МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 41

УТВЕРЖДАЮ

Руководитель направления

доц.,к.т.н.,доц.

(должность, уч. степень, звание)

О.О. Жаринов

(инициалы, фамилия)

(подпись)

«21» мая 2020 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Основы теории сигналов» (Наименование дисциплины)

Код направления подготовки/ специальности	11.03.04
Наименование направления подготовки/ специальности	Электроника и наноэлектроника
Наименование направленности	Промышленная электроника
Форма обучения	очная

Лист согласования рабочей программы дисциплины

Программу составил (а)		
доц., к.т.н.	1/10	К.Б. Гурнов
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Программа одобрена на заседа	ании кафедры № 41	
«20» мая 2020 г, протокол N	№ 10-2019/20	
Заведующий кафедрой № 41 д.т.н.,проф. (уч. степень, звание)	(20» мая 2020 г (подпись, дата)	Г.А. Коржавин (инициалы, фамилия)
Ответственный за ОП ВО 11.0 доц., к.т.н., доц.	3.04(06)	О.О. Жаринов
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Заместитель Директора инститель доц., к.т.н., доц. (должность, уч. степень, звание)	гута №4 по методической рабо	те <u>А.А. Ключарев</u> (инициалы, фамилия)
	, , ,	* * * /

Аннотация

Дисциплина «Основы теории сигналов» входит в образовательную программу высшего образования по направлению подготовки/ специальности 11.03.04 «Электроника и наноэлектроника» направленности «Промышленная электроника». Дисциплина реализуется кафедрой «№41».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ПК-1 «Способен выполнять расчет электронных приборов, схем и устройств различного функционального назначения в соответствии с техническим заданием»

ПК-5 «Способен строить простейшие физические и математические модели приборов, схем, устройств и установок электроники и наноэлектроники различного функционального назначения.»

Содержание дисциплины охватывает круг вопросов, связанных с совокупностью математических моделей и методов описания сигналов, радиоэлектронных устройств, выполняющих определенные операции над сигналами, а также, основные методы и приемы, которые используются для анализа свойств сигналов и их характеристик.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практические занятия, семинары, самостоятельная работа обучающегося.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 4 зачетных единицы, 144 часа.

Язык обучения по дисциплине «русский»

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Научить студентов выбирать методы и средства, адекватные решаемой проблеме, показать, как работает математический аппарат при решении конкретных научных и технических задач в области электроники. Не менее важно научить студентов видеть тесную связь математического описания (моделей) с физической стороной рассматриваемого явления, уметь составлять модели изучаемых процессов. В результате изучения курса студенты должны:

- 1. Знать основные математические модели элементарных радиотехнических сигналов.
- 2. Уметь записать аналитически модель произвольного сигнала посредством его динамического представления.
- 3. Анализировать сигналы во временной и частотной областях с использованием пары преобразований Фурье.
- 4. Уметь получать отклики радиотехнических устройств на стандартные входные воздействия, строить АЧХ, ФЧХ, ИХ и ПХ данных устройств и анализировать их. Дисциплина входит в состав части, формируемой участниками образовательных отношений, образовательной программы высшего образования (далее ОП ВО).
- 1.2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа) компетенции	Код и наименование компетенции	Код и наименование индикатора достижения компетенции
Профессиональные компетенции	ПК-1 Способен выполнять расчет электронных приборов, схем и устройств различного функционального назначения в соответствии с техническим заданием	ПК-1.3.1 знает принципы расчета параметров и характеристик отдельных блоков аналоговых и цифровых электронных приборов.
Профессиональные компетенции	ПК-5 Способен строить простейшие физические и математические модели приборов, схем, устройств и установок электроники и наноэлектроники различного функционального назначения.	ПК-5.3.1 знает методику построения физических и математических моделей устройств электроники и наноэлектроники различного функционального назначения. ПК-5.В.1 владеет математическим аппаратом, необходимым для построения моделей электронных устройств различного назначения.

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- Математика.
- Физика
- Основы теории цепей

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и могут использоваться при изучении других дисциплин:

- Основы кропроцессорной техники
- Схемотехника

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

		Трудоемкость по
Вид учебной работы	Всего	семестрам
		№5
1	2	3
Общая трудоемкость дисциплины, ЗЕ/ (час)	4/ 144	4/ 144
Аудиторные занятия, всего час.	51	51
в том числе:		
лекции (Л), (час)	17	17
практические/семинарские занятия (ПЗ), (час)	34	34
лабораторные работы (ЛР), (час)		
курсовой проект (работа) (КП, КР), (час)		
экзамен, (час)	36	36
Самостоятельная работа, всего (час)	57	57
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Экз.	Экз.

Примечание: ** кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Таолица 3— Газделы, темы дисциплины, их трудосмкость					
Разделы, темы дисциплины	Лекции		ЛР	КП	CPC
	(час)	(час)	(час)	(час)	(час)
Сем	естр 5				
Раздел 1.					
Классификация радиотехнических сигналов.					
Одномерные и многомерные сигналы;	2				7
детерминированные и случайные, импульсные,					
аналоговые, дискретные и цифровые.					

Раздел 2. Динамическое представление сигналов. Функция включения; Представление сигнала посредством функции включения; дельтафункция; обобщенные функции.	2				7
Раздел 3. Геометрические методы в теории сигналов. Линейное пространство сигналов; координатный базис; нормированное линейное пространство сигналов; энергия сигнала; метрическое пространство сигналов.	2	4			7
Раздел 4. Теория ортогональных сигналов. Скалярное произведение сигналов; ортогональные сигналы и обобщенные ряды Фурье; примеры ортонормированных базисов разложение сигнала по ортогональному базису.	2				7
Раздел 5. Периодические сигналы и ряды Фурье. Ряд Фурье; спектральная диаграмма периодического сигнала; комплексная форма ряда Фурье; изображение сигналов на комплексной плоскости.	2	4			7
Раздел 6. Спектральный анализ непериодических сигналов. Преобразование Фурье. Понятие спектральной плотности сигнала, ее физический смысл; условие существования спектральной плотности; спектральная плотность непериодического сигнала	2				7
Раздел 7. Основные свойства преобразования Фурье. Линейность; вещественная и мнимая части; Преобразование произведения сигналов.	3	4			7
Раздел 8. Спектральные плотности неинтегрируемых сигналов. Формула Рэлея; спектральные плотности некоторых сигналов.	2	5			8
Итого в семестре:	17	34			57
Итого	17	34	0	0	57

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Номер раздела	Название и содержание разделов и тем лекционных занятий			
РАЗДЕЛ 1	Классификация радиотехнических сигналов. Одномерные и			
	многомерные сигналы; детерминированные и случайные, импульсные,			
	аналоговые, дискретные и цифровые.			
РАЗДЕЛ 2	Динамическое представление сигналов. Функция включения;			
	Представление сигнала посредством функции включения;			
	дельтафункция; обобщенные функции.			
РАЗДЕЛ З	Геометрические методы в теории сигналов. Линейное пространство			
	сигналов; координатный базис; нормированное линейное пространство			
	сигналов; энергия сигнала; метрическое пространство сигналов.			
РАЗДЕЛ 4	Теория ортогональных сигналов. Скалярное произведение сигналов;			
, ,	ортогональные сигналы и обобщенные ряды Фурье; примеры			
	ортонормированных базисов разложение сигнала по ортогональному			
	базису.			
РАЗДЕЛ 5	Периодические сигналы и ряды Фурье. Ряд Фурье; спектральная			

	диаграмма периодического сигнала; комплексная форма ряда Фурье;			
	изображение сигналов на комплексной плоскости.			
РАЗДЕЛ 6	Спектральный анализ непериодических сигналов. Преобразование			
	Фурье. Понятие спектральной плотности сигнала, ее физический смысл;			
	условие существования спектральной плотности; спектральная			
	плотность непериодического сигнала			
РАЗДЕЛ 7	Основные свойства преобразования Фурье. Линейность; вещественная и			
	мнимая части; Преобразование произведения сигналов.			
РАЗДЕЛ 8	Спектральные плотности неинтегрируемых сигналов. Формула Рэлея;			
, ,	спектральные плотности некоторых сигналов.			

4.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

	` 1	1 3 ' '		
№ π/π	Темы практических занятий	Формы практических занятий	Трудоемкость, (час)	№ раздела дисцип лины
		Семестр 5		
1	Расчёт основных характеристик сигнала и помехи	Моделирование в матлаб	4	2
2	Построение аналитического представления сигнала и помехи	Моделирование в матлаб	4	4
3	Расчёт интервала дискретизации и квантования	Моделирование в матлаб	4	6
4	Примеры преобразований сообщений и сигналов	Моделирование в матлаб	4	8
5	Зачетное занятие.	Подведение итогов	1	
	Bce	ero	34	

Примечание: практические (семинарские) занятия могут проходить в

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

№ п/п	Наименование лабораторных работ	Трудоемкость, (час)	№ раздела дисцип лины
	Учебным планом не предусмотрено		
	Всего		

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

		/
Вид самостоятельной работы	Всего,	Семестр 5,
Вид самостоятельной расоты	час	час
1	2	3
Изучение теоретического материала дисциплины (TO)	30	30
Выполнение реферата (Р)	7	7
Подготовка к текущему контролю успеваемости (ТКУ)	10	10
Контрольные работы заочников (КРЗ)	-	-
Подготовка к промежуточной аттестации (ПА)	10	10
Всего:	57	57

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8. Таблица 8– Перечень печатных и электронных учебных изданий

Шифр/ URL адрес	Библиографическая ссылка	Количество экземпляров в библиотеке (кроме электронных экземпляров)
621.372 Б27	Баскаков С.И. Радиотехнические цепи и сигналы: Учебник для вузов М.: Высшая школа, 2000 - 462 с.	19

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет»

URL адрес	Наименование	
	1. Гольденберг Л.М. и др. Цифровая обработка сигналов: Учебное пособие	
	для вузов М.: Радио и связь, 1990 - 256 с.	
	2. Давыдов А.В. Сигналы и линейные системы. Тематические лекции:	
	Учебное пособие в электронной форме. – Екатеринбург, УГГУ, ИГиГ,	
	каф. ГИН. –http://www.prodav.narod.ru/signals/index.html.	
	3. Солонина А.И. и др. Основы цифровой обработки сигналов: Учебное	
	пособие для вузов. – СПб.: БХВ-Петербург, 2005 – 768 с.	

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

1 403111	CO TO THE PER PER PER PER PER PER PER PER PER PE
№ п/г	Наименование
	Не предусмотрено

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п		Наименование
	Не предусмотрено	

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Лекционная аудитория	5219
2	Мультимедийная лекционная аудитория	5219

- 10. Оценочные средства для проведения промежуточной аттестации
- 10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Экзамен	Список вопросов к экзамену;
	Экзаменационные билеты;
	Задачи;
	Тесты.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции		Vanauronua	attitica adam utmanatuti ili kantitatatuti ili
5-балльная шкала		Ларактерис	стика сформированных компетенций

Оценка компетенции	Характеристика сформированных компетенции	
5-балльная шкала		
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий. 	
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 	
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий. 	
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 	

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена
	1 Теория информации. Информационные технологии.
	2 Общая характеристика сигналов. Узкополосные случайные сигналы.
	4 Помехи и их классификация. Понятие отношения сигнала к шуму.
	5 Информация и спектры. Элементы обобщенной спектральной теории сигналов.
	6 Спектральное представление периодических сигналов. Понятие о
	спектральной плотности непериодических и случайных сигналов.
	7 Передача информации. Физические характеристики сигнала.
	8 Дискретизация непрерывных сигналов. Теорема Котельникова.
	Квантование сигналов по уровню.
	9 Функция корреляции. Связь функции корреляции с энергетическим спектром.
	10 Гармонический и корреляционный анализ. Практическое вычисление
	функции корреляции.
	11 Система передачи информации. Преобразования в системах
	передачи информации.
	12 Виды преобразований. Общая характеристика преобразователей.
	13 Сущность и виды модуляции. Кодирование дискретных сообщений.
	14 Дискретное преобразование (дискретная модуляция). Цифровая модуляция.

Быстрое преобразование Фурье.
15 Быстрое преобразование Фурье.
16 Энтропия дискретного случайного сигнала.
17 Энтропия непрерывного случайного сигнала.
18 Энтропия и количество информации.
19 Энтропия взаимосвязанных групп событий.
20 Передача дискретных сообщений при напичии помех

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16.

Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета
	Учебным планом не предусмотрено

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

таолиц	таолица 10 – примерный перечень вопросов для тестов		
№ п/п	Примерный перечень вопросов для тестов		
	Общие сведения об информационных технологиях		
	Общие сведения о сигналах и помехах		
	Аналитическое представление сигналов		
	Дискретизация и квантование сигналов		
	Корреляционный анализ		
	Преобразование сообщений и сигналов		
	Управление информационными параметрами сигналов. Кодирование сигналов		
	Статистические меры информации		
	Количество информации при воздействии помех		
	Информационные характеристики каналов передачи информации		
	Согласование сигнала с каналом передачи информации		
	Помехоустойчивость канала передачи информации		
	Меры повышения помехоустойчивости		
	Передача информации по многоканальным системам		
	Информационные технологии на основе систем искусственного интеллекта		

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п		Пе	еречень контрольных работ
	Не предусмотрено		

10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

11. Методические указания для обучающихся по освоению дисциплины

11.1. Методические указания для обучающихся по освоению лекционного материала

Основное назначение лекционного материала – логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

Лекции проводятся в традиционной форме и форме презентаций. Для получения дополнительной информации используются интернет ресурсы

11.2. Методические указания для обучающихся по участию в семинарах Не предусмотрено учебным планом по данной дисциплине

11.3. Методические указания для обучающихся по прохождению практических занятий Практическое занятие является одной из основных форм организации учебного процесса, заключающаяся в выполнении обучающимися под руководством преподавателя комплекса учебных заданий с целью усвоения научно-теоретических основ учебной дисциплины, приобретения умений и навыков, опыта творческой деятельности.

Целью практического занятия для обучающегося является привитие обучающимся умений и навыков практической деятельности по изучаемой дисциплине.

Планируемые результаты при освоении обучающимся практических занятий:

- закрепление, углубление, расширение и детализация знаний при решении конкретных задач;
- развитие познавательных способностей, самостоятельности мышления, творческой активности;
- овладение новыми методами и методиками изучения конкретной учебной дисциплины;
- выработка способности логического осмысления полученных знаний для выполнения заданий;
- обеспечение рационального сочетания коллективной и индивидуальной форм обучения.

Требования к проведению практических занятий

Практические занятия можно рассматривать как одну из форм учебного занятия, имитирующего реальные условия решения конкретных практических задач с использованием теоретических концепций курса, ориентированного на формирование навыков самостоятельной работы студентов, приобретение и развитие у них умений и навыков практической деятельности.

Выполняются студентом индивидуально. Задание состоит в практической реализации варианта задания по теме в среде Matlab . Защита проходит в устной форме с предоставлением письменного отчета. Студент демонстрирует итоги выполнения работы, объясняет алгоритм работы и код программы. Отвечает на вопросы, касающиеся выполненной им работы.

11.4. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихсяявляются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ (для обучающихся по заочной форме обучения).
- 11.5. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

осуществляется в соответствии с требованиями Положений «О текущем контроле успеваемости и промежуточной аттестации студентов ГУАП, обучающихся по программы выс его образования» и «О модульно-рейтинговой системе оценки качества учебной работы студентов в ГУАП».

11.6. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

— экзамен — форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Система оценок при проведении промежуточной аттестации осуществляется в соответствии с требованиями Положений «О текущем контроле успеваемости и промежуточной аттестации студентов ГУАП, обучающихся по программы высшего образования» и «О модульно-рейтинговой системе оценки качества учебной работы студентов в ГУАП».

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой