МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

Кафедра №6

«УТВЕРЖДАЮ» Руководитель направления

доц.,к.т.н.,доц.

сть, уч. степень, звание)

Т.П. Мишура

«25» июня 2020г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Основы информатизации измерений» (Название дисциплины)

Код направления	27.05.02
Наименование специальности	Метрологическое обеспечение вооружения и военной техники
Наименование направленности	Метрологическое обеспечение авиации военного назначения
Форма обучения	очная

Санкт-Петербург 2020г.

Лист согласования рабочей программы дисциплины

Программу составил(а)

Доцент, к.т.н.

должность, уч. степень, звание

_К.В.Епифанцев

инициалы, фамилия

Программа одобрена на заседании кафедры № 6

« 25 » июня

2020 г, протокол № 15

/Заведующий кафедрой № 6

д.э.н.,проф.

должность, уч. степень, звание

подпись, дата 25.06.20 В.В. Окрепилов

инициалы, фамилия

Ответственный за ОП 27.05.02(05)

Доцент, к.т.н.

должность, уч. степень, звание

Р.Н. Целмс

подпись, дата 25.06.20

инициалы, фамилия

Заместитель директора института (декана факультета) № ФПТИ по методической работе

доц.,к.т.н.,доц.

должность, уч. степень, звание

подпись, дата 25.06.20

В.А. Голубков инициалы, фамилия

Аннотация

Дисциплина «Основы информатизации измерений» входит в базовую часть образовательной программы подготовки обучающихся по специальности 27.05.02 «Метрологическое обеспечение вооружения и военной техники» направленность «Метрологическое обеспечение авиации военного назначения». Дисциплина реализуется кафедрой \mathbb{N} 6.

Дисциплина нацелена на формирование у выпускника

общекультурных компетенций:

OK-8 «способность к письменной и устной деловой коммуникации, к чтению и переводу текстов по профессиональной тематике на одном из иностранных языков»;

общепрофессиональных компетенций:

ОПК-1 «способность понимать сущность и значение информации в развитии современного информационного общества, сознавать опасности и угрозы, возникающие в этом процессе, соблюдать основные требования информационной безопасности, в том числе защиты государственной тайны»;

профессиональных компетенций:

ПК-22 «способность выполнять работы по моделированию процессов и средств измерений с использованием стандартных пакетов и средств автоматизированного моделирования».

Содержание дисциплины охватывает круг вопросов, связанных с информационноизмерительными системами (ИИС), их функциональным и техническим устройством, а также метрологическим обслуживанием. Рассматриваются основные понятия об информационно-измерительных системах, их место в современной измерительной технике; представляется классификация информационно-измерительных систем, общие принципы построения и применения; приводится ряд примеров существующих информационноизмерительных систем; особенности метрологического обслуживания.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практические занятия, самостоятельная работа.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме зачета.

Общая трудоемкость освоения дисциплины составляет 3 зачетных единицы, 108 часов.

Язык обучения по дисциплине «русский».

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Целью преподавания дисциплины является изучение информационно-измерительных систем, формирование у будущего бакалавра представления о техническом устройстве и алгоритмах обработки информации в системах. Студентам представляется возможность определения круга решаемых измерительных задач на простых и понятных примерах реально существующих информационно-измерительных систем.

1.2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

В результате освоения дисциплины студент должен обладать следующими компетенциями:

В результате освоения дисциплины обучающийся должен обладать следующими компетенциями:

OK-8 «способность к письменной и устной деловой коммуникации, к чтению и переводу текстов по профессиональной тематике на одном из иностранных языков»:

- -знать грааматику, построения диалога, возможности устного скоростного перевода;
- -уметь использовать теоретические основы анализа современной иностранной измерительной техники, методик ее развития;
- -владеть навыками работы с профессиональными переводчиками и словарями Multitran, Google переводчик.
- -иметь опыт работы в международных базах данных Scopus и Web of Science.

ОПК-1 «способность решать стандартные задачи профессиональной деятельности на основе информационной и библиографической культуры с применением информационно-коммуникационных технологий и с учетом основных требований информационной безопасности»:

- -знать об особенностях построения ИИС и перспективах их развития, а также способах обработки и отображения информации в ИИС;
- -уметь использовать теоретические основы анализа и синтеза информационноизмерительных систем, организовать взаимодействие и передачу информации между структурными элементами информационно- измерительных систем, формулировать задачи в рамках дисциплины, прогнозировать изменение состояния параметров;
- -владеть навыками разработки метрологического обеспечения ИИС.
- -иметь опыт деятельности вычислений в математическом пакете MathCAD.

ПК-22 «способность выполнять работы по моделированию процессов и средств измерений с использованием стандартных пакетов и средств автоматизированного моделирования»:

- -знать возможности программных пакетов для моделирования виртуальных измерительных приборов labView и Multisim, MathCAD;
- -уметь использовать теоретические основы анализа и синтеза информационноизмерительных систем, SCADA систем;
- -владеть навыками разработки виртуальных измерительных приборов.
- -иметь опыт леятельности вычислений в математическом пакете labView.

2. Место дисциплины в структуре ОП

Дисциплина базируется на знаниях, ранее приобретенных студентами при изучении следующих дисциплин:

- Информатика
- Математика.

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и используются при изучении других дисциплин:

- Основы информационной безопасности
- Базы данных
- Интегрированные пакеты для метрологии.

3. Объем дисциплины в ЗЕ/академ. час

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 1

Таблица 1 – Объем и трудоемкость дисциплины

Вид учебной работы	Всего	Трудоемкость по семестрам
		№4
1	2	3
Общая трудоемкость	3/ 108	3/ 108
дисциплины, ЗЕ/(час)		
Аудиторные занятия, всего час.,	34	34
В том числе		
лекции (Л), (час)	17	17
Практические/семинарские занятия	17	17
(ПЗ), (час)		
лабораторные работы (ЛР), (час)		
курсовой проект (работа) (КП, КР),		
(час)		
Экзамен, (час)	54	54
Самостоятельная работа, всего	20	20
Вид промежуточного контроля: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.)	Экз.	Экз.

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий

Разделы и темы дисциплины и их трудоемкость приведены в таблице 2.

Таблица 2. – Разделы, темы дисциплины и их трудоемкость

Разделы, темы дисциплины	Лекции	ПЗ (СЗ)	ЛР	КП	СРС
	(час)	(час)	(час)	(час)	(час)
	Семестр 3				

1	1			11
1	1			10
1	1			20
1	1			30
2	2			25
6	6			96
6	6	0	0	96
	2	1 1 1 1 2 2 2 6 6	1 1 1 1 2 2 2 6 6 6	1 1 1 1 2 2 2 6 6 6

4.2. Содержание разделов и тем лекционных занятий

Содержание разделов и тем лекционных занятий приведено в таблице 3.

Таблица 3 - Содержание разделов и тем лекционных занятий

Номер раздела	Название и содержание разделов и тем лекционных занятий	
1	Тема 1.1 Место ИИС в современной измерительной технике и в	
	информационных технологиях; основные термины и определения.	
	Тема 1.2 Информационные технологии; измерительные информационные технологии.	
	Тема 1.3 Измерительная система.	
	Тема 1.4 Решение прикладных задач.	
2	Тема 2.1 Область применения, функции, конструкция ИИС; классы	
	ИИС; классификация по характеру входных и выходных величин.	
	Тема 2.2 Структурные схемы ИИС; принципы построения ИИС.	
3	Системотехнический подход при проектировании ИИС.	
	Технические аспекты создания и применения ИИС.	
4	Тема 4.1 ИИС ядерной реакторной установки	
	Тема 4.2 Аэродромная метеорологическая ИИС	
	Тема 4.3 ИИС учета расхода энергоносителей	
	Тема 4.4 ИИС мониторинга зданий и сооружений	

	Тема 4.5 ИИС «Фитомониторинг»
5	Тема 5.1 Особенности ИИС и проблемы, возникающие при метрологическом обеспечении.
	Тема 5.2 Фундаментальные, прикладные и организационно- правовые проблемы.
	Тема 5.3 Выводы

4.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 4.

Таблица 4 – Практические занятия и их трудоемкость

№ п/п	Темы практических занятий и	Формы практических занятий	Трудоемкость, (час)	№ раздела дисцип-
		Семестр 3		лины
1	Массивы в среде Lab View	Разработка виртуальной модели	0,5	1
2	Простейшие виды триггеров в среде Lab View	решение задач	0,5	1
3	Исследование Scada систем в среде Lab View	Разработка виртуальной модели	1	1
4	Иследование виртуального вольтметра в среде Lab View	Разработка виртуальной модели	1	1
5	Разработка генератора шума в среде LabView	Разработка виртуальной модели	2	1
		Bcero:	6	

4.4. Лабораторные занятия

Учебным планом не предусмотрено

4.5. Курсовое проектирование (работа)

Учебным планом не предусмотрено

4.6. Самостоятельная работа студентов

Виды самостоятельной работы и ее трудоемкость приведены в таблице 6.

Таблица 6 Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего, час	Семестр 4, час
1	2	3
Самостоятельная работа, всего	20	20
изучение теоретического материала дисциплины (TO)		
курсовое проектирование (КП, КР)		
расчетно-графические задания (РГЗ)		
выполнение реферата (Р)		
Подготовка к текущему контролю (ТК)		
домашнее задание (ДЗ)		
контрольные работы заочников (КРЗ)		

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю);

Учебно-методические материалы для самостоятельной работы студентов указаны в п.п. 8-10.

6. Перечень основной и дополнительной литературы 6.1. Основная литература

Перечень основной литературы приведен в таблице 7. Таблица 7 – Перечень основной литературы

Шифр	Библиографическая ссылка / URL адрес	Количество экземпляров в библиотеке (кроме электронных экземпляров)
[004.9M 17]	Боларев, Б. П. Стандартизация, метрология, подтверждение соответствия: учебник / Б.П. Боларев. — Москва: ИНФРА-М, 2020 304 с. + Доп. материалы [Электронный ресурс]. — (Высшее образование: Бакалавриат). — www.dx.doi.org/10.12737/14627 ISBN 978-5-16-102372-3 Текст: электронный URL: https://new.znanium.com/catalog/product/1068788 (дата обращения: 01.05.2020)	10
[006 K 76]	Бурьков, Д. В. Применение ІТ-технологий в электроэнергетике: Mathcad, Matlab (Simulink), NI Multisim: учебное пособие / Д. В. Бурьков, Н. К. Полуянович; Южный федеральный университет Ростов-на-Дону; Таганрог:	30

Издательство Южного федерального	
университета, 2018 126 с ISBN 978-5-9275-	
3086-1 Текст : электронный URL:	
https://new.znanium.com/catalog/product/1088095	
(дата обращения: 01.05.2020)	

6.2. Дополнительная литература

Перечень дополнительной литературы приведен в таблице 8.

Таблица 8 – Перечень дополнительной литературы

Шифр	Библиографическая ссылка/ URL адрес	Количество экземпляров в библиотеке (кроме электронных экземпляров)
[531 III 65]	Корниенко, В. Т. Обеспечение безопасности передачи информации в радиотехнических системах с примерами в проектах LABVIEW: Учебное пособие / Корниенко В.Т Таганрог:Южный федеральный университет, 2016 80 с.: ISBN 978-5-9275-2142-5 Текст : электронный URL: https://new.znanium.com/catalog/product/994742 (дата обращения: 01.05.2020)	Отдел фундаментальной литературы – 2 Фонд учебного корпуса (Гастелло) – 9 Студ.отдел (БМ) – 28 Чит.зал ГС - 1

7. Перечень ресурсов информационно-телекоммуникационной сети ИНТЕРНЕТ, необходимых для освоения дисциплины

Перечень ресурсов информационно-телекоммуникационной сети ИНТЕРНЕТ, необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень ресурсов информационно-телекоммуникационной сети ИНТЕРНЕТ, необходимых для освоения дисциплины

URL адрес	Наименование
[M482701/2012/6]	Метрология и измерительная техника . – Журнал. –
http://www.gostinfo.ru/pages/Infizd/izmer_texn	Выходит ежемесячно: РЖ : Отд. Вып. – М.: ВИНИТИ,
<u>/</u>	1963 – 2015г.
http://smartmetering.ru/journal/	Умные измерения Портал и журнал о новых
	решениях в учёте энергоресурсов.

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Перечень программного обеспечения

Перечень используемого программного обеспечения представлен в таблице 10. Таблица 10 – Перечень программного обеспечения

№ п/п	Наименование	
	Математический пакет Mathcad, LABVIEW	

8.2. Перечень информационно-справочных систем

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11 – Перечень информационно-справочных систем

№ п/п	Наименование	
	Не предусмотрено	

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине

Состав материально-технической базы представлен в таблице 12.

Таблица 12 – Состав материально-технической базы

		Номер аудитории
№ п/п	Наименование составной части материально-технической базы	(при
		необходимости)
1	Лекционная аудитория	
2	Лаборатория	52-51, 13-13

10. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

10.1. Состав фонда оценочных средств приведен в таблице 13 Таблица 13 - Состав фонда оценочных средств для промежуточной аттестации

Вид промежуточной аттестации	Примерный перечень оценочных
	средств
Зачет	Список вопросов;
	Тесты.

10.2. Перечень компетенций, относящихся к дисциплине, и этапы их формирования в процессе освоения образовательной программы приведены в таблице 14.

Таблица 14 – Перечень компетенций с указанием этапов их формирования в процессе

освоения образовательной программы

Намар сомостра	Этапы формирования компетенций по		
Номер семестра	дисциплинам/практикам в процессе освоения ОП		
ОК-8 «способность к письменной и устной деловой коммуникации, к чтению и переводу			
текстов по профессиональной тематике на одном из иностранных языков»			
1	Иностранный язык		
2	Иностранный язык		
2	Учебная практика по получению первичных		

	профессиональных умений и навыков, в том числе		
	первичных умений и навыков научно-исследовательской		
	деятельности		
3	Иностранный язык		
4	Основы информатизации измерений		
4	Иностранный язык		
ОПК-1 «способность понимать	сущность и значение информации в развитии современного		
информационного общества, с	ознавать опасности и угрозы, возникающие в этом процессе,		
соблюдать основные требова	ния информационной безопасности, в том числе защиты		
государственной тайны»			
1	Информатика		
1	Инженерная и компьютерная графика		
2	Информационное обеспечение проектной деятельности		
4	Информатика. Защита интеллектуальной собственности и		
4	патентоведение		
4	Основы информатизации измерений		
5	Базы данных		
5	Информационные технологии специального назначения		
6	Базы данных		
6	Формирование и передача сигналов		
6	Методы и средства измерений, испытаний и контроля		
7	Информатика. Основы информационной безопасности		
_	Информационные технологии в области метрологического		
7	обеспечения вооружения и военной техники		
7	Интегрированные пакеты для метрологии		
8	Интегрированные пакеты для метрологии		
8	Цифровые методы и средства измерений		
ПК-22 «способность выполнят	ПК-22 «способность выполнять работы по моделированию процессов и средств измерений с		
	акетов и средств автоматизированного моделирования»		
2	Информационное обеспечение проектной деятельности		
	Учебная практика по получению первичных		
_	профессиональных умений и навыков, в том числе		
2	первичных умений и навыков научно-исследовательской		
	деятельности		
4	Основы информатизации измерений		
6	Математическое моделирование средств измерений		
6	Основы проектирования военной измерительной техники		
0	Методы исследования с использованием сканирующей		
7	зондовой микроскопии		
7	Основы проектирования военной измерительной техники		
,	Информационные технологии в области метрологического		
7	обеспечения вооружения и военной техники		
7	Интегрированные пакеты для метрологии		
8			
	Интегрированные пакеты для метрологии		
8	Цифровые методы и средства измерений		

Q	Методы исследования с использованием сканирующей	
8	зондовой микроскопии	
8	Автоматизированное проектирование измерительных систем	
9	Автоматизированное проектирование измерительных систем	

10.3. В качестве критериев оценки уровня сформированности (освоения) у обучающихся компетенций применяется шкала модульно-рейтинговой системы университета. В таблице 15 представлена 100-балльная и 4-балльная шкалы для оценки сформированности компетенций.

Таблица 15 – Критерии оценки уровня сформированности компетенций

Оценка компетенции		енки уровия сформированности компетенции
100- балльная шкала	4-балльная шкала	Характеристика сформированных компетенций
85 ≤ K ≤ 100	«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий.
70 ≤ K ≤ 84	«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий.
55 ≤ K ≤ 69	«удовлетво- рительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий.
K≤54	«неудовлетво рительно» «не зачтено»	- обучающийся не усвоил значительной части программного материала; - допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; - испытывает трудности в практическом применении знаний; - не может аргументировать научные положения; - не формулирует выводов и обобщений.

- 10.4. Типовые контрольные задания или иные материалы:
- 1. Вопросы (задачи) для экзамена (таблица 16)

Таблица 16 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена
	Учебным планом не предусмотрено

2. Вопросы (задачи) для зачета / дифференцированного зачета (таблица 17) Таблица 17 — Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифференцированного зачета
	1. Дайте определение СИ (в соответствии с РМГ 29-99).
	2. Подразделение СИ на виды.
	3. Информационные технологии (определение и назначение).
	4. Процедуры, реализуемые измерительными информационными технологиями.
	5. Что представляют собой измерительные информационные технологии?
	Области их применения.
	6. Назовите 3 отличия измерительных информационных систем от традиционных
	СИ.
	7. Дайте определение измерительной системе (согласно РМГ 29-99).
	8. Дайте определение измерительной системе (согласно МИ 2438-97).
	9. Перечислите основные свойства и характерные особенности ИИС.
	10. Перечислите задачи, появившиеся перед теоретической метрологией при
	появлении ИИС.
	11. Перечислите классификационные признаки, по которым подразделяются ИИС
	12. Перечислите классы, на которые подразделяются ИИС в зависимости от
	функционального назначения
	13. Перечислите признаки, в которых отражается характер входных величин
	14. Перечислите классы, на которые подразделяются ИИС по видам выходной
	информации
	15. Перечислите виды структурных схем ИИС
	16. Перечислите признаки, использующиеся при классификации ИИС по
	принципам построения

14
17. Приведите пример ИИС ядерной реакторной установки
18. Приведите пример аэродромной метеорологической ИИС
19. Приведите пример ИИС контроля и учета электрической энергии
20. Приведите пример ИИС учета расхода энергоносителей
21. Приведите пример ИИС для мониторинга зданий и сооружений
22. Приведите пример ИИС, предназначенной для фитомониторинга
23. Назовите проблемы в МО ИИС, обусловленные
- многофункциональностью
- наличием в составе системы ЭВМ
24. Назовите проблемы в МО ИИС, обусловленные
- многоканальностью
- неразрывной связью многих ИИС с объектом, на котором они эксплуатируются
25. Назовите проблемы в МО ИИС, обусловленные
- сложностью описания и моделирования объектов
- распределенностью компонентов и составных частей ИИС в пространстве
26. Назовите проблемы в МО ИИС, обусловленные
- возможностью изменения состава ИИС в процессе эксплуатации
- наличием динамических режимов измерения
27. Перечислите фундаментальные проблемы МО ИИС
28. Перечислите прикладные проблемы МО ИИС
29. Что относится к организационно - правовым проблемам МО ИИС?

3. Темы и задание для выполнения курсовой работы / выполнения курсового проекта (таблица 18)

Таблица 18 — Примерный перечень тем для выполнения курсовой работы / выполнения курсового проекта

№ п/п	Примерный перечень тем для выполнения курсовой работы / выполнения курсового проекта	
	Учебным планом не предусмотрено	

4. Вопросы для проведения промежуточной аттестации при тестировании (таблица 19)

Таблица 19 – Примерный перечень вопросов для тестов

№ п/п	Примерный перечень вопросов для тестов				
1	Какие специфические процедуры не реализуют измерительные информационные				
	технологии? А. управление процедурой измерений, автоматизация обработки данных для				
	н. управление процеоурой измерении, автоматизация оораоотки оанных оля решения задач и классифицирования основных понятий и методов метрологии				
	В. получение исходной измерительной информации в результате взаимодействия				
	первичных измерительных преобразователей (сенсоров) с объектом измерений				
	С. преобразование измерительной информации с заданной и гарантированной точностью				
	D. сопоставление сигналов измерительной информации с размерами				
	общепринятых единиц измерения, оценка и представление характеристик остаточной неопределенности значений измеряемых величин				
2	Современные измерительные информационные технологии приобретают дополнительные свойства благодаря				
	А. использованию аппаратных и программных средств искусственного интеллекта				
	В. экспериментальному определению и контролю метрологических характеристик				
	С. необходимым действиям человека-оператора				
	D. аналогово-вычислительным устройствам				
	Назовите важнейшие задачи развития измерительных информационных				
3	технологий $A. C u D$				
	В. D и E				
	С. расширение номенклатуры измеряемых величин				
	D. обеспечение измерений в условиях воздействия "жестких" внешних факторов (высокая температура, большое давление, ионизирующее излучение и т. д.) E. описание метрологических свойств систем				
4	Согласно РМГ 29-99, совокупность функционально объединенных мер,				
	измерительных приборов, измерительных преобразователей, ЭВМ и других				
	технических средств, размещенных в разных точках контролируемого объекта и т.п. с целью измерений одной или нескольких физических величин,				
	свойственных этому объекту, и выработки измерительных сигналов в разных				
	целях — это А. измерительная система				
	В. информационно-измерительная система				
	С. измерительный канал				
	D. измерительная база				
5	Найдите неправильный ответ. В зависимости от назначения измерительные				
	системы разделяют на				
	А. измерительные фиксирующие				
	В. измерительные контролирующие				
	С. измерительные информационные				

	D. измерительные управляющие	
6	Измерительную систему, перестраиваемую в зависимости от изменения измерительной задачи, называют	
	А. гибкой измерительной системой	
	В. перестраивающейся измерительной системой	
	С. самостоятельной измерительной системой	
	D. адаптируемой измерительной системой	
7	Что образует, согласно рекомендации МИ 2438-97, совокупность определенным образом соединенных между собой средств измерений и других технических устройств (компонентов измерительной системы)? А. измерительные каналы	
	В. измерительные точки	
	C. измерительные линии D . контрольные пункты	
8	В состав каких систем могут входить измерительные каналы?	
o	A. C, D u E	
	В. D и E	
	С. автономных измерительных	
	D. контроля и диагностикиE. автоматических систем управления технологическими процессами	
9	Что является наиболее крупной структурной единицей ИИС, для которой могут нормироваться метрологические характеристики?	
	А. измерительный канал	
	B. вычислительное устройство C . унифицированное ядро	
	 С. унифицированное идро Д. блочно-модульная структура, измерительные и вычислительные компоненты которой являются серийно выпускаемыми агрегатными СИ 	
10	Что не включает в себя типовая структура измерительного канала?	
	А. линии задержки	
	А. первичный измерительный преобразователь В. линии связи	
	С. линии задержки	
	D. промежуточный измерительный преобразователь	
11	Измерительно-вычислительные комплексы строятся на базе контроллеров, как	
	правило, модульного исполнения, включающих в себя $A. C, D \ u \ E$	
	А. С, <i>D и Е</i> В. С и Е	
	С. аналого-цифровые и цифроаналоговые преобразователи	
	D. процессор	
12	Е. модули дискретной (бинарной) информации (входные и выходные)	
	Основными признаками информационно-измерительной системы не являются:	
	А. способ комплектования	
	В. виды входных сигналов	

	С. функциональные свойства компонентов
	D. режим синхронизации измерительных каналов
13	Какой группы по области применения информационно-измерительных систем не существует? А. для научных исследований В. для испытаний и контроля сложных изделий С. для управления технологическими процессами D. для поверки испытательного оборудования
14	По какому способу информационно-измерительные системы подразделяются на агрегатированные и неагриготированные? А. по способу модификации В. по способу комплектования С. по способу устройства D. по способу оснащения оборудованием
15	Актуальными вопросами теоретической поддержки решения проблем метрологического обеспечения информационно-измерительных систем не являются: А. развитие измерительной техники В. регламентация метрологических характеристик измерительных каналов С. экспериментальное определение и контроль метрологических характеристик D. прогнозирование и определение характеристик неопределенности измерений в соответствии с Руководством по выражению неопределенности измерений Е. оценка характеристик точности программ обработки данных

5. Контрольные и практические задачи / задания по дисциплине (таблица 20) Таблица 20 – Примерный перечень контрольных и практических задач / заданий

№ п/п	Примерный перечень контрольных и практических задач / заданий
	Представлены в системе LMS ГУАП

10.5. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и / или опыта деятельности, характеризующих этапы формирования компетенций, содержатся в Положениях «О текущем контроле успеваемости и промежуточной аттестации студентов ГУАП, обучающихся по программы высшего образования» и «О модульнорейтинговой системе оценки качества учебной работы студентов в ГУАП».

11. Методические указания для обучающихся по освоению дисциплины

Целью преподавания дисциплины является изучение информационно-измерительных систем, формирование у будущего бакалавра представления о техническом устройстве и алгоритмах обработки информации в системах. Студентам представляется возможность определения круга решаемых измерительных задач на простых и понятных примерах реально существующих информационно-измерительных систем.

Методические указания для обучающихся по освоению лекционного материала

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемы результаты при освоении обучающимся лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научится методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- лекции согласно разделам (табл.2) и темам (табл.3);
- презентации;
- Максимов, Н. В. Технические средства информатизации [Текст] : учебник для спо / Н. В. Максимов, Т. Л. Партыка, И. И. Попов. 3-е изд., перераб. и доп. М. : ФОРУМ, 2010. $608~\rm c$.

Методические указания для обучающихся по прохождению практических занятий (если предусмотрено учебным планом по данной дисциплине)

Практическое занятие является одной из основных форм организации учебного процесса, заключающаяся в выполнении обучающимися под руководством преподавателя

комплекса учебных заданий с целью усвоения научно-теоретических основ учебной дисциплины, приобретения умений и навыков, опыта творческой деятельности.

Целью практического занятия для обучающегося является привитие обучающемся умений и навыков практической деятельности по изучаемой дисциплине.

Планируемые результаты при освоении обучающемся практических занятий:

- закрепление, углубление, расширение и детализация знаний при решении конкретных задач;
- развитие познавательных способностей, самостоятельности мышления, творческой активности;
- овладение новыми методами и методиками изучения конкретной учебной дисциплины;
- выработка способности логического осмысления полученных знаний для выполнения заданий;
- обеспечение рационального сочетания коллективной и индивидуальной форм обучения.

Функции практических занятий:

- познавательная;
- развивающая;
- воспитательная.

По характеру выполняемых обучающимся заданий по практическим занятиям подразделяются на:

- ознакомительные, проводимые с целью закрепления и конкретизации изученного теоретического материала;
- аналитические, ставящие своей целью получение новой информации на основе формализованных методов;
- творческие, связанные с получением новой информации путем самостоятельно выбранных подходов к решению задач.

Практические занятия по дисциплине «Основы информатизации измерений» проводятся в форме выполнения индивидуальных заданий за компьютером. Примерный перечень заданий приведен в электронном виде системе LMS. Ссылка на LMS кабинет https://lms.guap.ru/new/course/view.php?id=269

Требования к проведению практических занятий

в форме выполнения индивидуальных заданий за компьютером. Примерный перечень заданий по выполнению практических работ по курсу «Основы информатизации измерений» приведен в электронном виде системе LMS.

Методические указания для обучающихся по прохождению промежуточной аттестации Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

— зачет — это форма оценки знаний, полученных обучающимся в ходе изучения учебной дисциплины в целом или промежуточная (по окончании семестра) оценка знаний обучающимся по отдельным разделам дисциплины с аттестационной оценкой «зачтено» или «не зачтено».

Система оценок при проведении промежуточной аттестации осуществляется в соответствии с требованиями Положений «О текущем контроле успеваемости и промежуточной аттестации студентов ГУАП, обучающихся по программы высшего образования» и «О модульно-рейтинговой системе оценки качества учебной работы студентов в ГУАП».

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой