МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования
"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 21

УТВЕРЖДАЮ Руководитель направления д.т.н.,проф. (должность, уч. степень, звание) А.Ф. Крячко (инициалы, фамилия) (подпись) «_07_» 06 2020 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Распространение электромагнитных волн» (Наименование дисциплины)

Код направления подготовки/ специальности	12.03.02
Наименование направления подготовки/ специальности	Оптотехника
Наименование направленности	Оптико-электронные приборы и комплексы
Форма обучения	очная

Санкт-Петербург- 2020

Лист согласования рабочей программы дисциплины

Программу составил (а)	11	
доц.,к.т.н., с.н.с.	/Lled	А. В. Прусов
(должность, уч. степень, звание)	(inflying to, Mara)	(инициалы, фамилия)
Программа одобрена на заседа	//	
«27_»05 2020 г, г	протокол №6	
Заведующий кафедрой № 21		
д.т.н.,проф.	his	А.Ф. Крячко
(уч степень, звание)	(подпись, дата)	(инициалы, фамилия)
Ответственный за ОП ВО 12.03	3.02(02)	
доц.,к.т.н.		Н.А. Гладкий
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Заместитель директора институ	⁄та №2 по методической ра	боте
доц.,к.т.н.,доц.	Charley	О.Л. Балышева
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)

Аннотация

Дисциплина «Распространение электромагнитных волн» входит в образовательную программу высшего образования по направлению подготовки/ специальности 12.03.02 «Оптотехника» направленности «Оптико-электронные приборы и комплексы». Дисциплина реализуется кафедрой «№21».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ПК-1 «Способность к формированию технических требований и заданий на проектирование и конструирование оптических и оптико- электронных приборов, комплексов и их составных частей»

Содержание дисциплины охватывает круг вопросов, связанных с распространением электромагнитных волн радиодиапазона в атмосфере Земли. При этом обучающиеся знакомятся с такими явлениями, как отражение, рассеяние, рефракция, дифракция, интерференция радиоволн. Важное место в содержании дисциплины занимает изучение особенностей распространения радиоволн в условиях влияния земной поверхности и атмосферы Земли. В курсе лекций обучающиеся знакомятся с основными принципами классификации радиоволн и радиолиний, с основными законами, позволяющими описывать электромагнитные поля и волны, распространяющиеся в атмосфере Земли с учетом влияния ее поверхности, а также с основными методами, лежащими в основе решения задач рассеяния радиоволн статистически неровными поверхностями. Кроме того, изучение данной дисциплины предполагает ознакомление с особенностями распространения электромагнитных волн различных диапазонов, в том числе СВЧ и КВЧ. Изучение особенностей распространения УКВ на линиях Земля — Земля, Земля — воздух, Земля — Космос также входит в круг вопросов, охватываемых дисциплиной «Распространение электромагнитных радиоволн».

На примере изучения данной дисциплины студент обучается использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, коллоквиумы, самостоятельную работу студента.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме зачета. Общая трудоемкость освоения дисциплины составляет 3 зачетных единицы, 108 часов. Язык обучения по дисциплине «русский».

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Изучение данного курса позволит будущему специалисту закрепить фундаментальные знания по теории электромагнитного поля и овладеть методами решения электродинамических задач, связанных с распространением электромагнитных волн.

Дисциплина «Распространение электромагнитных радиоволн» призвана способствовать созданию образовательной среды для преподавания смежных дисциплин. Полидисциплинарное же взаимодействие в рамках общего направления «Оптотехника» позволяет студентам развивать и шире демонстрировать навыки в этой области, в том числе и навыки, формируемые указанной дисциплиной.

Кроме того, лабораторные работы, предусмотренные планом дисциплины «Распространение электромагнитных волн», способствуют формированию навыков проведения эксперимента, обработки и представления экспериментальных данных.

- 1.2. Дисциплина входит в состав части, формируемой участниками образовательных отношений, образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа) компетенции	Код и наименование компетенции	Код и наименование индикатора достижения компетенции
Профессиональные компетенции	ПК-1 Способность к формированию технических требований и заданий на проектирование и конструирование оптических и оптико-электронных приборов, комплексов и их составных частей	ПК-1.Д.1 анализирует и определяет требования к параметрам, предъявляемые к разрабатываемой оптотехнике, оптическим и оптико-электронным приборам и комплексам с учетом известных экспериментальных и теоретических результатов ПК-1.Д.2 определяет, корректирует и обосновывает техническое задание в части проектно-конструкторских характеристик блоков и узлов оптических и оптико-электронных приборов ПК-1.Д.3 осуществляет поиск и анализ научнотехнической информации, отечественного и зарубежного опыта, работает с базами данных

2. Место дисциплины в структуре ОП

Дисциплина базируется на знаниях, ранее приобретенных студентами при изучении следующих дисциплин:

- Физика
- Радиотехнические цепи и сигналы
- Электродинамика
- Основы теории оптических сигналов
- Метрология и радиоизмерения
- Основы квантовой электроники.

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и используются при изучении других дисциплин:

- Электронные и квантовые приборы СВЧ
- Устройства сверхвысокой частоты (СВЧ) и антенны
- Волоконно-оптические системы передачи информации
- Теоретические основы локации и навигации.

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

		Трудоемкость по
Вид учебной работы	Всего	семестрам
		№6
1	2	3
Общая трудоемкость дисциплины, 3E/ (час)	3/ 108	3/ 108
Аудиторные занятия, всего час.	34	34
в том числе:		
лекции (Л), (час)	17	17
практические/семинарские занятия (ПЗ),		
(час)		
лабораторные работы (ЛР), (час)	17	17
курсовой проект (работа) (КП, КР), (час)		
экзамен, (час)		
Самостоятельная работа, всего (час)	74	74
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен	Зачет	Зачет

Примечание: **кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Разделы, темы дисциплины	Лекции	ПЗ (СЗ)	ЛР	КП	CPC
·	(час)	(час)	(час)	(час)	(час)
Семестр	6				
Раздел 1. Распространение электромагнитных	2	0	4	0	5
волн в свободном пространстве.					
Раздел 2. Строение и электрические параметры	1	0	0	0	5
атмосферы Земли.					
Раздел 3. Особенности распространения	2	0	0	0	5
радиоволн в условиях влияния атмосферы и					
земной поверхности.					
Раздел 4. Влияние Земли на распространение	2	0	4	0	5
радиоволн при поднятых излучателях.					

Раздел 5. Влияние Земли на распространение радиоволн при расположении излучателей вблизи ее поверхности.	2	0	9	0	5
Раздел 6. Распространение радиоволн в атмосфере.	2	0	0	0	6
Раздел 7. Распространение УКВ на линиях Земля – Земля, Земля – воздух.	4	0	0	0	5
Раздел 8. Распространение УКВ на линии Земля – Космос.	2	0	0	0	5
Раздел 9. Особенности распространения сантиметровых, миллиметровых и оптических радиоволн в тропосфере.	0	0	0	0	11
Раздел 10. Распространение коротких волн.	0	0	0	0	11
Раздел 11. Распространение сверхдлинных, длинных и средних радиоволн.	0	0	0	0	11
Итого в семестре:	17		17		74
Итого:	17	0	17	0	74

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Таолица	+ содержание разделов и тем лекционного цикла
Номер раздела	Название и содержание разделов и тем лекционных занятий
1.	Распространение электромагнитных волн в свободном пространстве.
	Тема 1. Типы радиолиний.
	Тема 2. Распространение радиоволн в свободном пространстве.
2.	Строение и электрические параметры атмосферы Земли.
	Тема 1. Строение атмосферы.
	Тема 2. Химический состав атмосферы, распределение электронов в атмосфере,
	температурное распределение в атмосфере.
	Тема 3 Явления, связанные с прохождением радиоволн через атмосферу.
	Тема 4. Диэлектрическая проницаемость и индекс преломления тропосферы.
3.	Особенности распространения радиоволн в условиях влияния атмосферы
	и земной поверхности.
	Тема 1.Особенности распространения радиоволн в условиях влияния
	атмосферы и земной поверхности.
	Тема 2. Классификация радиоволн.
4.	Влияние Земли на распространение радиоволн при поднятых излучателях.
	Тема 1. Электрические параметры верхних слоев Земли.
	Тема 2. Коэффициенты отражения радиоволн от земной поверхности.
	Тема 3. Критерий Релея при отражении радиоволн от земной поверхности.
	Тема 4. Зоны Френеля при отражении радиоволн от земной поверхности.
	Тема 5.Рассеяние радиоволн неровными поверхностями.

	T (M				
	Тема 6.Методы решения задач рассеяния радиоволн статистически неровными				
	поверхностями.				
	Тема 7. Коэффициенты рассеяния радиоволн статистически неровной				
	поверхностью в зеркальном направлении.				
	Тема 8. Отражение сферической радиоволны от плоской поверхности Земли.				
	Тема 9. Поле излучателей, поднятых над плоской поверхностью Земли.				
5.	Влияние Земли на распространение радиоволн при расположении				
	излучателей вблизи ее поверхности.				
	Тема 1.Структура поля вблизи полупроводящей плоской однородной				
	поверхности.				
	Тема 2. Напряженность поля электрического диполя, расположенного вблизи				
	плоской поверхности Земли.				
	Тема 3. Распространение радиоволн над сферической поверхностью Земли.				
6.	Распространение радиоволн в атмосфере.				
	Тема 1. Рефракция радиоволн в неоднородной тропосфере.				
	Тема 2. Траектория радиоволн в ионосфере.				
	Тема 3 Критические и максимальные частоты.				
	Тема 4. Фазовая и групповая скорости распространения радиоволн в				
	ионосфере.				
	Тема 5. Влияние магнитного поля Земли на распространение радиоволн в				
	ионосфере.				
7.	Распространение УКВ на линиях Земля – Земля, Земля – воздух.				
Тема 1. Области применения УКВ.					
	Тема 2. Характеристики рассеивающих свойств объектов.				
	Тема 3. Основное уравнение радиолокации.				
	Тема 4. Влияние отражений радиоволн от поверхности Земли на дальность				
	обнаружения объекта.				
	Тема 5. Влияние отражений радиоволн от земной поверхности на точность				
	измерения координат угла места.				
	Тема 6. Распространение УКВ в пределах прямой видимости с учетом				
	рефракции.				
	Тема 7. Распространение УКВ на закрытых трассах.				
	Тема 8. Дальнее тропосферное распространение УКВ.				
	Тема 9. Распространение УКВ в тропосферных волноводах.				
	Тема 10. Распространение УКВ путем рассеяния на неоднородностях				
	ионосферы.				
8.	Распространение УКВ на линии Земля – Космос.				
	Тема 1. Ослабление УКВ на линии Земля – Космос. Замирания.				
	Тема 2. Помехи радиоприему.				
	Тема 3. Оптимальные частоты радиосвязи на линии Земля – Космос.				
9.	Особенности распространения сантиметровых, миллиметровых и				
	оптических радиоволн в тропосфере.				
	Тема 1.Ослабление электромагнитных волн в тропосфере.				
	Тема 2. Ослабление электромагнитных волн в атмосферных				
	гидрометеообразованиях.				
	тидрометооризовиния.				

4.3. Практические (семинарские) занятия Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

№ п/п	Темы практических занятий	Формы практических занятий	Трудоемкость, (час)	№ раздела дисцип лины
	Учебн	ым планом не предусмотрено		
	Bce	ero		

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

№ п/п	Наименование лабораторных работ	Трудоемкость, (час)	№ раздела дисциплины
	Семестр 6		
1.	Исследование дифракции электромагнитных волн на отверстии и цилиндре. Часть 2.	4	1
2.	Исследование структуры электромагнитного поля над проводящей плоскостью. Часть 2.	4	4
3.	Влияние зон Френеля на распространение электромагнитных волн. Часть 1.	2,5	5
4.	Влияние зон Френеля на распространение электромагнитных волн. Часть 2.	2,5	5
5.	Исследование электрических параметров сред с шероховатой поверхностью.	4	5
	Всего:	17	

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего,	Семестр 6,
Вид самостоятсльной расоты	час	час
1	2	3
Изучение теоретического материала дисциплины (TO)	59	59
Курсовое проектирование (КП, КР)		
Расчетно-графические задания (РГЗ)		
Выполнение реферата (Р)		
Подготовка к текущему контролю успеваемости (ТКУ)	10	10

Домашнее задание (ДЗ)		
Контрольные работы заочников (КРЗ)		
Подготовка к промежуточной аттестации (ПА)	5	5
Всего:	74	74

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8. Таблица 8– Перечень печатных и электронных учебных изданий

Шифр	Библиографическая ссылка / URL адрес	Количество экземпляров в библиотеке (кроме электронных экземпляров)
621.37 H64	Электродинамика и распространение радиоволн [Текст]: учебное пособие / В. В. Никольский, Т. И. Никольская 3-е изд., перераб. и доп М.: Наука, 1989 544 с.: рис Библиогр.: с. 540 - 543 ISBN 5-02-014033-3.	15 Фонд учебного корпуса (Гастелло) 3 Студ.отдел (БМ)
621.37(ΓΑΑΠ) Б68	Распространение радиоволн [Текст]: учебное пособие / Д. В. Благовещенский; СПетерб. гос. акад. аэрокосм. приборостроения СПб.: Изд-во ГААП, 1995 127 с.: рис Библиогр.: с. 125 (12 назв.).	41 Фонд учебного корпуса (Гастелло) 6 Студ.отдел (БМ)
621.396.67 A72	Антенно-фидерные устройства и распространение радиоволн [Текст]: учебник / Г. А. Ерохин, Н. Д. Козырев, О. В. Чернышев, В. Г. Кочержевский; Ред. Г. А. Ерохин 3-е изд М.: Горячая линия - Телеком, 2007 491 с.: рис Загл. обл.: Учебник для высших учебных заведений Библиогр.: с. 485 - 487 (65 назв.) ISBN 978-5-93517-370-8.	3 Отдел фундаментальной литературы
5.537.8(075)(ГУАП) К17	Калашников, В. С. Техническая электродинамика. Направляющие системы и направляемые волны [Электронный ресурс]: учебное пособие/ В. С. Калашников, А. В. Прусов; СПетерб. гос. ун-т аэрокосм. приборостроения	12 Фонд учебного корпуса (Гастелло) 61 Студ.отдел (БМ)

621.37 K78	Документ включает в себя 1 файл, размер: (464 Kb) СПб.: РИО ГУАП, 2001. Электродинамика и распространение радиоволн: учебное пособие / Н. П. Красюк, Н. Д. Дымович М.: Высш. шк., 1974 536 с.: рис Библиогр.: с.	20 Фонд учебного корпуса (Гастелло) 3 Студ.отдел (БМ)
621.396.67 A72	530 - 532 (79 назв.). Антенно-фидерные устройства и распространение радиоволн [Текст]: учебник / Г. А. Ерохин, Н. Д. Козырев, О. В. Чернышев, В. Г. Кочержевский; Ред. Г. А. Ерохин 2-е изд М.: Горячая линия - Телеком, 2004 491 с.: рис Загл. обл.: Учебник для высших учебных заведений Библиогр.: с. 485 - 487 (65 назв.) ISBN 5-93517-092-2	12 Студ.отдел (БМ)
535 Ф 33	Федоров, Виктор Викторович. Единая теория поля [Текст] / В. В. Федоров ; СПетерб. гос. электротехн. ун-т "ЛЭТИ" СПб. : Издво ГЭТУ (ЛЭТИ), 2009 248 с. : рис Библиогр.: с. 245 (41 назв.) ISBN 978-5-7629-0998-3	27 Фонд учебного корпуса (Гастелло)

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет»

URL адрес	Наименование
http://lib.aanet.ru/	Электронная библиотечная система
	ГУАП (для доступа необходима
	авторизация по номеру читательского
	билета).
http://techlibrary.ru/	Техническая библиотека.
	Переводные и русскоязычные издания,
	объединённые в общий каталог научно-
	технической литературы.
http://www.rsl.ru	Российская государственная библиотека
http://www.nlr.ru	Российская национальная библиотека

http://www.libfl.ru	Всероссийская государственная библиотека иностранной литературы
	им. М.И.Рудомино
http://www.rasl.ru	Библиотека Академии Наук
http://www.benran.ru	Библиотека РАН по естественным наукам
http://www.gpntb.ru	Государственная публичная научно- техническая библиотека
http://www.spsl.nsc.ru/	Государственная публичная научно- техническая библиотека Сибирского отделения РАН
http://lib.febras.ru	Центральная научная библиотека Дальневосточного отделения РАН
http://www.uran.ru	Центральная научная библиотека
	Уральского отделения РАН
http://www.loc.gov/index.html	Библиотека Конгресса
http://www.bl.uk	Британская национальная библиотека
http://www.bnf.fr	Французская национальная библиотека
http://www.ddb.de	Немецкая национальная библиотека
http://www.ruslan.ru:8001/rus/rcls/resources	Библиотечная сеть учреждений науки и образования RUSLANet
http://www.pl.spb.ru	Центральная городская универсальная библиотека им. В.Маяковского
http://www.lib.pu.ru	Научная библиотека им. М.Горького Санкт-Петербургского Государственного университета (СПбГУ)
http://www.unilib.neva.ru/rus/lib/	Фундаментальная библиотека Санкт- Петербургского Государственного Политехнического университета (СПбГПУ)
http://electrodynamics.narod.ru/	«Электродинамика глазами физика»
http://antenna.psuti.ru/	Поволжский государственный университет телекоммуникаций и информатики кафедра антенн
http://eqworld.ipmnet.ru/ru/library/physics/electric.htm	Литература по электричеству магнетизму и электродинамике
http://sfiz.ru/forums.php?m=topics&s=3	Форум по электродинамике

8. Перечень информационных технологий 8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

№ п/п	Наименование
	Не предусмотрено

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п	1 1		Наименование
	Не предусмотрено		

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-	Номер аудитории
JN≌ 11/11	технической базы	(при необходимости)
1.	Мультимедийная лекционная аудитория	
2.	Специализированная лаборатория «Техническая 11-01a	
	электродинамика и распространение радиоволн»	

- 10. Оценочные средства для проведения промежуточной аттестации
- 10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Зачет	Список вопросов;
	Тесты.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции	Характеристика сформированных компетенций	
5-балльная шкала		
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий. 	

Оценка компетенции	Vanagranuguwa ahanyunananuu w waxuurarayuuw	
5-балльная шкала	Характеристика сформированных компетенций	
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 	
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий. 	
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 	

10.3. Типовые контрольные задания или иные материалы. Вопросы для экзамена представлены в таблице 15.

Таблица 15 – Вопросы для экзамена

№ п/п	Перечень вопросов для экзамена
	Учебным планом не предусмотрено

Вопросы для зачета представлены в таблице 16.

Таблица 16 – Вопросы для зачета

№ п/п	Перечень вопросов для зачета	
1.	Если показатель и индекс преломления атмосферы возрастают с	
	высотой, имеет место	
	• отрицательная атмосферная рефракция;	
	• положительная атмосферная рефракция;	
	• сверхрефракция.	
2.	Если показатель и индекс преломления атмосферы убывают с	
	высотой, имеет место	
	• отрицательная атмосферная рефракция;	
	• положительная атмосферная рефракция;	
	• сверхрефракция.	
3.	Отрицательная рефракция радиоволн в атмосфере приводит к	
	• увеличению дальности прямой видимости и,	
	следовательно, к улучшению условий радиоприёма;	
	• уменьшению дальности прямой видимости и,	
	следовательно, к ухудшению условий радиоприёма;	
	• не влияет на дальность прямой видимости.	
4.	Положительная атмосферная рефракция способствует	

	 увеличению дальности прямой видимости и, следовательно, к улучшению условий радиоприёма; уменьшению дальности прямой видимости и, следовательно, к ухудшению условий радиоприёма; не влияет на дальность прямой видимости.
5.	В случае критической рефракции
J.	 радиус кривизны траектории радиоволны равен радиусу земного шара; радиус кривизны траектории радиоволны больше радиуса земного шара;
	 радиус кривизны траектории радиоволны меньше радиуса земного шара.
6.	При расчётах напряженности электрического поля УКВ влияние рефракции учитывают введением в соответствующие формулы эквивалентного радиуса земного шара аэ. При отрицательной рефракции • а₃ < а, где а – радиус земного шара; • а₃ > а;
7.	• а ₃ = а. При расчётах напряженности электрического поля УКВ влияние рефракции учитывают введением в соответствующие формулы
	эквивалентного радиуса земного шара a_3 . При положительной рефракции $ \bullet a_3 < a, \text{где } a - \text{радиус земного шара}; \\ \bullet a_3 > a; $
	\bullet $a_3 = a$.
8.	При расчётах напряженности электрического поля УКВ влияние рефракции учитывают введением в соответствующие формулы эквивалентного радиуса земного шара a_9 . При нормальной рефракции • $a_9 < a$, где $a - paguyc$ земного шара; • $a_9 > a$; • $a_9 = 8500$ км.
9.	При расчётах напряженности электрического поля УКВ влияние рефракции учитывают введением в соответствующие формулы эквивалентного радиуса земного шара аэ. При критической рефракции • аэ < а, где а – радиус земного шара; • аэ = 8500 км;
	$\bullet a_3 \longrightarrow \infty$.
10.	При расчётах напряженности электрического поля УКВ влияние рефракции учитывают введением в соответствующие формулы эквивалентного радиуса земного шара a_3 . При сверхрефракции • $a_3 < a$, где $a - paguyc$ земного шара; • $a_3 > a$; • $a_3 < 0$.
11.	 Цели, размеры которых меньше разрешаемого объёма РЛС, называются распределёнными; сосредоточенными.

10	
12.	Отражающие свойства цели, главным образом, зависят от
	(необходимо выбрать все правильные ответы, их может быть
	несколько):
	• размеров цели;
	• массы цели;
	• конфигурации цели;
	• материала поверхности цели;
	• поляризации падающей на цель волны;
	• длины падающей на цель волны.
13.	Для характеристики отражающих свойств объектов вводится понятие
	• диаграммы направленности;
	• коэффициента направленного действия;
	 эффективной поверхности обратного рассеяния.
14.	Влияние направления облучения объекта на его отражающие
	свойства характеризуется
	• диаграммой направленности;
	• коэффициентом направленного действия;
	• диаграммой обратного рассеяния.
15.	Из уравнения радиолокации следует, что мощность сигнала на входе
	приёмника РЛС
	• обратно пропорциональна 4-й степени дальности до
	цели;
	• прямо пропорциональна 4-й степени дальности до
	цели;
	• обратно пропорциональна 2-й степени дальности до
	цели.
16.	Из уравнения радиолокации следует, что мощность сигнала на входе
	приёмника РЛС
	• уменьшается вследствие двойного ослабления при
	распространении над поверхностью Земли;
	• уменьшается вследствие однократного влияния
	условий распространения, также, как и в случае
	радиосвязи;
	• не зависит от условий распространения радиоволны.
17.	В случае радиолокации сигнал на входе приёмника определяется не
	только мощностью излучённого сигнала, но и
	• отражающими свойствами объекта;
	• массой отражающего объекта;
	• скоростью отражающего объекта
18.	Дальность действия РЛС вследствие влияния поверхности Земли
	• не изменяется и остаётся равной дальности действия в
	свободном пространстве;
	• меняется в зависимости от угла наблюдения цели;
	меняется в зависимости от скорости цели.
19.	Влияние поверхности Земли
	• сказывается на точности определения координат угла
	места;
	• не сказывается на точности определения координат
	угла места;

	• сказывается на точности определения азимута цели.
20.	Радиолокационная ошибка в определении координат угла места
20.	низколетящей цели связана
	• интерференционным влиянием отражений от земной
	поверхности;
	• с наличием дифракции радиоволн вокруг поверхности
	Земли.
21.	Область применения интерференционных формул для расчёта поля
	поднятых над поверхностью Земли излучателей ограничивается
	расстоянием, при этом оно не должно превышать
	• $0.8r_0$, где r_0 – расстояние прямой видимости;
	• $1.8r_0$, где r_0 – расстояние прямой видимости;
	• r_0 , где r_0 – расстояние прямой видимости.
22.	При распространении УКВ в пределах прямой видимости в
	результате изменения метеорологических условий могут
	наблюдаться непрерывные изменения амплитуды и фазы
	принимаемого сигнала. Такие изменения называются
	• замираниями;
	• помехами естественного происхождения;
	• помехами искусственного происхождения.
23.	Причина замираний УКВ
	• изменение во времени рефракции радиоволн в
	атмосфере;
	• влияние помех естественного происхождения.
24.	Замирания сигнала могут наблюдаться
	• только при положительной рефракции;
	• только при отрицательной рефракции;
	• как при положительной, так и при отрицательной
25	рефракции.
25.	При дальнем тропосферном распространении УК радиоволн
	дальность
	• может намного превышать расстояние прямой
	видимости;
	не может превышать расстояние прямой видимости;равна расстоянию прямой видимости.
26.	Основными особенностями дальнего тропосферного
20.	распространения УКВ являются (необходимо выбрать все
	правильные ответы, их может быть несколько):
	• замирания сигнала;
	• уменьшение средних значений принимаемого сигнала
	с увеличением протяжённости линий ДТР;
	• влияние рельефа местности (особенно участков,
	прилегающих к передающей и приёмной антеннам) на
	величину принимаемого сигнала;
	• суточные и сезонные колебания сигналов;
	• усиление поля волн при огибании горных хребтов;
	• избирательное поглощение радиоволн водяными
	парами и газами атмосферы.
27.	Основными особенностями дальнего тропосферного
	распространения УКВ являются (необходимо выбрать все

	правильные ответы, их может быть несколько):
	• усиление поля волн при огибании горных хребтов;
	• ограниченность полосы пропускания на линии ДТР из-
	за интерференции большого числа волн, рассеянных
	неоднородностями тропосферы;
	• искажения сигналов из-за интерференции волн,
	рассеянных неоднородностями тропосферы;
	• специфическое явление потерь усиления антенны;
	• избирательное поглощение радиоволн водяными
	парами и газами атмосферы.
28.	Изменения мгновенных значений принимаемого сигнала,
	наблюдаемые при дальнем тропосферном распространении УКВ за
	относительно небольшие промежутки времени (секунды, минуты),
	называются
	• специфическим явлением потерь усиления антенны;
	• быстрыми замираниями;
	• медленными замираниями.
29.	Изменения среднеминутных, среднечасовых значений
2).	принимаемого сигнала на линиях дальнего тропосферного
	распространения УКСВ относятся к
	• специфическому явлению потерь усиления антенны;
	 быстрым замираниям;
20	• медленным замираниям.
30.	Причина быстрых замираний при дальнем тропосферном
	распространении УКВ
	• интерференция множества радиоволн с
	произвольными, но неизменными во времени
	амплитудами и случайными фазами, рассеянных на
	неоднородностях тропосферы;
	• изменение метеорологических условий на линии
	дальнего тропосферного распространения.
31.	Причина быстрых замираний при дальнем тропосферном
	распространении УКВ
	• интерференция множества радиоволн с
	произвольными, но неизменными во времени
	амплитудами и случайными фазами, рассеянных на
	неоднородностях тропосферы;
	• эффект Фарадея.
32.	Для борьбы с быстрыми замираниями при распространении УКВ на
	линиях дальнего тропосферного распространения
	• используют свойство пространственной
	избирательности;
	• используют принцип перестановочной
	двойственности;
	• в расчётных формулах учитывают сферичность
	поверхности Земли.
33.	Для борьбы с быстрыми замираниями при распространении УКВ на
	линиях дальнего тропосферного распространения
	• используют свойство частотной избирательности;
	• используют принцип перестановочной
	двойственности;
L	, , , , , , , , , , , , , , , , , , , ,

	• в расчётных формулах учитывают сферичность поверхности Земли.
35.	Глубина медленных замираний при дальнем тропосферном распространении УКВ зависит от (необходимо выбрать все правильные ответы, их может быть несколько): • протяжённости трассы дальнего тропосферного распространения; • метеорологических условий; • времени суток; • мощности приёмной антенны.
36.	Возможность возникновения тропосферных волноводов определяется явлением
37.	Высоты тропосферных волноводов обычно не превышают
38.	Дальность дальнего тропосферного распространения УКВ в тропосферных волноводах при благоприятных условиях может достигать • 600 км; • 600 км.
39.	В тропосферных волноводах могут распространяться волны
40.	К основным характерным особенностям дальнего ионосферного распространения УКВ относятся (необходимо выбрать все правильные ответы, их может быть несколько): • зависимость величины напряжённости электрического поля в точке приёма от частоты сигнала; • замирания сигнала; • усиление поля волн при огибании горных хребтов; • избирательное поглощение газами и водяными парами в ионосфере.
41.	К основным характерным особенностям дальнего ионосферного распространения УКВ относятся (необходимо выбрать все правильные ответы, их может быть несколько):

	избирательное поглощение газами и водяными парами в ионосфере.
42.	На быстрые поляризационные замирания при распространении УКВ
	на линии Земля – Космос влияют
	• время суток;
	• климатические условия;
	• эффект Фарадея, наблюдающийся при прохождении
	радиоволнами слоя ионосферы.
43.	На быстрые поляризационные замирания при распространении УКВ
	на линии Земля – Космос влияют
	• время суток;
	• климатические условия;
	 изменение вида поляризации радиоволны при прохождении ионосферы.
44.	Медленные замирания при распространении УКВ на линии Земля –
	Космос обусловлены
	• вращением ИСЗ вокруг собственной оси;
	• изменением метеорологических условий;
	• зависимостью от климатических условий.
45.	Медленные замирания при распространении УКВ на линии Земля –
	Космос обусловлены
	• флуктуациями во времени коэффициентов
	преломления тропосферы и ионосферы;
	• изменением метеорологических условий;
1.0	• зависимостью от климатических условий.
46.	К внешним помехам радиоприёму относятся (необходимо выбрать все
	правильные ответы, их может быть несколько):
	• промышленные помехи;
	• внутренние шумы приёмных устройств;
47.	• космические помехи.
41.	К внешним помехам радиоприёму относятся (необходимо выбрать все правильные ответы, их может быть несколько):
	 внутренние шумы приёмных устройств;
	• грозовые помехи;
	• космические помехи.

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

$N_{\underline{0}}$	Примерный перечень вопросов для тестов		
Π/Π			
Раздел 1. Распространение электромагнитных волн в свободном пространстве.			
1.	1. Каждая из радиолиний состоит из трёх основных частей:		
	• передающее устройство, линия связи (канал связи), приёмное		

	устройство;
	• передающее устройство, смеситель, приёмное устройство;
	• передающее устройство, гетеродин, блок индикации.
	передающее устронетью, тетеродин, олок индикации.
2.	Если информация сообщается радиосигналу в процессе его формирования в
	передающем блоке, то такую радиолинию принято называть:
	• первичной;
	• вторичной.
3.	Если информация сообщается радиосигналу при его взаимодействии с каким-либо
	объектом в среде распространения, то такую радиолинию принято называть:
	первичной;
	• вторичной.
4.	Радиорелейные линии связи относятся к
	• первичным радиолиниям;
	• вторичным радиолиниям.
5.	Радиолиния, осуществляющая связь между наземным диспетчерским пунктом и
	летательным аппаратом, относится к
	• первичным радиолиниям;
	• вторичным радиолиниям.
6.	В радиолокации находят применение
	• первичные радиолинии;
	• вторичные радиолинии.
7	Раздел 2. Строение и электрические параметры атмосферы Земли.
7.	Атмосфера Земли состоит из следующих основных слоёв (в порядке возрастания
	высоты):
	• тропосфера, стратосфера, ионосфера;
	• стратосфера, тропосфера, ионосфера;
8.	 ионосфера, тропосфера, стратосфера. Приземный слой атмосферы, простирающийся до высот 10 – 12 км в умеренных
0.	широтах $(16-18 \text{ км на экваторе и } 7-10 \text{ км в полярных широтах})$ называется:
	• тропосфера;
	тропосфера;стратосфера;
	• ионосфера.
	• ионосфера.
9.	Слой атмосферы, простирающийся от тропопаузы до высот 50 – 60 км, называется:
·	• тропосфера;
	• стратосфера;
	• ионосфера.
10.	Верхний слой атмосферы, простирающийся от стратопаузы до высот 1000 км,
10.	называется:
	• тропосфера;
	• стратосфера;
	• ионосфера.
11.	Слой атмосферы, где содержится большое количество свободных электронов,
	называется:
	• тропосфера;
	• стратосфера;
	• ионосфера.
12.	Ионосфера за счёт имеющегося в ней большого количества свободных электронов
	1 1 1 , 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

	обладает свойством:
	• проводимости, а, следовательно, способна отражать
	электромагнитные волны с длинами более 10 м;
	• проводимости, а, следовательно, способна поглощать
	электромагнитные волны с длинами более 10 м.
13.	Явление искривления траектории распространения радиоволн в тропосфере (в
	меньшей степени в стратосфере) называется:
	• рефракцией;
	• дифракцией;
	• поляризацией.
Разде	л 3. Особенности распространения радиоволн в условиях влияния атмосферы и
	земной поверхности.
14.	Прохождение радиосигнала в среде распространения, обладающей свойствами,
	отличными от свойств свободного пространства, сопровождается:
	• изменением его амплитуды;
	• изменением амплитуды сигнала на выходе передающей антенны;
	• изменением отражающих свойств объекта радиолокационного
1.5	обнаружения.
15.	Прохождение радиосигнала в среде распространения, обладающей свойствами,
	отличными от свойств свободного пространства, сопровождается:
	• изменением скорости и направления радиосигнала;
	• изменением амплитуды сигнала на выходе передающей антенны;
	• изменением отражающих свойств объекта радиолокационного
16.	обнаружения. Прохождение радиосигнала в среде распространения, обладающей свойствами,
10.	отличными от свойств свободного пространства, сопровождается:
	• поворотом плоскости поляризации радиоволны;
	изменением амплитуды сигнала на выходе передающей антенны;
	• изменением отражающих свойств объекта радиолокационного
	обнаружения.
17.	Мощность излучения элементарного электрического диполя в свободном
	пространстве:
	• прямо пропорциональна квадрату тока, протекающего по
	проводнику;
	• обратно пропорциональна квадрату тока, протекающего по
	проводнику;
	• прямо пропорциональна току, протекающего по проводнику.
18.	Отношение плотности потока мощности, создаваемого реальной антенной в
	рассматриваемом направлении к плотности потока мощности, создаваемого
	гипотетической ненаправленной антенной, при одной и той же мощности обеих
	антенн, называется:
	• диаграммой направленности антенны;
	• коэффициентом направленного действия антенны;
10	• коэффициентом усиления антенны.
19.	Влияние земной поверхности на распространение радиоволн обусловлено
	(необходимо выбрать все правильные ответы, их может быть несколько):
	• отражением радиоволн от поверхности Земли и связанным с ним
	явлением интерференции;
	• полупроводящими свойствами среды и связанными с ними потерями
	электромагнитной энергии;

	• неровностями земной поверхности, вызывающими рассеяние;
	• сферичностью Земли и связанным с нею явлением дифракции;
	• влиянием рефракции радиоволн в атмосфере Земли;
	• влиянием рассеяния на неоднородностях атмосферы;
	• поглощением энергии радиоволн атмосферными газами, осадками,
	туманом, пылью и т. п.
20.	Влияние атмосферы Земли на распространение радиоволн обусловлено
	(необходимо выбрать все правильные ответы, их может быть несколько):
	• отражением радиоволн от поверхности Земли и связанным с ним
	явлением интерференции;
	• полупроводящими свойствами среды и связанными с ними потерями
	электромагнитной энергии;
	• неровностями земной поверхности, вызывающими рассеяние;
	• сферичностью Земли и связанным с нею явлением дифракции;
	• влиянием рефракции радиоволн в атмосфере Земли;
	• влиянием рассеяния на неоднородностях атмосферы;
	• поглощением энергии радиоволн атмосферными газами, осадками,
	туманом, пылью и т. п.
21.	Радиоволны, распространяющиеся в непосредственной близости от поверхности
	Земли (в масштабе длины волны) и частично огибающие земную поверхность
	вследствие дифракции, называются:
	• тропосферными;
	• земными;
	• ионосферными.
22.	Радиоволны, распространяющиеся на значительные расстояния за счёт 1)
	рефракции и рассеяния в атмосфере, 2) направляющего волноводного действия
	тропосферы называются:
	• тропосферными;
	• земными;
22	• ионосферными.
23.	Радиоволны, распространяющиеся на большие расстояния и способные огибать
	земной шар за счёт, 1) однократного или многократного переотражения от
	ионосферы или 2) рассеяния на неоднородностях ионосферы, либо 3) отражения
	от ионизированных следов метеоров, называются:
	• тропосферными;
	• земными;
24.	• ионосферными.
24.	Характер влияния тех или иных факторов на процесс распространения радиоволн
	зависит от
	• мощности сигнала;
	• направления вектора Пойтинга;
25.	• длины волны. Радиоволна с длиной 3 см относится к
23.	
	• УКВ диапазону длин волн;
	• диапазону сверхдлинных волн;
26	• коротким волнам.
26.	Радиоволна с длиной 3 см относится к
	• УКВ диапазону длин волн;
	• диапазону сверхдлинных волн;
	• коротким волнам.

27.	Радиоволна с длиной 200 м относится к
	• диапазону средних длин волн;
	• диапазону сверхдлинных волн;
	• коротким волнам.
Разде	ел 4. Влияние Земли на распространение радиоволн при поднятых излучателях.
28.	Электромагнитные параметры различных участков верхних слоёв земной
	поверхности зависят от (правильных ответов может быть несколько)
	• их структуры (например, наличия растительности, водной
	поверхности и т.п.);
	• влажности;
	• температуры;
	• длины волны;
	• поляризации падающей волны.
29.	Для осуществления радиосвязи через почву и воду применимы только
	• длинные и сверхдлинные волны;
	• радиоволны КВ и УКВ;
	• волны оптического диапазона длин волн.
30.	Угол Брюстера – это такой угол падения электромагнитной волны, при котором
	коэффициент отражения равен
	• нулю;
	• 1;
	\bullet $\pi/2$.
31.	Плоская электромагнитная волна, падающая в среде «А» на идеально проводящую
	гладкую поверхность среды «Б» под произвольным углом, независимо от её
	поляризации
	• полностью отражается в среду «А»;
	• полностью преломляется в среду «Б»;
	• отражается в среду «А» под углом Брюстера.
32.	Понятие о степени неровности поверхности, над которой распространяется
	радиоволна, носит относительный характер. Критерием, по которому судят о том,
	является ли рассматриваемая поверхность шероховатой или нет, является
	отношение
	• длины волны к высоте неровности;
	• угла падения к углу преломления;
	• показателей преломления сред.
33.	Критерий Рэлея определяет
	• степень шероховатости поверхности, на которую падает радиоволна;
	• границу ближней зоны излучения;
	• границу дальней зоны излучения.
34.	Критерий Рэлея определяется
	• высотами неровностей поверхности, на которую падает радиоволна,
	длиной волны и углом её падения;
	• отношением модулей напряженностей электрического поля
	падающей и отраженной радиоволн;
25	• площадью отражающей поверхности.
35.	Зоны Френеля на плоской отражающей поверхности носят характер
	• двух соприкасающихся окружностей;
	• концентрических окружностей;
	• ломаных линий.
36.	Зоной Френеля называют участок отражающей поверхности, имеющий такие

	границы, при которых длины проходящих через них траекторий радиоволн (от			
	передающей до приёмной антенн) отличаются на			
	• \(\lambda/4\);			
	 λ; 			
	 λ/2. 			
37.	Если отражающая поверхность является гладкой (в соответствии с критерием Рэлея), то при определении отраженного от неё поля необходимо учитывать			
	• все зоны Френеля;			
	• 1-ю зону Френеля и несколько последующих зон с малыми номерами.			
38.	Если высота расположенных на отражающей поверхности неровностей много меньше длины радиоволны, то суммарное отражённое поле приблизительно равно			
	полю, обусловленному			
	• половиной 1-й зоны Френеля;			
	• всеми зонами Френеля;			
	• 1-й зоной Френеля и несколькими последующими зонами с малыми			
	номерами.			
39.	Если высота неровностей на всем участке поверхности, существенном при			
	отражении, превышает величину, определенную критерием Рэлея, то отражение в			
	зависимости от характера неровностей, будет			
	• рассеянным или полурассеянным;			
	• зеркальным.			
40.	Если высота неровностей на всем участке поверхности, существенном пр			
	отражении, превышает величину, определенную критерием Рэлея, то отражение в			
	зависимости от характера неровностей, будет			
	• зеркальным;			
	• диффузным.			
41.	При рассеянном (диффузном) отражении имеет место			
	• рассеяние радиоволн по всем направлениям независимо от угла			
	падения волны;			
	• рассеяние, концентрирующееся вблизи направлений зеркального			
	отражения, когда угол падения равен углу отражения.			
42.	В большинстве случаев отражение от реальных физических поверхностей (суша,			
	море, лес и т.п.) является			
	• рассеянным;			
	• полурассеянным;			
	• зеркальным.			
43.	В большинстве случаев отражение от реальных физических поверхностей (суша,			
	море, лес и т.п.) является			
	• рассеянным;			
	• полурассеянным;			
	• зеркальным.			
44.	Чем короче длина волны, тем вероятнее выполнение условий, при которых			
	отражение от реальной физической поверхности близко к			
	• диффузному;			
	• зеркальному.			
45.	При уменьшении угла скольжения отражение от реальных физических			
	поверхностей стремится к			
	• диффузному;			
	• зеркальному.			
	1 **P			

46.	При стремлении угла падения электромагнитной волны к нормальному (угол скольжения близок к 90°) отражение от реальных физических поверхностей			
	стремится к			
	• диффузному;			
L	• зеркальному.			
47.	Основными методами решения задач рассеяния радиоволн статистически			
	неровными поверхностями являются			
	• метод Кирхгофа;			
	• принцип Гюйгенса-Френеля;			
48.	 метод разделения переменных. Основными методами решения задач рассеяния радиоволн статистически 			
40.	неровными поверхностями являются			
	• метод разделения переменных;			
	• принцип Гюйгенса-Френеля;			
	• метод малых возмущений.			
49.	Согласно методу Кирхгофа неровную отражающую поверхность можно			
	представить в виде совокупности			
	• геометрических тел простой формы (цилиндр, диск, конус и т.п.),			
	после чего определить отраженное поле, используя известные			
	методы решения задач дифракции;			
70	• плоских площадок, зеркально отражающих радиоволны.			
50.	Метод решения электродинамических задач, заключающийся в замене влияния на			
	переменное электромагнитное поле идеально отражающей поверхности влиянием зеркально расположенного источника, называется			
	• методом Кирхгофа;			
	методом разделения переменных;методом зеркальных изображений.			
51.	В соответствии с методом зеркальных изображений на границе с идеально			
	проводящей средой			
	 напряженности электрического поля прямой и отраженной сферических радиоволн равны по модулю; 			
	• напряженность электрического поля отраженной радиоволны в два			
	раза превышает напряженность электрического поля падающей			
	сферической волны;			
	• напряженность электрического поля отраженной радиоволны не			
	зависит от модуля напряженности электрического поля падающей			
	сферической волны.			
52.	При отражении сферической волны от идеально гладкой проводящей поверхности			
	коэффициент отражения в каждой точке поверхности равен			
	• 1;			
	• 2;			
<i>52</i>	• 0,5.			
53.	Явление, которое возникает в результате наложения (суперпозиции) радиоволн одинаковой частоты, приходящих в рассматриваемую точку, называется			
	• интерференцией;			
	• рефракцией;			
	• дифракцией.			
54.	Влияние земной поверхности на поле поднятых излучателей обусловлено			
"	• дифракцией радиоволн вокруг поверхности Земли;			
	• интерференцией отраженных от её поверхности радиоволн;			
L				

	• эффектом Фарадея.				
55.	Интерференционное влияние поверхности Земли на диаграмму направленност (ДН) поднятых излучателей заключается в следующем:				
	• ДН расширяется в обеих плоскостях, не меняя своей формы;				
	• ДН носит многолепестковый характер;				
	• влияние отсутствует.				
56.	Интерференционное влияние поверхности Земли на диаграмму направленности				
	(ДН) поднятых излучателей заключается в				
	• расширении ДН в главных в плоскостях;				
	• многолепестковом характере ДН;				
	• появлении дифракционных максимумов излучения.				
57.	Интерференционное влияние Земли на поле поднятых над её поверхностью				
	горизонтального и вертикального диполей				
	• примерно одинаково: диаграммы направленности обоих диполей				
	носят многолепестковый характер;				
	• разное: на поле излучения горизонтального диполя поверхность				
50	Земли влияния не оказывает.				
58.	Поле излучения поднятого над поверхностью Земли излучателя				
	• убывает быстрее, чем в свободном пространстве;				
	• убывает медленнее, чем в свободном пространстве;				
50	• убывает с расстоянием также, как в свободном пространстве.				
59.	Сферичность земной поверхности следует учитывать в интерференционных формулах, если				
	 расстояние между передающей и приёмной антеннами очень велико и намного превышает расстояние прямой видимости; 				
	• расстояние между передающей и приёмной антеннами много				
	меньше расстояния прямой видимости.				
60.	Расстояние между передающей и приёмной антеннами, при котором соединяющая				
	их прямая линия касается поверхности Земли между ними, называется				
• расстоянием прямой видимости;					
	• областью применимости формулы Введенского;				
	• длиной волны.				

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п		П	еречень контрольных работ
	Не предусмотрено		

- 10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.
 - 11. Методические указания для обучающихся по освоению дисциплины
- 11.1. Методические указания для обучающихся по освоению лекционного материала.

Основное назначение лекционного материала – логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в

рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- в устной форме с демонстрацией отдельных таблиц, формул и иного графического материала письменной форме на доске посредством мела или маркера;
- в форме открытой дискуссии при обсуждении вопросов, освещаемых в лекциях;
- в форме презентаций, составленных по отдельным разделам лекционного курса и демонстрируемых преподавателем.

Освоению лекционного курса может способствовать литература, имеющаяся в библиотеке ГУАП, указанная выше в таблице 8.

Отдельные темы лекционного курса, представленные в виде презентации, размещены в системе LMS (см. папку «ПРЕЗЕНТАЦИИ РЭР»).

Освоению лекционного курса может способствовать литература, размещенная в системе LMS (см. папку «ЛЕКЦИИ_РЭР»):

- 1. Электродинамика и распространение радиоволн [Текст] : учебное пособие / В. В. Никольский, Т. И. Никольская. 3-е изд., перераб. и доп. М. : Наука, 1989. 544 с. : рис. Библиогр.: с. 540 543. ISBN 5-02-014033-3.
- 2. В. С. Калашников, Л. Я. Родос. Электродинамика и распространение радиоволн (электродинамика): Письменные лекции. Спб: СЗТУ. 2001. 88 с.
- 3. В.П. Кубанов. Влияние окружающей среды на распространение радиоволн. Самара: ПГУТИ, 2013. 92 с., ил.

В таблице 20 приведены темы лекционных занятий и соответствующие им страницы в учебном пособии «Электродинамика и распространение радиоволн» авторов В. В. Никольского, Т. И. Никольской. М.: Наука, 1989.

Таблица 20.

Таолиц	a 20.	r ee
Номер	Название и содержание разделов и тем	Названия разделов и номера
раздела		страниц учебного пособия
лекционного	лекционных занятий	
курса		
1.	Распространение электромагнитных волн	п.15.1
	в свободном пространстве.	Общие представления
	Тема 1. Типы радиолиний.	п.п.15.1.1 Радиоволны.
	Тема 2. Распространение радиоволн в	п.п.15.1.2 Роль антенн
	свободном пространстве.	(c.467 - 472)
2.	Строение и электрические параметры	п.15.1
	атмосферы Земли.	Общие представления
	Тема 1. Строение атмосферы.	п.п.15.1.3 Основные
	Тема 2. Химический состав атмосферы,	факторы распространения
	распределение электронов в атмосфере,	радиоволн (с.470 – 472)
	температурное распределение в атмосфере.	радповозні (с. 170 - 172)
	Тема 3 Явления, связанные с прохождением	
	радиоволн через атмосферу.	
	Тема 4. Диэлектрическая проницаемость и	
	индекс преломления тропосферы.	
3.		п.15.1
3.	Особенности распространения радиоволн	
	в условиях влияния атмосферы и земной	Общие представления п.п.15.1.1 Радиоволны.
	поверхности.	п.п.15.1.3 Основные
	Тема 1.Особенности распространения	
	радиоволн в условиях влияния атмосферы и	факторы распространения
	земной поверхности.	радиоволн (с.470 – 472)
4	Тема 2. Классификация радиоволн.	15 O F
4.	Влияние Земли на распространение	п. 15.2 Геометрическая
	радиоволн при поднятых излучателях.	оптика и теория дифракции
	Тема 1. Электрические параметры верхних	при анализе
	слоев Земли.	распространения радиоволн
	Тема 2. Коэффициенты отражения радиоволн	п.п.15.2.1 О возможностях
	от земной поверхности.	постановки
	Тема 3.Критерий Релея при отражении	электродинамической
	радиоволн от земной поверхности.	задачи (с. 472 - 474).
	Тема 4. Зоны Френеля при отражении	п.п.15.2.2 Оценка
	радиоволн от земной поверхности.	неровностей земной
	Тема 5.Рассеяние радиоволн неровными	поверхности (с. 474 – 475).
	поверхностями.	п.п.15.2.3 Доминантная
	Тема 6.Методы решения задач рассеяния	область радиолинии (с.475 –
	радиоволн статистически неровными	478).
	поверхностями.	
	Тема 7. Коэффициенты рассеяния радиоволн	
	статистически неровной поверхностью в	
	зеркальном направлении.	
	Тема 8. Отражение сферической радиоволны	
	от плоской поверхности Земли.	
	Тема 9. Поле излучателей, поднятых над	
	плоской поверхностью Земли.	
5.	Влияние Земли на распространение	п. 15.3 Земные волны
	радиоволн при расположении излучателей	п.п.15.3.1. Лучевая модель
	вблизи ее поверхности.	радиолинии (с.478 – 481).
	волизи се поверхности.	радиолини (с.т/о тот).

	Τ	T 1
	Тема 1.Структура поля вблизи полупроводящей плоской однородной	
	поверхности. Тема 2. Напряженность поля электрического	
	диполя, расположенного вблизи плоской	
	поверхности Земли.	
	Тема 3. Распространение радиоволн над	
	сферической поверхностью Земли.	
6.	Распространение радиоволн в	п. 15.4 Влияние тропосферы
	атмосфере.	п.п.15.4.1 Общие свойства
	Тема 1. Рефракция радиоволн в	тропосферы (с.485 – 486).
	неоднородной тропосфере.	п.п.15.4.2 Тропосферная
	Тема 2. Траектория радиоволн в ионосфере.	рефракция (с.486 – 488).
	Тема 3 Критические и максимальные	п.п.15.5.2 Ионосферная
	частоты.	рефракция (с.492 – 495).
	Тема 4. Фазовая и групповая скорости	
	распространения радиоволн в ионосфере. Тема 5. Влияние магнитного поля Земли на	
	распространение радиоволн в ионосфере.	
7.	Распространение УКВ на линиях Земля	п. 15.4 Влияние тропосферы
	- Земля, Земля - воздух.	п.п.15.4.1 Общие свойства
	Тема 1. Области применения УКВ.	тропосферы (с.485 – 486).
	Тема 2. Характеристики рассеивающих	п.п.15.4.2 Тропосферная
	свойств объектов.	рефракция (с.486 – 488).
	Тема 3. Основное уравнение радиолокации.	п.п.15.4.3 Рассеяние и
	Тема 4. Влияние отражений радиоволн от	поглощение радиоволн в
	поверхности Земли на дальность	тропосфере (с.488 – 490).
	обнаружения объекта.	
	Тема 5. Влияние отражений радиоволн от	
	земной поверхности на точность измерения координат угла места.	
	Тема 6. Распространение УКВ в пределах	
	прямой видимости с учетом рефракции.	
	Тема 7. Распространение УКВ на закрытых	
	трассах.	
	Тема 8. Дальнее тропосферное	
	распространение УКВ.	
	Тема 9. Распространение УКВ в	
	тропосферных волноводах.	
	Тема 10. Распространение УКВ путем	
0	рассеяния на неоднородностях ионосферы.	_ 15 5 D
8.	Распространение УКВ на линии Земля – Космос.	п.15.5 Радиоволны в
	Тема 1. Ослабление УКВ на линии Земля –	ионосфере п.п.15.5.1 Общие свойства
	Космос. Замирания.	ионосферы (с.490 – 492).
	Тема 2. Помехи радиоприему.	п.п.15.5.2 Ионосферная
	Тема 3. Оптимальные частоты радиосвязи на	рефракция (с.492 – 495).
	линии Земля – Космос.	п.п.15.5.3 Дисперсия и
		поглощение радиоволн
		(c.495 – 497).
		п.п.15.6.5 О космической
		радиосвязи (с.504 – 505).

		п.п.15.6.6 О помехах при
		работе радиолиний и
		электромагнитной
		совместимости (с.505 –
		506).
9.	Особенности распространения	п. 15.6
	сантиметровых, миллиметровых и	п.п.15.6.4 Ультракороткие
	оптических радиоволн в тропосфере.	волны (c. $503 - 504$).
	Тема 1.Ослабление электромагнитных волн в	
	тропосфере.	
	Тема 2. Ослабление электромагнитных волн	
	в атмосферных гидрометеообразованиях.	

Освоению лекционного курса может способствовать литература и иллюстративный материал (в том числе в виде презентаций по отдельным темам дисциплины), размещенная в сети Интернет на сайтах, указанных в таблице 9.

- 11.2. Методические указания для обучающихся по участию в семинарах (не предусмотрено учебным планом по данной дисциплине)
- 11.3. Методические указания для обучающихся по прохождению практических занятий (не предусмотрено учебным планом по данной дисциплине)
- 11.4. Методические указания для обучающихся по выполнению лабораторных работ.
- В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задание и требования к проведению лабораторных работ

В соответствии с учебным планом дисциплина «Распространение электромагнитных радиоволн» предполагает проведение лабораторных работ. Наименование лабораторных работ и соответствующее им количество учебных часов приведены выше в таблице 5.

Лабораторные занятия проводятся в специальной лаборатории «Электродинамика и распространение радиоволн» кафедры № 21 «Радиотехнических систем и оптоэлектронных комплексов» в аудитории 11-01а на ул. Б. Морской.

Для выполнения лабораторных работ, обучающиеся на добровольной основе формируют из состава группы несколько «бригад» по 2-3 человека в каждой. Каждой из «бригад» преподавателем назначается лабораторная работа. Каждой лабораторной работе предшествует коллоквиум, который проходит следующим образом. Каждому студенту в «бригаде» преподаватель персонально задаёт 1-2 вопроса, касающиеся либо порядка выполнения лабораторной работы, либо физической сути исследуемого в ней явления. Студент считается допущенным к выполнению лабораторной работы только после успешной сдачи коллоквиума.

Экспериментальные данные, полученные в ходе выполнения лабораторной работы и представленные в табличной форме, заносятся в протокол. Допускается наличие одного протокола на «бригаду».

Защита лабораторных работ предполагает наличие отчёта у каждого из обучающихся. Отчёт должен быть выполнен по всем правилам, предусмотренным методическими указаниями к лабораторной работе и нормативной документацией ВУЗа.

После ознакомления с содержанием отчёта и представленными в нём результатами исследования, преподаватель задаёт каждому из обучающихся несколько вопросов, касающихся либо теоретического материала, изложенного в методических указаниях, либо анализа полученных экспериментальных данных. Только после успешных ответов обучающегося на вопросы преподавателя и усвоения им теоретического материала, ставится оценка.

Таким образом, при проведении лабораторных занятий преподаватель осуществляет контроль успеваемости посредством следующих средств:

- оцениваются ответы студентов при сдаче коллоквиума;
- оценивается успешное выполнение программы исследований, изложенной в методических указаниях и грамотное оформление протокола;
- оценивается грамотное оформление отчёта по лабораторной работе в соответствии с требованиями методических указаний, а также наличие в отчёте выводов о результатах проведённых исследований;
- оцениваются ответы студентов в ходе защиты лабораторной работы.

Все оценки, в том числе итоговая, выставляются по 5-бальной шкале.

Для каждой из указанных в таблице 5 лабораторных работ в библиотеке ГУАП и в лаборатории в ауд. 11-01а имеются методические указания.

В таблице 21 представлен перечень методических указаний к выполнению лабораторных работ по дисциплине «Распространение электромагнитных радиоволн»

Таблица 21 – Перечень методических указаний к выполнению лабораторных работ

Шифр	Библиографическая ссылка / URL адрес	Количество экземпляров в библиотеке (кроме электронных экземпляров)
621 И 88	Исследование дифракции электромагнитных волн на отверстии и цилиндре : методические указания к выполнению лабораторной работы / СПетерб. гос. ун-т аэрокосм. приборостроения ; сост.: Л. А. Федорова, Н. А. Гладкий СПб. : Изд-во ГУАП, 2010 30 с. : граф., рис Библиогр.: с. 29 (3 назв.).	134

	Влияние зон Френеля на распространение электромагнитных волн. Благовещенский Д.В. Методические указания к выполнению лабораторной работы. Л.: ЛИАП. 1988. — 20 с.	Электронный ресурс кафедры
	Исследование электрических параметров сред с шероховатой поверхностью. Благовещенский Д.В. Методические указания к выполнению лабораторной работы. СПб.: ГААП. 1996. – 22 с.	Электронный ресурс кафедры
26- 24 И 88	Исследование структуры электромагнитного поля над проводящей плоской поверхностью [Текст]: методические указания к выполнению лабораторных работ / Ленингр. ин-т авиац. приборостроения; Ленингр. ин-т авиац. приборостроения СПб.: [б. и.], 1998 28 с.: рис Библиогр.: с. 28 (6 назв.).	24

В методических указаниях к выполнению лабораторных работ обозначены цели каждой работы, приводится перечень лабораторного оборудования и схема лабораторной установки. В сжатой форме даны основные терминологические понятия, относящиеся к исследованию, разъяснена суть исследуемых физических явлений, приведены расчётные формулы. Там же представлены таблицы экспериментальных данных, полученных обучающимися в ходе выполнения лабораторной работы. Кроме того, методические указания содержат как план исследования, так и методику обработки экспериментальных данных, способы их представления (посредством таблиц и графиков), а также примерные контрольные вопросы. Отдельным пунктом в методических указаниях изложено содержание отчёта о лабораторной работе.

Структура и форма отчета о лабораторной работе

Приводятся в методических указаниях к выполнению лабораторных работ, представленных в таблице Д, а также в разделе нормативной документации сайта ГУАП http://guap.ru/guap/standart/titl_main.shtml.

Требования к оформлению отчета о лабораторной работе

Приводятся в методических указаниях к выполнению лабораторных работ, представленных в таблице Д, а также в разделе нормативной документации сайта ГУАП http://guap.ru/guap/standart/titl_main.shtml.

- 11.5. Методические указания для обучающихся по прохождению курсового проектирования/ выполнения курсовой работы (не предусмотрено учебным планом по данной дисциплине)
- 11.6 Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения

и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихся, является учебно-методический материал по дисциплине, представленные в таблице 8.

Перечень ресурсов информационно-телекоммуникационной сети ИНТЕРНЕТ, необходимых для освоения дисциплины приведен в таблице 9.

Для самостоятельной работы обучающихся предложены следующие темы, представленные в таблице 22.

Таблица 22 - Темы теоретического материала для самостоятельного изучения

№ п/п	Тамтт на самостоятали под наушания				
	Темы на самостоятельное изучение				
Разде.	Раздел 5. Влияние Земли на распространение радиоволн при расположении				
	излучателей вблизи ее поверхности.				
1.	Скорость радиоволн при их распространении над плоской полупроводящей земной поверхностью.				
2.	Распространение радиоволн над неоднородной плоской поверхностью Земли. Береговая рефракция.				
Раздел	9. Особенности распространения сантиметровых, миллиметровых и				
	оптических радиоволн в тропосфере.				
3.	Ослабление электромагнитных волн в тропосфере.				
4.	Ослабление электромагнитных волн в атмосферных				
	гидрометеообразованиях.				
	Раздел 10. Распространение коротких волн.				
5.	Особенности распространения коротких волн.				
6.	Рабочие частоты и их выбор.				
7.	Траектория волн в ионосфере.				
Раздел	11. Распространение сверхдлинных, длинных и средних радиоволн.				
8.	Особенности распространения сверхдлинных и длинных радиоволн.				
9.	Методика расчета напряженности поля сверхдлинных и длинных				
	радиоволн.				
10.	Особенности распространения средних волн.				
11.	Методика расчета напряженности поля средних радиоволн.				
12.	Нелинейные эффекты в ионосфере при распространении средних волн.				

Контроль самостоятельной работы студентов в течение семестра осуществляется следующим образом. В течение семестра каждый студент должен представить преподавателю либо доклад, либо презентацию на выбранную им или указанную преподавателем тему. Доклад должен содержать не менее 5 страниц текста, презентация - не менее 10 слайлов.

Каждая представленная самостоятельная работа оценивается преподавателем по 5бальной шкале исходя из следующих критериев:

- соответствия предложенной теме;
- качества иллюстративного и графического материалов;
- глубины раскрытия темы.

Те доклады и презентации, которые наилучшим образом раскрывают выбранную тему, могут быть, по согласию студента, представлены на всеобщее обсуждение в ходе лекционных занятий.

При выполнении самостоятельной работы обучающиеся могут пользоваться литературой и учебно-справочными материалами, представленными в таблицах 8 – 9.

11.7. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

Текущий контроль успеваемости проводится в середине семестра по материалам прочитанного к этому времени лекционного курса (перечень вопросов приведён в таблице 16 настоящей рабочей программы).

11.8. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

— зачет — это форма оценки знаний, полученных обучающимся в ходе изучения учебной дисциплины в целом или промежуточная (по окончании семестра) оценка знаний обучающимся по отдельным разделам дисциплины с аттестационной оценкой «зачтено» или «не зачтено».

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя, как было сказано в разделе 10 рабочей программы «Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине», промежуточное и итоговое тестирования.

Таким образом, возможность получения зачёта, складывается из оценок, полученных обучающимся за

- посещаемость лекционных и лабораторных занятий;
- выполнение всех предусмотренных настоящей рабочей программой лабораторных работ и их успешную защиту;
- выполнение самостоятельной работы (перечень тем приведен в таблице 22 настоящей рабочей программы);
- итоговое тестирование (проводится после ознакомления с лекционным курсом на зачётной неделе, перечень вопросов приведен в таблице 17 настоящей рабочей программы).

Оценки выставляются по 5-бальной шкале (см. табл. 15). Итоговая оценка («зачёт»/»незачёт»), формирующаяся на основе указанных средств контроля за успеваемостью.

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой