МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

Кафедра №21

«УТВЕРЖДАЮ»

Руководитель направления

д.т.н.,проф.

(должность, уч. степень, звание)

А.Ф. Крячко

(подпись)

?7» 06 2020 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Антенны и устройства СВЧ» (Название дисциплины)

Код направления	25.05.05
Наименование направления/ специальности	Эксплуатация воздушных судов и организация воздушного движения
Наименование направленности	Организация радиотехнического обеспечения полетов воздушных судов
Форма обучения	очная

Лист согласования рабочей программы дисциплины

Программу составил(а)		A-out	
доц., к.т.н., доц.		0 7 7	Л.А.Федорова
должность, уч. степень, звание	подпис	сь, дата	инициалы, фамилия
Программа одобрена на з	заседании кафедры Л	<u>o</u> 21	
«27» <u>05</u> 2020 г, проток	ол № <u>6</u> _		
Заведующий кафедрой №	<u>2</u> 21	Л	
д.т.н.,проф. « <u>27</u>	s» <u>05</u> 20 <u>20</u> г_		А.Ф. Крячко
должность, уч. степень, звание	подпись, дата	<i>V</i> ′	инициалы, фамилия
Ответственный за ОП 25.	.05.05(04)		
доц.,к.т.н.	2017	Н.А. Гладкі	ий
должность, уч. степень, звание	подпись, дата	инициалы, фамил	ия

Заместитель директора института (декана факультета) № 2 по методической работе

доц.,к.т.н.,доц.

Baubun

О.Л. Балышева

должность, уч. степень, звание

подпись, дата

инициалы, фамилия

Аннотация

Дисциплина «Антенны и устройства СВЧ» входит в вариативную часть образовательной программы подготовки обучающихся по специальности «25.05.05 «Эксплуатация воздушных судов и организация воздушного движения» направленность «Организация радиотехнического обеспечения полетов воздушных судов». Дисциплина реализуется кафедрой №21.

Дисциплина нацелена на формирование у выпускника

общекультурных компетенций:

OK-48 «способность совершенствовать и развивать свой интеллектуальный и общекультурный уровень»;

общепрофессиональных компетенций:

ОПК-11 «владение навыками самостоятельной работы, в том числе в сфере проведения научных исследований»,

ОПК-21 «способность и готовность использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач»,

ОПК-23 «способность использовать математические, аналитические и численные методы решения профессиональных задач с использованием готовых программных средств»; профессиональных компетенций:

ПК-158 «способность организовывать и проводить эксперименты по заданной методике и осуществлять анализ полученных результато»,

ПК-160 «способность сопоставлять теоретически обоснованные решения и экспериментальные данные и обосновывать правильность выбранной модели при решении профессиональных задач»,

ПК-172 «умение организовывать и осуществлять сбор и анализ информационных исходных данных для проектирования»,

ПК-173 «способность осуществлять расчет и проектирование в соответствии с техническим заданием с использованием стандартных средств автоматизации проектирования»,

ПК-174 «способность разрабатывать проектную и рабочую техническую документацию, умением оформлять законченные проектно-конструкторские работы»,

ПК-176 «способность проводить технико-экономическое обоснование проектных расчетов».

Содержание дисциплины «Антенны и устройства СВЧ» охватывает круг вопросов, связанных с параметрами передающих и приемных антенн СВЧ диапазона. В дисциплине рассматриваются принцип действия, геометрические и электрические характеристики различных типов антенн: вибраторных, щелевых, рупорных, линзовых, зеркальных, а также направленные свойства системы излучателей. Приводятся сведения об основных устройствах фидерного тракта СВЧ диапазона: делителях мощности, направленных ответвителях, вращающихся сочленениях, антенных переключателях и др.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, самостоятельная работа обучающегося, консультации, курсовое проектирование.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 6 зачетных единиц, 216 часов.

Язык обучения по дисциплине «русский».

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Целью преподавания дисциплины «Антенны и устройства сверхвысокой частоты (СВЧ)» формирование профессиональной подготовки специалистов по является: направлению 162001.65 (25.05.05) «Эксплуатация воздушных судов и организация воздушного движения» направленность «Организация радиотехнического обеспечения полетов воздушных судов». в области современных антенн и устройств СВЧ; ознакомление с кругом проблем, стоящих перед разработчиками антенно-фидерных систем наземных и бортовых радиолокационных станций; получение практических навыков экспериментальному исследованию и настройке антенн и устройств СВЧ; получение навыков по расчету и автоматизированному расчету антенн и устройств СВЧ и умение их использования при техническом обслуживании и настройке радиотехнических устройств и систем, в научно-исследовательской и производственной деятельности в областях локационного, навигационного и связного назначения.

1.2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП

В результате освоения дисциплины обучающийся должен обладать следующими компетенциями:

OK-48 «способность совершенствовать и развивать свой интеллектуальный и общекультурный уровень»:

- ОПК-11 «владение навыками самостоятельной работы, в том числе в сфере проведения научных исследований»:
- ОПК-21 «способность и готовность использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач»:
- ОПК-23 «способность использовать математические, аналитические и численные методы решения профессиональных задач с использованием готовых программных средств»:
- ПК-158 «способность организовывать и проводить эксперименты по заданной методике и осуществлять анализ полученных результатов:
- ПК-160 «способность сопоставлять теоретически обоснованные решения и экспериментальные данные и обосновывать правильность выбранной модели при решении профессиональных задач»:
- ПК-172 «умение организовывать и осуществлять сбор и анализ информационных исходных данных для проектирования»:
- ПК-173 «способность осуществлять расчет и проектирование в соответствии с техническим заданием с использованием стандартных средств автоматизации проектирования»:
- ПК-174 «способность разрабатывать проектную и рабочую техническую документацию, умением оформлять законченные проектно-конструкторские работы»:
- ПК-176 «способность проводить технико-экономическое обоснование проектных расчетов»:

знать

- -физическую сущность явлений, процессов и эффектов, лежащих в основе функционировании антенн и устройств СВЧ;
 - основные законы теории электромагнитного поля;
- физическое содержание электрических характеристик передающих и приемных антенн, линий передачи и устройств СВЧ;
 - структуру электромагнитного поля над идеально проводящей поверхностью;
 - особенности распространения волн различных диапазонов;
 - характеристики передающих и приемных антенн и устройств СВЧ;
 - соотношения между геометрическими и электрическими характеристиками антенн;
- методы расчета основных характеристик антенн и устройств СВЧ как объектов эксплуатации,
- методы оценки влияния эксплуатационных факторов на надежность и электрические характеристики антенн и устройства СВЧ;
 - -принципы и методы согласования антенн с фидерным трактом;
- -методы и средства измерения радиотехнических характеристик антенн и устройств CBЧ;
- методы выполнения форм технического обслуживания, поиска и устранения отказов в объекте эксплуатации;
- -правила составления аналитических обзоров и научно-технических отчетов по результатам выполненной работы, подготовки публикаций результатов исследований и разработок в виде презентаций, статей и докладов.

уметь

- -учитывать современные тенденции развития электроники, измерительной и вычислительной техники, информационных технологий в своей профессиональной деятельности:
- -осуществлять сбор и анализ исходных данных для расчета и проектирования деталей, узлов и устройств радиотехнических систем;
- -реализовывать программы экспериментальных исследований, включая выбор технических средств и обработку результатов ;
- собирать, обрабатывать, анализировать и систематизировать научно-техническую информацию по тематике исследования, использовать достижения отечественной и зарубежной науки, техники и технологии;
- обоснованно выбирать и выполнять расчет и проектирование деталей, узлов и устройств СВЧ радиотехнических систем в соответствии с техническим заданием с использованием средств автоматизации проектирования;
- рассчитывать геометрические и электрические параметры бортовых и наземных антенн;
- -проводить экспериментальные измерения характеристик излучения антенн и параметров устройств СВЧ;
 - -выбрать и рассчитать место включения согласующих элементов в фидерном тракте;
- оценить техническое состояние антенны и фидерного тракта по данным устройств регистрации контроля;
- эффективно использовать методы и средства контроля и диагностирования технического состояния антенн и устройств СВЧ для определения их работоспособности и готовности к эксплуатации;
 - обрабатывать экспериментальные и расчетные данные;
- анализировать причины отказов и неисправностей, брака и ошибок в работе инженерных служб.

- правилами построения и чтения схем СВЧ фидерного тракта передающих и приемных антенн;
- методами расчета и измерения технических характеристик и параметров антенн и устройств СВЧ;
- методами выбора измерительных приборов и работы с ними при определении характеристик антенн и устройств СВЧ;
- методами оценки функционального состояния антенно-фидерного тракта по данным систем регистрации и контроля;
- способами обеспечения электромагнитной совместимости радиоэлектронных средств;
- -способами организации технического обслуживания и настройки радиотехнических устройств и систем.

иметь опыт деятельности

- по расчету параметров проволочных и апертурных антенн и элементов тракта;
- по проверке работоспособности антенно-фидерных систем в период эксплуатации;
- по проведению экспериментальных измерений оптических, фотометрических и электрических величин и исследования различных объектов по заданной методике.

2. Место дисциплины в структуре ОП

Дисциплина базируется на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- Математика. Математический анализ
- Физика
- Теория радиотехнических цепей и сигналов
- Электродинамика и распространение радиоволн

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и используются при изучении других дисциплин:

- Радиотехническое оборудование аэродромов
- Устройства приема и обработки сигналов
- Бортовые радиоэлектронные системы
- Радиотехнические средства навигации и посадки

3. Объем дисциплины в ЗЕ/академ. час

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 1

Таблица 1 – Объем и трудоемкость дисциплины

Вид учебной работы	Всего	Трудоемкость по семестрам	
		№6	№7
1	2	3	4
Общая трудоемкость дисциплины, 3E/(час)	6/ 216	3/ 108	3/ 108
Аудиторные занятия, всего час., В том числе	119	68	51

лекции (Л), (час)	51	34	17
Практические/семинарские занятия (ПЗ), (час)			
лабораторные работы (ЛР), (час)	51	34	17
курсовой проект (работа) (КП, КР), (час)	17		17
Экзамен, (час)	36		36
Самостоятельная работа, всего	61	40	21
Вид промежуточного контроля: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.)	Дифф. Зач., Экз.	Дифф. Зач.	Экз.

4. Содержание дисциплины 4.1. Распределение трудоемкости дисциплины по разделам и видам занятий

Разделы и темы дисциплины и их трудоемкость приведены в таблице 2. Таблица 2. – Разделы, темы дисциплины и их трудоемкость

Разделы, темы дисциплины	Лекции	ПЗ (СЗ)	ЛР	КП	CPC
	(час)	(час)	(час)	(час)	(час)
	Семестр 6				
. Раздел 1. Принципы	5		8		5
функционирования устройств СВЧ и					
антенн					
Тема 1.1. Назначение и роль антенно-					
фидерных устройств в					
радиотехнических системах;					
Тема 1.2.Классификация линий					
передачи;					
Тема 1.3.Основные электрические					
характеристики линий передачи;					
Тема 1.4. Режимы волн в линиях					
передачи;					
Тема 1.5.Общие методы согласования с нагрузкой					
нагрузкой					
Раздел 2 Симметричный вибратор в	5		8		9
свободном пространстве	3		O		
Тема 2.1. Распределение тока и					
заряда на тонком вибраторе					
Тема 2.2. Поле излучения					
симметричного вибратора в дальней					
зоне					
Тема 2.3. Характеристики излучения					
симметричного вибратора					
Тема 2.4. Симметрирующие устройства					

Раздел 3. Направленные свойства системы излучателей Тема 3.1. Поле излучения системы излучателей. Теорема перемножения. Тема 3.2. Принцип качания луча в неподвижной линейной системе Тема 3.3. Направленные свойства антенной решетки с осевым излучением (антенна «волновой канал») Тема 3.4. Комплексные входные сопротивления системы вибраторов	6	8	5
Раздел 4. Щелевые излучатели Тема 4.1. Принцип двойственности и его применимость в теории щелевых антенн. Тема 4.2. Щели в волноводе	6	8	5
Раздел 5. Основы теории апертурных антенн Тема 5.1. Поле излучения плоской апертуры произвольной формы. Тема 5.2. Влияние амплитудного и фазового распределения на диаграмму направленности.	6		6
Раздел 6.Волноводные излучатели и рупорные антенны Тема 6.1. Излучение из открытого конца прямоугольного и круглого волновода. Тема 6.2. Основные типы электромагнитных рупоров	6	4	5
Раздел 7. Линзовые антенны Тема 7.1. Ускоряющие металлические линзы Тема 7.2. Диэлектрические линзовые антенны		4	5
Итого в семестре:	34	34	40
	Семестр 7		
Раздел 3. Направленные свойства		2	3
Раздел 7. Линзовые антенны Тема 7.1. Ускоряющие металлические линзы Тема 7.2. Диэлектрические линзовые антенны	6		3
Раздел 8. Зеркальные антенны Тема 8.1. Определение поля в раскрыве и поля излучения параболоидного зеркала.	6	8	4

Тема 8.2. Коэффициент усиления (КУ) и оптимальный угол раскрыва параболоида. Тема 8.3. Двухзеркальные антенны					
Раздел 9. Элементы фидерного тракта Тема 9.1.Т-образные делители мощности (тройники). Тема 9.2. Волноводные мосты. Тема 9.3. Антенный переключатель на щелевых мостах	5		7		3
Выполнение курсового проекта				17	8
Итого в семестре:	17		17	17	21
Итого:	51	0	51	17	61

4.2. Содержание разделов и тем лекционных занятий

Содержание разделов и тем лекционных занятий приведено в таблице 3.

Таблица 3 - Содержание разделов и тем лекционных занятий

Номер раздела	Название и содержание разделов и тем лекционных занятий
Раздел 1.	Принципы функционирования устройств СВЧ и антенн Тема 1.1. Назначение и роль антенно-фидерных устройств в радиотехнических системах; Тема 1.2. Классификация линий передачи; Тема 1.3. Основные электрические характеристики линий передачи; Тема 1.4. Режимы волн в линиях передачи; Тема 1.5. Общие методы согласования с нагрузкой
Раздел 2.	Симметричный вибратор в свободном пространстве Тема 2.1. Распределение тока и заряда на тонком вибраторе Тема 2.2. Поле излучения симметричного вибратора в дальней зоне Тема 2.3. Характеристики излучения симметричного вибратора Тема 2.4. Симметрирующие устройства
Раздел 3.	Направленные свойства системы излучателей Тема 3.1. Поле излучения системы излучателей. Теорема перемножения. Тема 3.2. Принцип качания луча в неподвижной линейной системе Тема 3.3. Направленные свойства антенной решетки с осевым излучением (антенна «волновой канал») Тема 2.4. Комплексные входные сопротивления системы вибраторов
Раздел 4.	Щелевые излучатели Тема 4.1. Принцип двойственности и его применимость в теории щелевых антенн. Тема 4.2. Щели в волноводе
Раздел 5.	Основы теории апертурных антенн Тема 5.1. Поле излучения плоской апертуры произвольной формы. Тема 5.2. Влияние амплитудного и фазового распределения на диаграмму направленности.
Раздел 6.	Волноводные излучатели и рупорные антенны

	Тема 6.1 Излучение из открытого конца прямоугольного и круглого		
	волновода.		
	Тема 6.2. Основные типы электромагнитных рупоров		
Раздел 7.	Линзовые антенны		
	Тема 7.1. Ускоряющие металлические линзы		
	Тема 7.2. Диэлектрические линзовые антенны		
Раздел 8.	Зеркальные антенны		
	Тема 8.1. Определение поля в раскрыве и поля излучения		
	параболоидного зеркала.		
	Тема 8.2. Коэффициент усиления (КУ) и оптимальный угол		
	раскрыва параболоида.		
	Тема 8.3. Двухзеркальные антенны		
Раздел 9.	Элементы фидерного тракта		
	Тема 9.1.Т-образные делители мощности (тройники).		
	Тема 9.2. Волноводные мосты.		
	Тема 9.3. Антенный переключатель на щелевых мостах		

4.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 4.

Таблица 4 – Практические занятия и их трудоемкость

№ п/п	Темы практических занятий	Формы практических занятий	Трудоемкость, (час)	№ раздела дисцип- лины		
	Учебным планом не предусмотрено					
	Всего:					

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Лабораторные занятия и их трудоемкость

Таолиц	ца 5 – Лаоораторные занятия и их трудоемкость		
№ π/π	Наименование лабораторных работ	Трудоемкость, (час)	№ раздела дисциплины
	Семестр 6		
1	Исследование антенны типа «волновой канал» Часть 1	2	3
2	Исследование цилиндрической спиральной антенны Часть 1	4	2
3	Исследование цилиндрической спиральной антенны Часть 2	4	2
4	Согласование волновода с нагрузкой Часть 1	4	1
5	Согласование волновода с нагрузкой Часть 1	4	1
6	Исследование рупорных антенн с корректирующими линзами. Часть 1.	4	6,7

7	Исследование рупорных антенн с корректирующими линзами. Часть 2.	4	6,7
8	Исследование волноводно-щелевых антенн Часть 1	4	4
9	Исследование волноводно-щелевых антенн Часть 2	4	4
	Семестр 7		
10	Исследование антенны типа «волновой канал» Часть 2	2	3
11	Исследование зеркальных антенн Часть 1.	4	8
12	Исследование зеркальных антенн Часть 2.	4	8
13	Исследование четырех плечных волноводных элементов антенных переключателей. Часть 1.	4	9
14	Исследование четырех плечных волноводных элементов антенных переключателей. Часть 2.	3	9
	Всего:	51	

4.5. Курсовое проектирование (работа)

Цель курсового проекта:

Примерные темы заданий на курсовой проект приведены в разделе 10 РПД.

4.6. Самостоятельная работа обучающихся

Виды самостоятельной работы и ее трудоемкость приведены в таблице 6.

Таблица 6 Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего, час	Семестр 6, час	Семестр 7, час
1	2	3	4
Самостоятельная работа, всего	61	40	21
изучение теоретического материала дисциплины (TO)	43	35	8
курсовое проектирование (КП, КР)	8		8
расчетно-графические задания (РГЗ)			
выполнение реферата (Р)			
подготовка к текущему контролю (ТК)	10	5	5
домашнее задание (ДЗ)			
контрольные работы заочников (КРЗ)			

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 8-10.

6. Перечень основной и дополнительной литературы **6.1.** Основная литература

Перечень основной литературы приведен в таблице 7.

Таблица 7 – Перечень основной литературы

	гнь основной литературы	I/ 0
Шифр	Библиографическая ссылка / URL адрес	Количество экземпляров в библиотеке (кроме электронных экземпляров)
ББК 32 848 A 72 УДК 621.396.67	Воскресенский Д.И., Гостюхин В.Л., Максимов В.М., Пономарев Л.И. Устройства СВЧ и антенны М: Радиотехника, 2006 г с.376	30
УДК 629.735.06 (075) ББК 39.67 .C36	Силяков В.А., Невейкин М.Е., Аюков Б.А. Системы и средства радиосвязи гражданской авиации в метровом диапазоне волн. Учебное пособие. ГУАП., СПб.,2008г180 с.	50
УДК 629.735.06 (075) ББК 39.67 .C36	Красюк В.Н., Платонов О.Ю. Антенное оборудование самолетов и его эксплуатация. Учебное пособие. ГУАП., СПб.,2002г. – 4 п.л.	50
ББК 32 848 A 72 УДК 621.396.67	Красюк В.Н. Проектирование ФАР прямоугольной формы. Учебное пособие. ГУАП., СПб.,1999г4 п.л.	200
УДК 629.386.6 ББК 32.85 .C12	Калашников В.С., Негурей А.В. Расчет параметров пассивных узлов СВЧ методами теории цепей. Учебное пособие. ГУАП., СПб., 1999г99с.	150
УДК 629.386.6 ББК 32.85 .C12	Калашников В.С., Прусов А.В. Техническая электродинамика. Направляющие системы и направляемые волны. Учебное пособие. ГУАП., СПб.,2002г44 с.	100
УДК 629.735.06 (075) ББК 39.67 .C36	Красюк В.Н. Современные принципы построения антенных систем аэропортов. Метод. разработка. ГУАП., СПб., 1999г. 1	40

	п.л.	
УДК 621.396.67	Красюк В.Н. Электромагнитная совместимость антенных устройств. Учебное пособие. ГУАП., СПб., 2002г.	100
УДК 621.396.67	Антенны и устройства сверхвысоких частот. Федорова Л.А., Данилов Ю.Н. Программы, контрольные вопросы и методические указания к выполнению контрольных работ .ГУАП., СПб., 2005г. 22с.	100
УДК 621.396.67(075) ББК 32.845 Б 43	Белоцерковский Г.Б., Красюк В.Н. Задачи и расчеты по курсу «Устройства СВЧ и антенны» С.Пб.,2002г.177с	20

6.2. Дополнительная литература Перечень дополнительной литературы приведен в таблице 8. Таблица 8 – Перечень дополнительной литературы

Шифр	Библиографическая ссылка/ URL адрес	Количество экземпляров в библиотеке (кроме электронных экземпляров)
6Ф2 12	Драбкин А.Л., Зузенко В.Л., Кислов А.Г.	33
Д 72	Антенно-фидерные устройства. М.:	33
УДК 621.396.67	Сов.радио, 1974г586с.	
6Ф2.02.	Марков Г.Т., Сазонов Д.М. Антенны. М.:	5
396.67 M-26	Энергия, 1975г528с	
(537(ЛИАП) Т-38)	Ю.Н.Данилов, В.Н.Красюк, Б.Т.Никитин,	150
	Л.А.Федорова Техническая	
	электродинамика и антенны.	
	Ч.1.Электродинамика. Учебное пособие.	
	ЛИАП, Л., 1991г165с.	
621.37(СПИАП)	Ю.Н.Данилов, В.Н.Красюк, Б.Т.Никитин,	150
T-38	Л.А.Федорова Техническая	
	электродинамика и антенны. Ч.2.Антенны.	
	Учебное пособие. ЛИАП, Л., 1992г196с	
621.396.67	Никитин Б.Т. Теория и техника	3
(ЛИАП) Н-62	фазированных антенных решеток. Учебное	
	пособие. ЛИАП. Л., 1988г64с.	
УДК 629.385.46	Воробьев Е.А. Основы конструирования	20
ББК 39.46	судовых устройств СВЧ.	

	Ленинград, Судостроение, 1985, 240 с.	

7. Перечень ресурсов информационно-телекоммуникационной сети ИНТЕРНЕТ, необходимых для освоения дисциплины

Перечень ресурсов информационно-телекоммуникационной сети ИНТЕРНЕТ, необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень ресурсов информационно-телекоммуникационной сети ИНТЕРНЕТ, необходимых для освоения лисшиплины

URL адрес	Наименование
http://e.	Григорьев И.Н. Практические конструкции антенн/
lanbook.com/books/element.php?pl1_	ISBN 5-89818-061-3
cid=25&pl1_ id=82	
http://e.	Ротхаммель К., Кришке А. Антенны.
lanbook.com/books/element.php?pl1_	Том 1,11-е изд416 с. ISBN 5-85648-715-X
cid=25&pl1_ id=818	
http://e.	Ротхаммель К., Кришке А. Антенны.
lanbook.com/books/element.php?pl1_	Том 2 DMK , ISBN 5-85648-716-8
cid=25&pl1_ id=81	
http://e.	Кравченко В.Ф.,Сиренко Ю.К.,Сиренко
lanbook.com/books/element.php?pl1_	Преломление электромагнитных волн
cid=25&pl1_ id=2689	открытыми резонансными .
	Моделирование и анализ переходных и
	установившихся процессов. Физматлит;2011320c.ISBN
http://e.	Фальковский О.И. Техническая электродинамика
lanbook.com/books/element.php?pl1_	2009432c.ISBN 978-5-8114-0980-8
cid=25&pl1_ id=403	
http	Антенно-фидерные устройства и распространение
://lib.aanet.ru/index.php?option=com_irbi	радиоволн.
s<emid=300&12	Учебник /Г.А.Ерохин,Н.Д.Козырев,Черных /
1DBN=BOOKS&121DBNAM=BOOKS	Ред.Г.А.Ерохин, 2007491с.
&C21COM=S&521ALL=(<.	
>MFN=47038<.>)	

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине 8.1. Перечень программного обеспечения

Перечень используемого программного обеспечения представлен в таблице 10. Таблица 10 – Перечень программного обеспечения

№ п/п	Наименование
	Не предусмотрено

8.2. Перечень информационно-справочных систем

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11 – Перечень информационно-справочных систем

№ п/п		Наименование
	Не предусмотрено	

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине

Состав материально-технической базы представлен в таблице 12.

Таблица 12 – Состав материально-технической базы

		Номер аудитории
№ п/п	Наименование составной части материально-технической базы	(при
		необходимости)
1	Мультимедийная лекционная аудитория	
2	Специализированная лаборатория «Устройства СВЧ и	14-02 Гаст.
	антенны»	

10. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

10.1. Состав фонда оценочных средств приведен в таблице 13 Таблица 13 - Состав фонда оценочных средств для промежуточной аттестации

Вид промежуточной аттестации	Примерный перечень оценочных средств
Экзамен	Список вопросов к экзамену; Тесты.
Дифференцированный зачёт	Список вопросов; Тесты.
Выполнение курсового проекта	Экспертная оценка на основе требований к содержанию курсового проекта.

10.2. Перечень компетенций, относящихся к дисциплине, и этапы их формирования в процессе освоения образовательной программы приведены в таблице 14.

Таблица 14 – Перечень компетенций с указанием этапов их формирования в процессе

освоения образовательной программы

	Этапы формирования компетенций по
Номер семестра	дисциплинам/практикам в процессе освоения
	ОП
ОК-48 «способность совершенствовать	и развивать свой интеллектуальный и
общекультурный уровень»	
1	Химия
1	Экология

1	Информатика	
1	Физика	
1	Математика. Математический анализ	
1	Введение в специальность	
1	Прикладная геометрия и инженерная графика	
	Математика (Аналитическая геометрия	
1	линейная алгебра)	
2	Безопасность жизнедеятельности	
2	Прикладная геометрия и инженерная графика	
2	Математика. Математический анализ	
2	Физика	
2	Материаловедение и технология	
2	конструкционных материалов	
3	Теория радиотехнических цепей и сигналов	
3	Физика	
3	Экономика	
3	Математика. Теория вероятностей и	
3	математическая статистика	
3	Электротехника и электроника.	
3	Электротехника	
3	Механика	
4	Электропреобразовательные устройства и	
4	системы	
4	Математика. Теория вероятностей и	
7	математическая статистика	
4	Механика	
4	Электротехника и электроника. Электроника	
4	Теория радиотехнических цепей и сигналов	
5	Метрология, стандартизация и сертификация	
5	Схемотехника и микропроцессорные	
	устройства в радиоэлектронных системах	
5	Аэродромы и аэропорты	
5	Устройства формирования и генерирования	
	сигналов	
5	Основы телевидения	
5	Электродинамика и распространение	
	радиоволн	
5	Основы радиолокации	
6	Радиотехническое оборудование аэродромов	
6	Антенны и устройства СВЧ	
6	Бортовые радиоэлектронные системы	
6	Схемотехника и микропроцессорные	
	устройства в радиоэлектронных системах	
6	Организация воздушного движения	
6	Устройства приема и обработки сигналов	

6	Воздушные перевозки и авиационные работы
4	Устройства формирования и генерирования
6	сигналов
6	Основы менеджмента
4	Электросветотехническое оборудование
6	аэродромов
7	Авиационная электросвязь
7	Летно-технические характеристики
/	воздушных судов
7	Радиотехническое оборудование аэродромов
7	Автоматизированные системы управления
7	Теория транспортных систем
7	Информационно-измерительные системы
7	Управление качеством
7	Антенны и устройства СВЧ
7	Управление персоналом
7	Авиационный английский язык
7	Цифровая обработка сигналов
8	Авиационная безопасность
8	Радиоэлектронные средства наблюдения
8	Авиационная метеорология
8	Средства авиационной электросвязи и передачи данных
8	Моделирование систем и процессов
8	Теория надежности
8	Воздушное право
8	Техническая диагностика
8	Радиотехнические средства навигации и
8	посадки
9	Моделирование в РЛС
9	Системы сбора и обработки полетной
,	информации
9	Безопасность полетов
9	Системы связи с подвижными объектами
9	Основы информационной безопасности
9	Сотовые системы связи
9	Системы отображения информации
9	Спутниковые системы радионавигации
9	Помехоустойчивость РТС
9	Техническое обслуживание
	радиоэлектронного оборудования
9	Основы измерительной техники
9	Экономика и организация производства
	ьной работы, в том числе в сфере проведения
научных исследований»	

3	Теория радиотехнических цепей и сигналов
4	Теория радиотехнических цепей и сигналов
5	Основы телевидения
5	Электродинамика и распространение
3	радиоволн
6	Антенны и устройства СВЧ
7	Антенны и устройства СВЧ

ОПК-21 «способность и готовность использовать основные законы естественно-научных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач»

1	Химия
1	Математика (Аналитическая геометрия и линейная алгебра)
1	Физика
1	Математика. Математический анализ
2	Математика. Математический анализ
2	Физика
3	Электротехника и электроника. Электротехника
3	Физика
3	Математика. Теория вероятностей и математическая статистика
3	Теория радиотехнических цепей и сигналов
4	Электропреобразовательные устройства и системы
4	Математика. Теория вероятностей и математическая статистика
4	Теория радиотехнических цепей и сигналов
4	Электротехника и электроника. Электроника
5	Основы радиолокации
5	Устройства формирования и генерирования сигналов
5	Электродинамика и распространение радиоволн
5	Схемотехника и микропроцессорные устройства в радиоэлектронных системах
6	Схемотехника и микропроцессорные устройства в радиоэлектронных системах
6	Устройства приема и обработки сигналов
6	Бортовые радиоэлектронные системы
6	Устройства формирования и генерирования сигналов
6	Антенны и устройства СВЧ
6	Электросветотехническое оборудование

ПК-158 «способность организовывать и провосуществлять анализ полученных результато» 1 1 2 2 3	Экология Химия Физика Материаловедение и технология конструкционных материалов Физика Электротехника и электроника.
осуществлять анализ полученных результато» 1 1 1 2	Экология Химия Физика Материаловедение и технология конструкционных материалов
осуществлять анализ полученных результато» 1 1 1 1	Экология Химия Физика Материаловедение и технология
осуществлять анализ полученных результато» 1 1	Экология Химия Физика
осуществлять анализ полученных результато» 1 1	Экология Химия
осуществлять анализ полученных результато» 1	Экология
осуществлять анализ полученных результато»	
_	F = 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
HIC 150	одить эксперименты по заданной методике и
9	информации
9	Системы сбора и обработки полетной
9	Моделирование в РЛС
9	Системы отображения информации
9	Помехоустойчивость РТС
7	Антенны и устройства СВЧ
6	Антенны и устройства СВЧ
2	Прикладная геометрия и инженерная графика
2	Информационные технологии
1	Прикладная геометрия и инженерная графика
1	Информатика
решения профессиональных задач с использов	анием готовых программных средств»
ОПК-23 «способность использовать математ	ические, аналитические и численные методы
9	Спутниковые системы радионавигации
9	информации
9	Системы сбора и обработки полетной
9	Сотовые системы связи
9	Системы отображения информации
9	Системы связи с подвижными объектами
9	Моделирование в РЛС
Ö	передачи данных
8	Средства авиационной электросвязи и
0	исследовательская работа
8	Производственная практика научно-
8	Радиоэлектронные средства наблюдения
8	Моделирование систем и процессов
8	Авиационная метеорология
8	посадки
0	Радиотехнические средства навигации и
7	Антенны и устройства СВЧ
7	Авиационная электросвязь
7	Информационно-измерительные системы
7	Цифровая обработка сигналов
7	Радиотехническое оборудование аэродромов
U	Радиотехническое оборудование аэродромов
6	аэродромов

8	Радиотехнические средства навигации и
7	Цифровая обработка сигналов
7	Антенны и устройства СВЧ
	сигналов
6	Устройства формирования и генерирования
6	Антенны и устройства СВЧ
6	Устройства приема и обработки сигналов
	устройства в радиоэлектронных системах
6	Схемотехника и микропроцессорные
6	Бортовые радиоэлектронные системы
5	Схемотехника и микропроцессорные устройства в радиоэлектронных системах
5	Устройства формирования и генерирования сигналов
4	Теория радиотехнических цепей и сигналов
3	Теория радиотехнических цепей и сигналов
2	Информационные технологии
1	Информатика
данных для проектирования»	
ПК-172 «умение организовывать и осуществ	лять сбор и анализ информационных исходных
7	Антенны и устройства СВЧ
6	Антенны и устройства СВЧ
6	Организация воздушного движения
J	радиоволн
5	Электродинамика и распространение
3	Физика
2	Физика
1	Физика
профессиональных задач»	правильность выоранной модели при решении
	георетически обоснованные решения и правильность выбранной модели при решении
7 ПК-160 «способность сопоставлять	Антенны и устройства СВЧ
7	СИГНАЛОВ
6	Устройства формирования и генерирования
6	Антенны и устройства СВЧ
5	Электродинамика и распространение радиоволн
5	Устройства формирования и генерирования сигналов
5	Основы телевидения
4	Электротехника и электроника. Электроника
4	Механика
3	Физика
3	Механика
	Электротехника

	посадки
8	Радиоэлектронные средства наблюдения
	Средства авиационной электросвязи и
8	передачи данных
ПК-173 «способность осуществлять расчет	и проектирование в соответствии с техническим
заданием с использованием стандартных сре	
1	Информатика
3	Теория радиотехнических цепей и сигналов
4	Теория радиотехнических цепей и сигналов
	Устройства формирования и генерирования
5	сигналов
	Схемотехника и микропроцессорные
5	устройства в радиоэлектронных системах
	Схемотехника и микропроцессорные
6	устройства в радиоэлектронных системах
6	Антенны и устройства СВЧ
6	Устройства приема и обработки сигналов
6	Бортовые радиоэлектронные системы
0	Устройства формирования и генерирования
6	сигналов
7	Антенны и устройства СВЧ
7	Цифровая обработка сигналов
/	
8	Радиотехнические средства навигации и
8	Посадки
0	Радиоэлектронные средства наблюдения
8	Средства авиационной электросвязи и
ПК 174 жанааабууаату паарабатуурату ураау	передачи данных
	стную и рабочую техническую документацию,
умением оформлять законченные проектно-и	Информатика
3	
	Теория радиотехнических цепей и сигналов
4	Теория радиотехнических цепей и сигналов
5	Устройства формирования и генерирования
	сигналов
6	Устройства формирования и генерирования
	сигналов
6	Антенны и устройства СВЧ
7	Антенны и устройства СВЧ
	ономическое обоснование проектных расчетов»
6	Антенны и устройства СВЧ
7	Антенны и устройства СВЧ
7	Управление персоналом

10.3. В качестве критериев оценки уровня сформированности (освоения) у обучающихся компетенций применяется шкала модульно-рейтинговой системы университета. В таблице

15 представлена 100-балльная и 4-балльная шкалы для оценки сформированности компетенций.

Таблица 15 – Критерии оценки уровня сформированности компетенций

		енки уровня сформированности компетенции
Оценка компетенции		
100- балльная шкала	4-балльная шкала	Характеристика сформированных компетенций
85≤K≤100	«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий.
70 ≤ K ≤ 84	«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий.
55 ≤ K ≤ 69	«удовлетво- рительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий.
K≤54	«неудовлетво рительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений.

10.4. Типовые контрольные задания или иные материалы:

1. Вопросы (задачи) для экзамена (таблица 16)

Таблица 16 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена
1.	Характеристики антенн: амплитудная функция направленности, поляризационная характеристика и поляризационная диаграмма, КНД, КПД, КУ, КИП, действующая длина, мощность излучения, сопротивление
2.	излучения, входное сопротивление. Распределение тока и зарядов в проводах симметричного вибратора.
3.	Поле излучения симметричного вибратора.
4.	Амплитудная функция направленности вибратора в диапазоне частот.
5.	Мощность излучения, сопротивление излучения, КНД и КПД симметричного вибратора.

6.	Входное сопротивление вибратора и широкополосные вибраторы .
7.	Симметрирующие устройства для питания проволочных антенн коаксиальными линиями передачи.
8.	Поле излучения линейной системы эквидистантных идентичных излучателей. Теорема перемножения.
9.	Принцип качания луча в неподвижной линейной системе излучателей.
10.	Направленные свойства линейной синфазной системы излучателей.
11.	Направленные свойства линейной системы с осевым излучением.
12.	Диаграммы направленности антенны «волновой канал» в Е и Н- плоскостях
13.	Функция направленности плоскостной антенной решетки.
14.	Взаимное влияние вибраторов, работающих в системе. Входное сопротивление, собственное, взаимное
15.	Симметричный горизонтальный вибратор над поверхностью Земли.
16.	Симметричный вертикальный вибратор над поверхностью Земли.
17.	Несимметричный вертикальный вибратор над поверхностью Земли. Г- и Т- образные антенны. Противовесы и заземления, их конструкция и назначение
18.	Принцип двойственности и его применение для определения характеристик излучения щели в плоском безграничном экране.
19.	Излучающие щели в волноводе. Виды волноводно-щелевых антенн.
20.	Методы расчета поля излучения апертурных антенн. Внутренняя и внешняя задачи. Принцип эквивалентных токов. Поле излучения площадки произвольной формы.
21.	Поле излучения синфазной прямоугольной площадки с постоянным и косинусоидальным законами распределения амплитуды поля.
22.	Влияние различных законов распределения фазы по раскрыву антенны на диаграмму направленности.
23.	Е - плоскостной секториальный рупор. Геометрические параметры. Оптимальный рупор. Поле в раскрыве и поле излучения
24.	Н - плоскостной секториальный рупор. Геометрические параметры. Оптимальный рупор. Поле в раскрыве и поле излучения
25.	Диэлектрическая линзовая антенна. Геометрические параметры. Принцип работы. Уравнение профиля. Поле в раскрыве и поле излучения.
26.	Металлопластинчатая линзовая антенна. Геометрические параметры. Принципработы. Уравнение профиля. Поле в раскрыве и поле излучения.
27.	Зонирование линзовых антенн. Уравнения профилей зонированных линзовых антенн. Преимущества и недостатки зонирования.
28.	Параболические зеркальные антенны. Уравнение профиля параболоида в полярной и декартовой системах координат. Поле в раскрыве. КУ, КНД, КИП, КПД. Оптимальный угол раскрыва.
29.	Методы устранения реакции зеркала на облучатель. Зеркало с поворотом плоскости поляризации.
30.	Способы формирования диаграммы направленности вида «косеканс».
31.	Сферическая антенна с широким углом качания луча. Принцип работы.

	Геометрические параметры.
32.	Двух зеркальная антенна Кассегрена. Принцип работы. Геометрические
32.	параметры.
33.	Двух зеркальная антенна Грегори. Принцип работы. Геометрические
	параметры.
34.	Двух зеркальная антенна с плоским зеркалом за облучателем. Принцип работы
	антенны и зеркала с поворотом плоскости поляризации
35.	Характеристики и режимы волн в линиях передачи. Напряжение суммарной
	волны. Входное сопротивление. Коэффициенты бегущей и стоячей волны.
	Условие существования в линии бегущей волны.
36.	Линия короткозамкнутая на конце. Распределение суммарной волны тока и
	напряжения. Входное сопротивление. Примеры использования в технике
	антенн
37.	Разомкнутая на конце линия. Распределение суммарной волны тока и
	напряжения. Входное сопротивление. Примеры использования в антенной
38.	технике.
36.	Т-образные соединения линий передачи. Е и Н- плоскостные волноводные тройники. Эквивалентные схемы. Условия внутреннего согласования.
	Реактивные элементы, используемые для согласования волноводных
	тройников. Применение тройников.
39.	Двойной волноводный тройник. Конструкция, принцип работы и свойства.
37.	дьонной возноводный тронник. Конструкции, принции расоты и свойства.
40.	Антенный переключатель импульсной РЛС на двойных тройниках
41.	Дуплексер на двойных Т-мостах при работе РЛС на одну антенну в
10	непрерывном режиме.
42.	Кольцевой волноводный мост. Условие возбуждения плеча, если кольцо
	свернуто в Е-плоскости (Н-плоскости). Фазы волн на выходах из плеч моста (
43.	векторные диаграммы при питании из разных плеч).
43.	Антенный переключатель прием-передача импульсной РЛС на кольцевых мостах.
44.	Щелевой волноводный мост. Конструкция. Геометрические параметры.
77.	Принцип работы. Векторные диаграммы сигналов на выходах моста.
45.	Антенный переключатель прием-передача импульсной РЛС на щелевых
	мостах
46.	Дуплексер на щелевых мостах при работе РЛС на одну антенну в
	непрерывном режиме.
47.	Направленный волноводный ответвитель с двумя отверстиями связи на узкой
	стенке. Конструкция, геометрические и электрические параметры, принцип
	работы. Примеры применения НО.
48	НО с тремя отверстиями связи на узкой стенке. Конструкция, геометрические
	и электрические параметры, принцип работы. Широкополосные свойства.

2. Вопросы (задачи) для зачета / дифференцированного зачета (таблица 17)

Таблица 17 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифференцированного зачета
1.	Какие функции выполняет передающая антенна, если она подключена к радиопередатчику через фидерный тракт?
2.	Сформулируйте назначение приемной антенны?
3.	Какой диапазон длин волн относится к СВЧ диапазону?
4.	Что называется амплитудной функцией направленности антенны?

5.	Что называется поляризационной характеристикой антенны?
6.	Как определяют ширину диаграммы направленности антенны?
7.	При каких условиях в линии передачи существует режим бегущей волны?
8.	При каких условиях в линии передачи существует режим стоячих волн?
9.	Как связан коэффициент отражения от нагрузки с сопротивлением нагрузки в
	линии передачи?
10.	Что собой представляет симметричный вибратор?
11.	Каким выражением описывается функция направленности симметричного
	вибратора в дальней зоне?
12.	Какой вид имеет амплитудная функция направленности полуволнового
	симметричного вибратора в Е и Н - плоскостях?
13.	Как изменится диаграмма направленности симметричного полуволнового
	вибратора в Е плоскости, если увеличить его длину до $21 = 1,5\lambda$?
14.	Чему равно активное входное сопротивление полуволнового и волнового
	вибраторов малой толщины?
15.	Каким выражением описывается нормированная функция направленности
	линейной системы эквидистантных ненаправленных излучателей в дальней
	зоне?
16.	Как ориентирована в пространстве диаграмма направленности синфазной
	линейной системы излучателей?
17.	Какой вид в пространстве имеет диаграмма направленности в Е- и Н-плоскости
	линейной системы из двух излучателей А-Р?
18.	Какие условия необходимо выполнить, чтобы антенна волновой канал излучала
	в диаграмму направленности вдоль оси линейной системы излучателей?
19.	Какие условия необходимо выполнить, чтобы в диаграмме направленности
	линейной системы с осевым излучением не возникали дифракционные
	максимумы?
20.	Что такое фазированная антенная решетка?
21.	Как учесть влияние проводящего экрана на диаграмму направленности
	симметричного полуволнового вибратора, расположенного горизонтально на
	высоте h над экраном?
22.	Каким образом надо прорезать щель в волноводе с волной типа Н10, чтобы она
	излучала?
23.	Какой вид имеет диаграмма направленности полуволновой щели в Е - и Н-
	плоскостях, прорезанной в плоском безграничном экране?
24.	Какую поляризацию излучает волноводно-щелевая антенна (ВЩА) со
	встречно-наклонными щелями на узкой стенке прямоугольного волновода с
	расстоянием между щелями $\Lambda/2$?
25.	Какой вид имеет диаграмма направленности волноводно-щелевой антенны
	(ВЩА) бегущей волны с поперечными щелями на широкой стенке
	прямоугольного волновода при расстоянии между щелями $d=\Lambda/4$?
26.	Как связана ширина диаграммы направленности синфазной прямоугольной
	площадки с линейным размером площадки D при заданном законе
	распределения амплитуды поля и рабочей длине волны λ?
27.	Какая стенка прямоугольного волновода увеличивается в размере для
	получения Н- плоскостного секториального рупора?
28.	Какая стенка прямоугольного волновода увеличивается в размере для
	получения Е- плоскостного секториального рупора?
29.	Как влияют угол раскрыва рупора Ч и его радиальная длина R на величину
	фазовых искажений в раскрыве?
30.	Каким уравнением в полярной системе координат описывается профиль
	изображенной линзовой антенны?

31.	Какие преимущества и недостатки имеет зонированная диэлектрическая			
011	линзовая антенна по сравнению с не зонированной линзой?			
32.	Каким уравнением в полярной системе координат описывается профиль			
	параболической зеркальной антенны?			
33.	Какой вид диаграммы направленности формирует параболический цилиндр с			
	облучателем в виде линейной антенной решетки?			
34.	Какой вид диаграммы направленности формирует параболоид вращения с рупорным облучателем?			
35.	Как конструктивно выполняется зеркало с поворотом плоскости поляризации на 900?			
36.	Как конструктивно выполняется двух зеркальная антенна Кассегрена?			
37.	Как конструктивно выполняется двух зеркальная антенна с качанием луча в широком секторе углов?			
38.	Как осуществляется широкоугольное качание луча диаграммы направленности в сферической зеркальной антенне?			
39.	Каковы свойства внутренне согласованного волноводного Е-тройника?			
40.	Каковы свойства внутренне согласованного волноводного Н-тройника?			
41.	Каковы причины необходимости внутреннего согласования волноводного Нтройника?			
42.	Каковы причины необходимости внутреннего согласования волноводного Етройника?			
43.	Как выглядит конструкция антенного переключателя импульсной РЛС с использованием двойного волноводного тройника?			
44.	Как выглядит конструкция дуплексера с использованием двойного			
	волноводного тройника при работе станции связи на двух разнесенных частотах в непрерывном режиме?			
45.	Каковы условия возбуждения плеча в кольцевом мосте, если кольцо свернуто в Е-плоскости?			
46.	Каковы условия возбуждения плеча в кольцевом мосте, если кольцо свернуто в Н-плоскости?			
47.	Сколько плеч содержит конструкция кольцевого моста и каковы расстояния между плечами?			
48.	Как выглядит конструкция антенного переключателя импульсной РЛС с использованием кольцевого моста?			
49.	Как выглядит конструкция щелевого волноводного моста?			
50.	Как выглядит конструкция антенного переключателя импульсной РЛС с использованием щелевого волноводного моста?			
51.	Как выглядит конструкция дуплексера РЛС, работающей на двух частотах в непрерывном режиме, с использованием щелевого волноводного моста?			
52.	Как выглядит конструкция волноводного направленного ответвителя?			

3. Темы и задание для выполнения курсовой работы / выполнения курсового проекта (таблица 18)

Таблица 18 — Примерный перечень тем для выполнения курсовой работы / выполнения курсового проекта

№ п/п	Примерный перечень тем для выполнения курсовой работы / выполнения курсового проекта
1.	Широкодиапазонная зеркальная антенна радиотелескопа (Тип антенной системы - Параболическое зеркало, облучаемое цилиндрической спиралью).
2.	Параболическое зеркало с волноводно-вибраторным облучателем из двух

	вибраторов обратного излучения, возбуждаемых открытым концом		
	прямоугольного волновода		
3.	Параболическое зеркало с волноводным двух щелевым облучателем Катлера обратного излучения.		
4.	Параболическое зеркало с волноводно-вибраторным облучателем из четырех		
4.	вибраторов обратного излучения		
5.	Параболическое зеркало, облучаемое пирамидальным рупором		
6.	Параболическое зеркало, облучаемое коническим рупором		
7.	Параболический цилиндр, облучаемый линейной системой полуволновых		
<i>,</i> .	синфазных щелей, прорезанных на широкой стенке прямоугольного волновода		
	со смещением в шахматном порядке относительно его оси		
8.	Параболический цилиндр, облучаемый линейной синфазной системой		
0.	полуволновых вибраторов, расположенных на высоте $h=\lambda/4$ над широкой		
	стенкой прямоугольного волновода на расстоянии $d=\Lambda/2$ друг от друга		
9.	Диэлектрическая линза, облучаемая пирамидальным рупором		
10.	Диэлектрическая линза, облучаемая линейной системой полуволновых		
	синфазных щелей, прорезанных на широкой стенке прямоугольного волновода		
	со смещением в шахматном порядке относительно его оси		
11.	Диэлектрическая линза, облучаемая линейной системой полуволновых		
	вибраторов, расположенных на высоте $h=\lambda/4$ над широкой стенкой		
	прямоугольного волновода на расстоянии $d=\Lambda/2$ друг от друга		
12.	Металлопластинчатая линза, облучаемая пирамидальным рупором		
13.	Металлопластинчатая линза, облучаемая линейной системой полуволновых		
	синфазных щелей, прорезанных на широкой стенке прямоугольного волновода		
	со смещением в шахматном порядке относительно его оси		
14.	Металлопластинчатая линза, облучаемая линейной системой полуволновых		
	вибраторов, расположенных на высоте $h=\lambda/4$ над широкой стенкой		
	прямоугольного волновода на расстоянии $d=\Lambda/2$ друг от друга		
15.	Антенная решетка из цилиндрических спиральных излучателей с		
	эквидистантным расположением и равно амплитудным возбуждением		
16.	Волноводно-щелевая плоская антенная решетка с эквидистантным		
	расположением и равно амплитудным возбуждением щелей, прорезанных на		
	широкой стенке прямоугольного волновода со смещением в шахматном		
17	порядке относительно его оси		
17.	Волноводно-щелевая плоская антенная решетка с эквидистантным		
	расположением и равно амплитудным возбуждением щелей, прорезанных на		
	узкой стенке прямоугольного волновода на расстоянии $d=\Lambda/2$ друг от друга со		
18.	встречным наклоном		
16.	Плоская антенная решетка с эквидистантным расположением и равно		
	амплитудным возбуждением нескольких линеек полуволновых вибраторов, расположенных на высоте $h=\lambda/4$ над широкой стенкой прямоугольного		
	расположенных на высоте $n-\lambda/4$ над широкой стенкой прямоугольного волновода на расстоянии $d=\Lambda/2$ друг от друга		
19.	Плоская антенная решетка из диэлектрических стержней с эквидистантным		
1).	расположением и равно амплитудным возбуждением излучателей		
20.	Двухзеркальная антенна Кассегрена		
20.	друхоркальная антенна кассырена		

4. Вопросы для проведения промежуточной аттестации при тестировании (таблица 19)

Таблица 19 – Примерный перечень вопросов для тестов

№ п/п	Примерный перечень вопросов для тестов	
1.	Какие функции выполняет передающая антенна, если она подключена к	
	радиопередатчику через фидерный тракт?	

	1.Преобразует связанные ЭМВ в фидере, несущие информацию от ПРД, в
	свободно-распространяющиеся ЭМВ с сохранением информации и
	формируют вполне определенные требуемые характеристики излучения (ДН,
	поляризация в заданном диапазоне частот)
	2. Управляет характеристиками поля излучения во времени и пространстве.
	3. Увеличивает плотность потока мощности в окружающем пространстве.
2.	Сформулируйте назначение приемной антенны?
	1.Обеспечение направленного приема, частотная и поляризационная селекция
	радиосигналов, а также преобразования распространяющихся ЭМВ в
	свободном пространстве в связанные ЭВМ, направленные по фидеру к
	приемнику с сохранением информации.
	2. Управление селективными свойствами по частоте, поляризации,
	направлению.
	3. Измерительные функции - определение направлений, с которых приходят
	сигналы и помехи.
3.	Какой частотный диапазон относится к длинным волнам?
	1. Частотный диапазон 30-300 кГц.
	2. Частотный диапазон 3-30 кГц.
	3. Частотный диапазон 3-30 МГц
4.	Что называется амплитудной функцией направленности антенны?
''	1.Зависимость амплитуды напряженности электрического поля в дальней зоне
	от угловых координат θ , ϕ в сферической системе координат при условии, что
	расстояние от антенны до наблюдателя остается постоянным.
	2.Зависимость амплитуды напряженности электрического поля в ближней зоне
	антенны от угловых координат θ , ϕ в сферической системе координат при
	условии, что расстояние от антенны до наблюдателя остается постоянным.
	3.Зависимость распределения амплитуды тока на антенне от ее линейных
5.	размеров. Что называется поляризационной характеристикой антенны?
J.	1. Кривая, которую описывает конец вектора Е (годограф вектора Е) в
	плоскости перпендикулярной направлению распространения
	электромагнитной волны в свободном пространстве.
	1 1
	2. Геометричесукое место максимальных проекций вектора Е на вращающуюся
	ось приемной антенны в плоскости перпендикулярной направлению
	распространения.
	3. Зависимость амплитуды напряженности электрического поля в дальней зоне
	от угловых координат θ, φ в сферической системе координат.
6.	Как определяют ширину диаграммы направленности антенны?
	1.Угловой сектор, при котором значение амплитуду напряженности
	электрического поля уменьшается до значения $0.707~E_{\text{макс}}$.
	2. Угловой сектор, при котором значение амплитуду напряженности
	электрического поля уменьшается до значения $0.5~E_{\rm {\it Makc}}$.
	3.Угловой сектор, при котором значение мощности поля P уменьшается до
	значения $0.707 P_{\text{макс}}$.
7.	Что называется коэффициентом бегущей волны в линии передачи?
	1.Отношение амплитуды напряженности суммарной волны в минимуме поля в
	линии передачи к амплитуде напряженности суммарной волны в максимуме
	поля.
	2.Зависимость амплитуды напряженности электрического поля вдоль линии
	передачи от ее координаты.
	3. Отношение амплитуды напряженности суммарной волны в максимуме поля
	в линии передачи к амплитуде напряженности суммарной волны в минимуме
1	
	поля

Q	При моми успория в ними мородоми одиноструст волице болице
8.	При каких условиях в линии передачи существует режим бегущей волны? 1.Сопротивление нагрузки должно быть чисто активной величиной и
	равняться волновому сопротивлению линии передачи.
	2. Сопротивление нагрузки должно равняться нулю.
	 Сопротивление нагрузки должно равняться нулю. Линия передачи должна быть нагружена на сопротивление, равное
	волновому сопротивлению свободного пространства 120π.
9.	
9.	При каких условиях в линии передачи существует режим стоячих волн? 1. Сопротивление нагрузки должно равняться или нулю или бесконечности.
	2 . Линия передачи должна быть нагружена на сопротивление 120π .
	3.Сопротивление нагрузки должно быть чисто активной величиной и
	равняться волновому сопротивлению линии передачи.
10.	Чему равняется входное сопротивление двухпроводной линии передачи в
10.	сечении z длиной l разомкнутой на конце?
	1.Сопротивление линии чисто реактивная величина и изменяется в
	соответствии с выражением
	$z_{\rm ex}(z) = \frac{V_{\Sigma}(z)}{1} = -i \cdot ctg\beta z$
	$I_{\Sigma}(z)$
	2. Сопротивление линии чисто реактивная величина и изменяется в
	соответствии с выражением
	$V_{\pi}(z)$
	$\dot{z}_{\alpha x}(z) = \frac{V_{\Sigma}(z)}{z} = -i \cdot tg\beta z$
	$I_{\Sigma}(z)$
	3.Сопротивление должно быть чисто активной величиной в любом сечении и
	равняться волновому сопротивлению линии передачи.
11.	Что собой представляет симметричный вибратор?
11.	1.Симметричный вибратор представляет собой проволочную антенну с
	плечами равной длины, расположенными вдоль общей оси, и у которого в
	любом сечении, отстоящим на одинаковое расстояние от точек питания токи
	равны по величине и синфазны.
	2. Симметричный вибратор представляет собой проволочную антенну с
	плечами равной длины, расположенными параллельно друг другу, и которая в
	осевом направлении излучает диаграмму направленности в виде окружности
	(ненаправленное излучение)
	3. Симметричный вибратор представляет собой проволочную антенну с
	плечами равной длины, расположенными вдоль общей оси, и которая в осевом
	направлении излучает диаграмму направленности в виде восьмерки.
12.	Каким выражением описывается поле излучения симметричного
	вибратора в дальней зоне?
	$60I_{ml}$ $60I_{ml}$
	1. $E_1 = i \frac{60I_{m1}}{r_1} f_1(\theta) e^{i(\omega t - kr_1)}$.
	1
	2. $E_1 = i60 f_1(\theta) e^{i\omega t} \sum_{p=1}^n I_{m_p} \frac{e^{-ikr_p - i\psi_p}}{r_p}$.
	r_p
	$60I_{\text{ml}}$. (2) $i(at-br)$
	3. $E_1 = i \frac{60I_{m1}}{r} \sin(\theta) e^{i(\omega t - kr_1)}$.
12	/1
13.	Каким выражением описывается функция направленности
	симметричного вибратора в дальней зоне?
	1. $f(\theta) = \frac{\cos(kl\cos\theta) - \cos kl}{\cos\theta}$.
	• • •

 $\sin\theta$

$2. \ f(\theta) = \frac{\sin\left[\frac{n}{2}(kd_z\cos\theta - \psi)\right]}{n\sin\left[\frac{1}{2}(kd_z\cos\theta - \psi)\right]}.$ $3. \ f(\theta) = \frac{\cos(kl\sin\theta)}{\cos\theta}.$ $14. \ Какой вид имеет амплитудная функция направленности полуволнового симметричного вибратора в Е и Н - плоскостях? 1. \ \text{Амплитудная функция направленности полуволнового симметричного вибратора в Е-плоскости имеет вид восьмерки, а в Н- плоскости — окружноста. Амплитудная функция направленности полуволнового симметричного вибратора в Е-плоскости имеет вид окружности, а в Н- плоскости — восьмеря 3. Амплитудная функция направленности полуволнового симметричного вибратора в Е- и Н-плоскостях имеет вид восьмерки.$
 Какой вид имеет амплитудная функция направленности полуволнового симметричного вибратора в Е и Н - плоскостях? 1. Амплитудная функция направленности полуволнового симметричного вибратора в Е-плоскости имеет вид восьмерки, а в Н- плоскости — окружнос 2. Амплитудная функция направленности полуволнового симметричного вибратора в Е-плоскости имеет вид окружности, а в Н- плоскости — восьмеря 3. Амплитудная функция направленности полуволнового симметричного вибратора в Е- и Н-плоскостях имеет вид восьмерки.
 Какой вид имеет амплитудная функция направленности полуволнового симметричного вибратора в Е и Н - плоскостях? 1. Амплитудная функция направленности полуволнового симметричного вибратора в Е-плоскости имеет вид восьмерки, а в Н- плоскости — окружнос 2. Амплитудная функция направленности полуволнового симметричного вибратора в Е-плоскости имеет вид окружности, а в Н- плоскости — восьмеря 3. Амплитудная функция направленности полуволнового симметричного вибратора в Е- и Н-плоскостях имеет вид восьмерки.
 Какой вид имеет амплитудная функция направленности полуволнового симметричного вибратора в Е и Н - плоскостях? 1. Амплитудная функция направленности полуволнового симметричного вибратора в Е-плоскости имеет вид восьмерки, а в Н- плоскости — окружнос 2. Амплитудная функция направленности полуволнового симметричного вибратора в Е-плоскости имеет вид окружности, а в Н- плоскости — восьмеря 3. Амплитудная функция направленности полуволнового симметричного вибратора в Е- и Н-плоскостях имеет вид восьмерки.
симметричного вибратора в Е и Н - плоскостях? 1. Амплитудная функция направленности полуволнового симметричного вибратора в Е-плоскости имеет вид восьмерки, а в Н- плоскости — окружнос 2. Амплитудная функция направленности полуволнового симметричного вибратора в Е-плоскости имеет вид окружности, а в Н- плоскости — восьмеря 3. Амплитудная функция направленности полуволнового симметричного вибратора в Е- и Н-плоскостях имеет вид восьмерки.
1. Амплитудная функция направленности полуволнового симметричного вибратора в Е-плоскости имеет вид восьмерки, а в Н- плоскости — окружнос 2. Амплитудная функция направленности полуволнового симметричного вибратора в Е-плоскости имеет вид окружности, а в Н- плоскости — восьмер 3. Амплитудная функция направленности полуволнового симметричного вибратора в Е- и Н-плоскостях имеет вид восьмерки.
вибратора в Е-плоскости имеет вид восьмерки, а в Н- плоскости — окружнос 2. Амплитудная функция направленности полуволнового симметричного вибратора в Е-плоскости имеет вид окружности, а в Н- плоскости — восьмер 3. Амплитудная функция направленности полуволнового симметричного вибратора в Е- и Н-плоскостях имеет вид восьмерки.
2. Амплитудная функция направленности полуволнового симметричного вибратора в Е-плоскости имеет вид окружности, а в Н- плоскости — восьмеря 3. Амплитудная функция направленности полуволнового симметричного вибратора в Е- и Н-плоскостях имеет вид восьмерки.
вибратора в Е-плоскости имеет вид окружности, а в Н- плоскости — восьмера 3. Амплитудная функция направленности полуволнового симметричного вибратора в Е- и Н-плоскостях имеет вид восьмерки.
3. Амплитудная функция направленности полуволнового симметричного вибратора в Е- и Н-плоскостях имеет вид восьмерки.
вибратора в Е- и Н-плоскостях имеет вид восьмерки.
15. Какой изменится диаграмма направленности симметричного
полуволнового вибратора в Е плоскости, если увеличить его длину до 2
$= 1.5\lambda$?
1. Главный лепесток, ориентированный перпендикулярно оси вибратора,
сузится, но появится в каждом квадранте дифракционный лепесток под угло
к оси вибратора.
2. Главный лепесток, ориентированный вдоль оси вибратора, сузится, но
появятся дифракционные лепестки перпендикулярные оси вибратора.
3. Главный лепесток, ориентированный перпендикулярно оси вибратора,
сузится.
16. Какой изменится диаграмма направленности симметричного полуволнового вибратора в Е плоскости, если увеличить его длину до
полуволнового виоратора в Е плоскости, если увеличить его длину до $2l=\lambda$?
1. Главный лепесток в виде восьмерки, ориентированной перпендикулярно
оси вибратора, сузится
2. Главный лепесток, ориентированный перпендикулярно оси вибратора
, сузится, но появится в каждом квадранте дифракционный лепесток под угл
к оси вибратора.
3. Главный лепесток в виде восьмерки, ориентированной вдоль оси вибрато
сузится.
17. Чему равно активное входное сопротивление полуволнового и волновог
вибраторов малой толщины? Ответы:
1. Активное входное сопротивление полуволнового и волнового вибраторов равно 73,1 Ом и 5000 Ом соответственно.
2. Активное входное сопротивление полуволнового и волнового вибраторов
равно 42,5 Ом и 1000 Ом соответственно.
3. Активное входное сопротивление полуволнового и волнового вибраторов
равно 73,1 Ом и 377 Ом соответственно.
18С какой целью увеличивают толщину вибраторных антенн?
1. Для того, чтобы расширить рабочую полосу частот по входному
сопротивлению вибратора.
2. Для того, чтобы сузить диаграмму направленности вибратора в Е-плоскос
3. Для того, чтобы свести к минимуму реактивную составляющую входного
сопротивления и увеличить соответственно активное входное сопротивлени
что приведет к увеличению мощности излучения. Какие условия необходимо
выполнить, чтобы антенна волновой канал излучала в диаграмму
направленности вдоль оси линейной системы излучателей?

19. Как ориентирована в пространстве диаграмма направленности синфазной линейной системы излучателей? 1. Максимум ДН перпендикулярен оси линейной системы излучателей. 2. Максимум ДН направлен вдоль оси линейной системы излучателей. 3. Максимум ДН направлен под углом к оси линейной системы излучателей. 20. Какой вид в пространстве имеет диаграмма направленности в Еплоскости линейной системы из двух излучателей А-Р? 2. 3. 1. 21. 34. Какие условия необходимо выполнить, чтобы антенна волновой канал излучала в диаграмму направленности вдоль оси линейной системы излучателей? 1. Расстояние между излучателями d должно быть равным четверти длины волны в свободном пространстве, а фаза тока в каждом соседнем излучателе должна отличаться на величину $\pi/2$. 2. Расстояние между излучателями d должно быть равным половине длины волны в свободном пространстве, а фаза тока в каждом соседнем излучателе должна отличаться на величину π . 3. Расстояние между излучателями d должно быть равным четверти длины волны в свободном пространстве, а фаза тока в каждом соседнем излучателе должна быть одинаковой (синфазная система). 22. 35. Что такое фазированная антенная решетка? 1. Решетка излучателей, в которой перемещение луча диаграммы направленности осуществляется за счет изменения фазы в каждом последующем излучателе относительно соседнего по линейному закону. 2. Решетка излучателей, в которой перемещение луча диаграммы направленности осуществляется за счет изменения фазы в каждом последующем излучателе относительно соседнего по квадратичному закону. 3. Решетка излучателей, в которой перемещение луча диаграммы направленности осуществляется за счет качания антенной решетки вокруг ее фазового центра. 23. Какой вид имеет выражение множителя решетки системы из двух излучателей, расположенных на расстоянии д друг от друга? 1. $f_{n=2}(\theta) = \cos[\frac{1}{2}(kd\cos\theta - \psi)]$. 2. $f_{n=2}(\theta) = \sin(kh\cos\theta)$. 3. $f_{n=2}(\theta) = \cos(kh\cos\theta)$. 24. Какой вид имеет диаграмма направленности полуволновой щели в Е - и Н- плоскостях, прорезанной в плоском безграничном экране? 1. Диаграммы направленности имеют вид окружности и восьмерки соответственно в Е - и Н- плоскостях. 2. Диаграммы направленности имеют вид восьмерки и окружности соответственно в Е - и Н-плоскостях. 3. Диаграммы направленности имеют вид восьмерки соответственно в Е- и Н-

	плоскостях.			
25.	Каким образом надо прорезать щель в волноводе с волной типа H_{10} ,			
	чтобы она излучала?			
	1.Щель надо прорезать вдоль магнитных силовых линий.			
	2. Щель надо прорезать вдоль электрических силовых линий.			
	3. Щель надо прорезать перпендикулярно магнитным силовым линиям			
26.	Какое расстояние в волноводно-щелевой антенне (ВЩА) должно быть			
	между продольными щелями на широкой стенке прямоугольного			
	волновода, смещенными относительно его оси в шахматном порядке,			
	чтобы она излучала один лепесток ДН перпендикулярно волноводу?			
	1. Расстояние между соседними щелями, смещенными относительно его оси в			
	шахматном порядке, равно половине длины волны в волноводе.			
	2. Расстояние между соседними щелями, смещенными относительно его оси в			
	шахматном порядке, равно половине длины волны в свободном пространстве.			
	3. Расстояние между соседними щелями, смещенными относительно его оси в			
	шахматном порядке, равно длине волны в волноводе.			
27.	Какое расстояние в резонансной волноводно-щелевой антенне (ВЩА) с			
	продольными щелями на широкой стенке прямоугольного волновода,			
	смещенными относительно его оси в шахматном порядке, должно быть от			
	короткозамкнутого поршня до ближайшей к нему щели?			
	1. Расстояние от короткозамкнутого поршня до ближайшей к нему щели равно			
	четверти длины волны в волноводе.			
	2. Расстояние от короткозамкнутого поршня до ближайшей к нему щели равно			
	половине длины волны в волноводе.			
	3. Расстояние от короткозамкнутого поршня до ближайшей к нему щели равно			
	длине волны в волноводе.			
28.	Какую поляризацию излучает волноводно-щелевая антенна (ВЩА) со			
	встречно-наклонными щелями на узкой стенке прямоугольного			
	волновода с расстоянием между щелями 1/2?			
	1.Поляризация линейная – горизонтальная (параллельная оси волновода).			
	2. Поляризация линейная – вертикальная (перпендикулярная оси волновода).			
	3. Поляризация линейная – перпендикулярная оси излучающей щели.			
29.	Какое расстояние в резонансной волноводно-щелевой антенне (ВЩА) с			
	поперечными щелями на широкой стенке прямоугольного волновода			
	должно быть от короткозамкнутого поршня до ближайшей к нему щели?			
	1. Расстояние от короткозамкнутого поршня до ближайшей к нему щели равно			
	половине длины волны в волноводе $\Lambda/2$.			
	2. Расстояние от короткозамкнутого поршня до ближайшей к нему щели равно			
	четверти длины волны в волноводе $\Lambda/4$.			
	3. Расстояние от короткозамкнутого поршня до ближайшей к нему последней			
	щели равно $3\Lambda/4$.			
30.	Какой вид имеет диаграмма направленности волноводно-щелевой			
	антенны (ВЩА) бегущей волны с поперечными щелями на широкой			
	стенке прямоугольного волновода при расстоянии между щелями $d = \Lambda/4$?			
	1. Диаграмма направленности имеет один главный лепесток, наклоненный к			
	оси волновода.			
	2. Диаграмма направленности имеет один главный лепесток,			
	перпендикулярный оси волновода.			
	перпендикулярный оси волновода. 3. Диаграмма направленности имеет один главный лепесток, наклоненный к			
	перпендикулярный оси волновода.			

5. Контрольные и практические задачи / задания по дисциплине (таблица 20) Таблица 20 – Примерный перечень контрольных и практических задач / заданий

№ п/п	Примерный перечень контрольных и практических задач / заданий		
	Учебным планом не предусмотрено		

10.5. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и / или опыта деятельности, характеризующих этапы формирования компетенций, содержатся в Положениях «О текущем контроле успеваемости и промежуточной аттестации студентов ГУАП, обучающихся по программам высшего образования» и «О модульнорейтинговой системе оценки качества учебной работы студентов в ГУАП».

11. Методические указания для обучающихся по освоению дисциплины

Целью преподавания дисциплины «Антенны и устройства сверхвысокой частоты формирование профессиональной (СВЧ)» является: подготовки специалистов по направлению 162001.65 (25.05.05) «Эксплуатация воздушных судов и организация воздушного движения» направленность «Организация радиотехнического обеспечения полетов воздушных судов». в области современных антенн и устройств СВЧ; ознакомление с кругом проблем, стоящих перед разработчиками антенно-фидерных систем наземных и радиолокационных станций; получение бортовых практических навыков экспериментальному исследованию и настройке антенн и устройств СВЧ; навыков по расчету и автоматизированному расчету антенн и устройств СВЧ и умение их использования при техническом обслуживании и настройке радиотехнических устройств и систем, в научно-исследовательской и производственной деятельности в областях локационного, навигационного и связного назначения.

Методические указания для обучающихся по освоению лекционного материала

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимся лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально—деловых качеств, любви к предмету и самостоятельного творческого мышления.

- появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научится методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- 1. Формулировка задачи лекции.
- 2. Разделы и параграфы излагаемого материала с соответствующими математическими выкладками.
 - 3. Графические материалы необходимых теоретических зависимостей.
 - 4. Выводы по каждому разделу.

Методические указания для обучающихся по прохождению лабораторных работ

В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач у обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задание и требования к проведению лабораторных работ

- 1. Ознакомиться с методической разработкой к лабораторной работе.
- 2. Проработать самостоятельно теоретический материал, поддерживающий тематику лабораторной работы.
 - 3. Ознакомиться с аппаратурой, входящей в лабораторную установку.
- 4. Рассчитать и построить необходимые теоретические зависимости по заданию преподавателя.
- 5. Ответить на контрольные вопросы, имеющиеся в методической разработке к лабораторной работе.
- Ответить на вопросы коллоквиума, проводимого преподавателем перед выполнением лабораторной работы.

Структура и форма отчета о лабораторной работе

Отчет должен содержать:

1.Титульный лист.

- 2. Краткую формулировку задачи исследования.
- 2.Структурную схему измерительной установки лабораторной работы.
- 3. Таблицы экспериментальных исследований.
- 4. Графические зависимости от заданных параметров исследуемых величин.
- 5. Расчетные данные и графические материалы необходимых теоретических зависимостей.
 - 6.Сравнительный анализ данных теории и эксперимента.
 - 7. Выводы по работе.

Требования к оформлению отчета о лабораторной работе

Отчет выполняется в соответствии с действующими государственными стандартами каждым студентом индивидуально в печатном или рукописном виде на белой бумаге формата 210х297 мм. Таблицы экспериментальных исследований и теоретических расчетов приводятся с соответствующей нумерацией и заголовками.

Перечень методических указаний по проведению лабораторных работ. Все методички имеются на кафедре в электронном виде.

- 1. Исследование антенны типа «волновой канал». Никитин Б.Т. Метод. указ. к выполнению лаб. раб. ЛИАП, Л., 1986г. -25с.
- 2. Исследование рупорных антенн с корректирующими линзами. Федорова Л.А., Гладкий Н.А. Метод. указ. к выполнению лаб. раб. ГУАП, С.-Пб.2002г. -25с.
- 3. Исследование зеркальных антенн. Данилов Ю.Н., Никитин Б.Т. Метод. указ. к выполнению лаб. раб. ГААП, С.-Пб.,1996г. -25с.
- 4. Согласование волновода с нагрузкой. Федорова Л.А., Мишура Т.П. Метод. указ. к выполнению лаб. раб. ЛИАП, Л., 1991г. -30с.
- 5. Исследование четырех плечных волноводных элементов антенных переключателей. Федорова Л.А., Данилов Ю.Н. Метод. указ. к выполнению лаб. раб. ГААП, С.-Пб.,1994г. -24с.
- 6.Исследование фазированной антенной решетки. Мельникова А.Ю., Федорова Л.А. Метод. указ. к выполнению лаб. раб. ГУАП, С.-Пб., 2008г. -41с.
- 7.Исследование плоской двухзаходной спиральной антенны. Федорова Л.А., Французов А.Д. Метод. указ. к выполнению лаб. раб. ГУАП, С.-Пб., 2002г. -22с.
- 8.Исследование антенны с регулируемой поляризацией. Федорова Л.А., Данилов Ю.Н. Метод. указ. к выполнению лаб. раб. ГААП, С.-Пб., 1997г. -17с.
- 9. Исследование волноводно-щелевых антенн. Никитин Б.Т., Т.П.Мишура, Красюк В.Н. Метод. указ. к выполнению лаб. раб. ГУАП, С.-Пб., 1999г. -33с.
- 10. Исследование спиральных антенн. Федорова Л.А. Метод. указ. к выполнению лаб. раб. ГУАП, С.-Пб., 2002г. -22с.

Методические указания для обучающихся по прохождению курсового проектирования/ работы *(если предусмотрено учебным планом по данной дисциплине)*

Курсовой проект/ работа проводится с целью формирования у обучающихся опыта комплексного решения конкретных задач профессиональной деятельности.

Курсовой проект/ работа позволяет обучающемуся:

 систематизировать и закрепить полученные теоретические знания и практические умения по профессиональным учебным дисциплинам и модулям в соответствии с требованиями к уровню подготовки, установленными программой учебной дисциплины, программой подготовки специалиста соответствующего уровня, квалификации;

- применить полученные знания, умения и практический опыт при решении комплексных задач, в соответствии с основными видами профессиональной деятельности по направлению/ специальности/ программе;
 - углубить теоретические знания в соответствии с заданной темой;
- сформировать умения применять теоретические знания при решении нестандартных задач;
- приобрести опыт аналитической, расчётной, конструкторской работы и сформировать соответствующие умения;
- сформировать умения работы со специальной литературой, справочной, нормативной и правовой документацией и иными информационными источниками;
- сформировать умения формулировать логически обоснованные выводы,
 предложения и рекомендации по результатам выполнения работы;
 - развить профессиональную письменную и устную речь обучающегося;
- развить системное мышление, творческую инициативу, самостоятельность, организованность и ответственность за принимаемые решения;
- сформировать навыки планомерной регулярной работы над решением поставленных задач.

Структура пояснительной записки курсовой работы / проекта

- 1.Введение.
- 2.Структурная схема радиотехнической системы.
- 3. Принципиальная схема антенно-фидерной системы.
- 4. Расчет геометрических и электрических параметров заданного устройства и допуски на изготовление.
 - 5.. Расчет элементов фидерного тракта.
 - 6. Разработать конструкцию антенного устройства и привести ее описание.
 - 7. Чертеж общего вида антенного устройства с габаритными размерами.
 - 7 Список использованной литературы.

Требования к оформлению пояснительной записки курсовой работы / проекта

Пояснительная записка должна быть выполнена на листах формата 210х297 мм черной шариковой ручкой или распечатана на компьютере. Используемые расчетные формулы приводить со ссылкой на литературу в буквенном обозначении с кратким пояснением их значений, а затем представить с подставленными числовыми значениями. Расчеты теоретических зависимостей приводить в таблицах, а затем в графическом виде. Рисунок или несколько рисунков приводить на отдельных страницах с соответствующей нумерацией по тексту пояснительной записки.

Перечень методических разработок по проведению курсового проекта Методичка имеется на кафедре в электронном виде.

1. Федорова Л.А. Устройства сверхвысоких частот и антенны. Метод. указания к курсовому проектированию. ГУАП, С.-Пб., 2004г.-35с. **Методичка имеется на кафедре в** электронном виде.

- 2. Федорова Л.А., Мельникова А.Ю. Расчет и проектирование линзовых антенн. Метод. указания к курсовому и дипломному проектированию. ГУАП, С.-Пб., 2002г.-33с.
- 3.Белоцерковский Г.Б., Красюк В.Н. Задачи и расчеты по курсу «Антенны и устройства СВЧ». Учебное пособие. ГУАП.,С.-Пб.,2002г. -177 с. 50 экз.
- 4. Никитин Б.Т., Храмченко Г.Н. Проектирование на ЭВМ плоских антенных решеток овальной формы. Метод. указания для ДП и КП. ГААП, С.-Пб., 1995г.-19с.
- 5. Никитин Б.Т., Храмченко Г.Н. Волноводно-щелевые антенны. Проектирование и расчет. Учебное пособие.ГААП,С.-Пб., 1992г. -132с.
- 5. Никитин Б.Т., Федорова Л.А., Храмченко Г.Н. Применение ЭВМ для расчета антенн. Метод. указания для ДП и КП. ЛИАП, Л., 1988г.-31с.
- 7. Никитин Б.Т., Красюк В.Н., Храмченко Г.Н., Шишова С.Ю. Автоматизированное проектирование зеркальных антенн с овальной апертурой. Метод. указания. ЛИАП, Л., 1989г.-21с.
- 8. Никитин Б.Т., Храмченко Г.Н. Расчет и проектирование облучателей зеркальных антенн. Метод. указания для ДП и КП. ЛИАП, Л., 1989г.-17с.
- 9. Никитин Б.Т., Храмченко Г.Н. Расчет и проектирование зеркальных антенн. Метод. указания для ДП и КП. ЛИАП, Л., 1989г.-14c

Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихся являются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ (для обучающихся по заочной форме обучения).

Методические указания для обучающихся по прохождению промежуточной аттестации

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

— экзамен — форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

- зачет это форма оценки знаний, полученных обучающимся в ходе изучения учебной дисциплины в целом или промежуточная (по окончании семестра) оценка знаний обучающимся по отдельным разделам дисциплины с аттестационной оценкой «зачтено» или «не зачтено».
- дифференцированный зачет это форма оценки знаний, полученных обучающимся при изучении дисциплины, при выполнении курсовых проектов, курсовых работ, научно-исследовательских работ и прохождении практик с аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Система оценок при проведении промежуточной аттестации осуществляется в соответствии с требованиями Положений «О текущем контроле успеваемости и промежуточной аттестации студентов ГУАП, обучающихся по программам высшего образования» и «О модульно-рейтинговой системе оценки качества учебной работы студентов в ГУАП».

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой