принцип работы, вывод основных расчетных
	Соотношений.
25	Однофазный мостовой инвертор последовательно-параллельного типа:
25	схема, временные диаграммы, принцип работы, вывод основных
26	расчетных соотношений
26	Резонансный режим работы инвертора последовательного типа
27	Резонансный режим работы инвертора последовательно-параллельного
	ТИПа
28	Однофазный мостовой инвертор напряжения: схема, временные
	диаграммы, принцип работы, вывод выражений для Pd1, Pd2, Pd.

	Широтное регулирование выходного напряжения инвертора		
29	напряжения; зависимость гармонического состава выходного		
2)	напряжения от длительности импульса полуволны выходного		
	напряжения.		
30	Широтно-импульсное регулирование выходного напряжения инвертора		
30	напряжения; гармонический состав выходного напряжения.		
21	Трехфазный транзисторный инвертор напряжения с $\lambda_{H} = 180^{\circ}$: схема,		
31	временные диаграммы, принцип работы, вывод выражения		
	действующих значений напряжений ИФ и ИЛ.		
22	Трехфазный транзисторный инвертор напряжения с $\lambda_H = 120^{\circ}$: схема,		
32	временные диаграммы, принцип работы, вывод выражения		
	действующих значений напряжений ИФ и ИЛ.		

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

№ п/п	Примерный перечень вопросов для тестов			
	Вопрос №1			
	а б в г			
	A A A K			
	K yy K yy K			
	Д е			
	. c K			
	³ ' и ³ Э́ э			
1	Укажите какой из рисунков (а, б. в, г. д, е) соответствует условному			
1	изображению:			
	 биполярного транзистора (п-р-п-типа); диода; запираемого тиристора (двухоперационный управляемый вентиль) с управлением по катоду; тиристора (однооперационный управляемый вентиль) триодного типа с 			
	управлением по катоду;			
	– комбинированного транзистора (IGBT) с каналом п–типа			
	 – полевого транзистора МDП–типа (с изолированным затвором) с индукционным 			
	каналом п-типа; Вопрос №2.Укажите какие условия необходимо выполнить для того, чтобы через диод начал протекать ток?			
	Вопрос №3. Укажите какие условия необходимо выполнить для того, чтобы через			

тиристор начал протекать ток?		
Вопрос №4.Укажите в чем заключается отличие между однооперационным и двухоперационным тиристором?		
двухоперационным тиристором: Вопрос №5 Укажите в чем заключается отличие в форме импульсов управлени		
транзистора и двухоперационного тиристора?		
Вопрос №6. Укажите какое из трех нижеприведенных определений выпрямите (1, 2 или 3) - правильное:		
1. Выпрямитель преобразует электрическую энергию переменного тока		
электрическую энергию постоянного тока;		
2. Выпрямитель преобразует электрическую энергию постоянного тока в		
электрическую энергию переменного тока;		
3. Выпрямитель преобразует электрическую энергию постоянного тока с		
напряжением U1 в электрическую энергию постоянного тока с		
напряжением U2.		
Вопрос №7. Укажите на каких полупроводниковых приборах (транзисторах,		
тиристорах или диодах) выполняются неуправляемые выпрямители.		
Вопрос №8. Нарисуйте схему однофазного неуправляемого выпрямителя.		
Вопрос №9. Нарисуйте схему трехфазного однотактного управляемого		
выпрямителя.		
Вопрос №10. Нарисуйте схему трехфазного мостового неуправляемого		
выпрямителя.		
Вопрос №11. Укажите для каких целей в выпрямителях применяют		
трансформаторы.		
трансформаторы. Вопрос №12. Укажите для каких целей в выпрямителях применяют		
вопрос лч12. Укажите для каких целей в выпрямителях применяют сглаживающие фильтры.		
Вопрос №13.Определите чему будет равно среднее значение выпрямленного		
напряжения однофазного мостового неуправляемого выпрямителя, если на его		
вход подано напряжение переменного тока, равное 100 В?		
Вопрос №14. Определите чему будет равно среднее значение выпрямленного		
напряжения трехфазного мостового неуправляемого выпрямителя, если на его		
вход подано напряжение переменного тока, равное 100 В?		
Вопрос №15. Определите чему будет равно среднее значение выпрямленного		
напряжения трехфазного однотактного неуправляемого выпрямителя, если на его		
вход подано напряжение переменного тока, равное 100 В?		
Вопрос №16. Определите чему равно среднее значение тока диода однофазного		
мостового неуправляемого выпрямителя, если ток нагрузки равен 100 А.		
Вопрос №17. Определите чему равно среднее значение тока диода трехфазного		
однотактного неуправляемого выпрямителя, если ток нагрузки равен 150 А.		
Вопрос №18. Определите чему равно среднее значение тока диода трехфазного		
мостового неуправляемого выпрямителя, если ток нагрузки равен 150 А		
Вопрос №19. Определите чему равно максимальное амплитудное значение		
обратного напряжения диода однофазного мостового неуправляемого		
выпрямителя, если на его вход подано напряжение переменного тока,		
действующее значение которого равно 100 В?		
Вопрос №20. Определите чему равно максимальное амплитудное значение		
обратного напряжения диода трехфазного мостового неуправляемого		
выпрямителя, если на его вход подано напряжение переменного тока,		
действующее значение которого равно 100 В?		
Вопрос №21. Определите чему равно максимальное амплитудное значение		
обратного напряжения диода трехфазного однотактного неуправляемого		
выпрямителя, если на его вход подано напряжение переменного тока,		

70×2000 0000 0000 0000 0000 100 D2
действующее значение которого равно 100 В?
Вопрос №22. Укажите величину коэффициента пульсаций выпрямленного
напряжения однофазного мостового неуправляемого выпрямителя.
Вопрос №23. Укажите величину коэффициента пульсаций выпрямленного
напряжения трехфазного мостового неуправляемого выпрямителя.
Вопрос №24. Укажите величину коэффициента пульсаций выпрямленного
напряжения трехфазного однотактного неуправляемого выпрямителя.
Вопрос №25.Укажите величину коэффициента пульсаций выпрямленного
напряжения трехфазного однотактного неуправляемого выпрямителя.
Вопрос №26. Укажите в каком из выпрямителей - однофазном мостовом,
трехфазном однотактном или трехфазном мостовом, имеет место вынужденное
подмагничивание сердечника магнитопровода трансформатора постоянным
ПОТОКОМ.
Вопрос №27. Дайте определение понятию «Угол регулирования α».
Вопрос №28. Дайте определение понятию «Угол коммутации γ».
Вопрос №29. Дайте определение понятию «граничное значение угла
регулирования αгр».
Вопрос №30. Укажите значение угла стр для однофазного мостового
управляемого выпрямителя, работающего на чисто активную нагрузку.
Вопрос №31. Укажите значение угла αгр для трехфазного мостового
управляемого выпрямителя, работающего на чисто активную нагрузку.
Вопрос №32. Укажите значение угла αгр для трехфазного однотактного
управляемого выпрямителя, работающего на чисто активную нагрузку.
Вопрос №33. Дайте определение понятию «угол запирания αзап».
Вопрос №34. Укажите значение угла αзап для однофазного мостового
управляемого выпрямителя, работающего на чисто активную нагрузку.
Вопрос №35. Укажите значение угла αзап для трехфазного мостового
управляемого выпрямителя, работающего на чисто активную нагрузку.
Вопрос №36. Укажите значение угла αзап для трехфазного однотактного управляемого выпрямителя, работающего на чисто активную нагрузку.
управляемого выпрямителя, раоотающего на чисто активную нагрузку. Вопрос №37. Укажите как влияет ток нагрузки на величину угла коммутации γ
(увеличивает его или уменьшает).
(увеличивает его или уменьшает). Вопрос №38. Укажите как влияет напряжение переменного тока на величину
угла коммутации γ (увеличивает его или уменьшает).
угла коммутации у (увеличивает сто или уменьшает). Вопрос №39. Укажите как влияет индуктивное сопротивление рассеяния обмотки
сетевого трансформатора на величину угла коммутации γ (увеличивает его или
уменьшает).
уменьшает). Вопрос №40. Укажите как влияет увеличение угла коммутации γ управляемого
выпрямителя на величину его коэффициента мощности χ (увеличивает его или
уменьшает).
Вопрос №41. Укажите как влияет увеличение угла регулирования α управляемого
выпрямителя на величину его коэффициента мощности χ (увеличивает его или
уменьшает).
Вопрос №42. Укажите по какой формуле (№1 или №2) следует рассчитывать
коэффициент полезного действия выпрямителя пр:
η = Pd/P2 (1);
$\eta = \frac{P2}{Pd} (2),$
где Pd=UdId -мощность цепи постоянного тока преобразователя;
Р2=m2U2I2cosф –активная мощность цепи переменного тока преобразователя.
Вопрос №43. Укажите какое из трех нижеприведенных определений инвертора
(1, 2 или 3) - правильное:
() - / [

1. Инвертор преобразует электрическую энергию переменного тока в			
электрическую энергию постоянного тока;			
2. Инвертор преобразует электрическую энергию постоянного тока в			
электрическую энергию переменного тока;			
3. Инвертор преобразует электрическую энергию постоянного тока с			
напряжением U1 в электрическую энергию постоянного тока с			
напряжением U2.			
Вопрос №44.Укажите в каких пределах 0<α<90о или 90о<α<180о должен			
находиться угол регулирования α в режиме инвертирования.			
Вопрос №45. Укажите следует ли изменять полярность напряжения цепи			
постоянного тока выпрямителя на противоположное при переводе выпрямителя в			
режим инвертирования.			
Вопрос №46. Укажите параметры зависимого инвертора, воздействуя на которые			
можно регулировать величину мощности, отдаваемой зависимым инвертором в			
сеть переменного тока.			
Вопрос №47.Укажите по какой формуле (№1 или №2) следует рассчитывать			
коэффициент полезного действия зависимого инвертора ηз.и:			
$\eta = Pd/P2$ (1);			
$\eta = P2/Pd$ (2),			
где Pd=UdId -мощность цепи постоянного тока преобразователя;			
P2=m2U2I2cosф –активная мощность цепи переменного тока преобразователя			

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п	Переч	нень контрольных работ
	Не предусмотрено	

10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

11. Методические указания для обучающихся по освоению дисциплины

Целью дисциплины является формирование у студентов необходимых знаний и умений по современным устройствам и системамэнергетической электроники, что позволит им успешно решать теоретические и практические задачи в их профессиональной деятельности. Обучающиеся должны освоить дисциплину на уровне, позволяющем им ориентироваться в схемных решениях, математических моделях, свойствах и характеристиках устройств и систем энергетической электроники. Уровень освоения дисциплины должен позволять студентам проводить типовые расчеты основных параметров и характеристик устройств и систем энергетической электроники, проводить элементарные лабораторные испытания устройств и систем энергетической электроники.

11.1. Методические указания для обучающихся по освоению лекционного материала приведены в «Методических указаниях по изучению дисциплины «Энергетическая электроника», размещенных на электронном ресурсе каф. №32, а также в учебных пособиях [1], [2], [3]

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимся лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально–деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научится методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

11.2. Методические указания для обучающихся по прохождению самостоятельной работы «Методических указаниях по изучению дисциплины «Энергетическая электроника», размещенных на электронном ресурсе каф. №32, а также в учебных пособиях [1], [2], [3].

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихся являются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ (для обучающихся по заочной форме обучения).

11.3. Методические указания для обучающихся по прохождению промежуточной аттестации

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

- экзамен форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».
- зачет это форма оценки знаний, полученных обучающимся в ходе изучения учебной дисциплины в целом или промежуточная (по окончании семестра) оценка знаний обучающимся по отдельным разделам дисциплины с аттестационной оценкой «зачтено» или «не зачтено».
- дифференцированный зачет это форма оценки знаний, полученных обучающимся при изучении дисциплины, при выполнении курсовых проектов, курсовых работ, научно-исследовательских работ и прохождении практик с аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Система оценок при проведении промежуточной аттестации осуществляется в соответствии с требованиями Положений «О текущем контроле успеваемости и промежуточной аттестации студентов ГУАП, обучающихся по программы высшего образования» и «О модульно-рейтинговой системе оценки качества учебной работы студентов в ГУАП».

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой