МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего

образования "САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 21

УТВЕРЖДАЮ Руководитель направления

	(должност	ть, уч. степ	ень, звание)	
Н.В. По	варенки	ин	,	-
	(ини	ициалы, фам	H.E	LH
	AV	(подпись)	20.20	M

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Устройства генерирования и формирования сигналов» (Наименование дисциплины)

Код направления подготовки/ специальности	11.03.01
Наименование направления подготовки/ специальности	Радиотехника
Наименование направленности	Радиотехнические средства передачи, приема и обработки сигналов
Форма обучения	очная

Лист согласования рабочей программы дисциплины

Программу составил (а)	110 201
услу к. т. н. досу. (подпись, д	ата) М. Е. Невейкци (инициалы, фамилия)
Программа одобрена на заседании кафедры №	21
«27».05.2020 г, протокол № 6	
Заведующий кафедрой № 21	
д.т.н.,проф.	А.Ф. Крячко
(уч. степень, звание) (подпись,	дата) (инициалы, фамилия)
	7
Ответственный за ОП ВО 11.03.01(01)	
-//	К.К. Томчук
ДОЦ.,К.Т.Н. (должность, уч. степень, звание) (подпись,	(hourway)
Заместитель директора института №2 по метод	цической работе
	О.Л. Балышева
ДОЦ., К.Т.Н., ДОЦ. (подпись,	(
(должность, уч. степень, звание) (подпись,	Process &

Аннотация

Дисциплина «Устройства генерирования и формирования сигналов» входит в образовательную программу высшего образования по направлению подготовки/ специальности 11.03.01 «Радиотехника» направленности «Радиотехнические средства передачи, приема и обработки сигналов». Дисциплина реализуется кафедрой «№21».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ПК-3 «Способен осуществлять сбор и анализ исходных данных для расчета и проектирования деталей, узлов и устройств радиотехнических систем»

Содержание дисциплины охватывает круг вопросов, связанных с принципом работы радиоэлектронных системы передачи информации, предназначена для получения студентами необходимых знаний и навыков в области разработки, проектирования, подготовки к производству и техническому обслуживанию основных узлов систем связи различного назначения, в частности устройств генерирования и формирования сигналов в радиоэлектронных системах передачи информации.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, самостоятельная работа студента.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 4 зачетных единицы, 144 часа.

Язык обучения по дисциплине «русский»

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Получение студентами необходимых знаний и навыков в области в области разработки, проектирования, подготовки к производству и техническому обслуживанию основных узлов систем связи различного назначения, в частности устройств генерирования и формирования сигналов в радиоэлектронных системах передачи информации, соотнесенное с общими целями образовательной программы подготовки бакалавра, в том числе имеющими полидисциплинарный характер.

- 1.2. Дисциплина входит в состав части, формируемой участниками образовательных отношений, образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

таолица т ттере тепь компетенции и индикаторов их достижения				
Категория (группа) компетенции	Код и наименование компетенции	Код и наименование индикатора достижения компетенции		
Профессиональные компетенции	ПК-3 Способен осуществлять сбор и анализ исходных данных для расчета и проектирования деталей, узлов и устройств радиотехнических систем	ПК-3.3.1 знать основные технические характеристики радиотехнических систем ПК-3.У.1 уметь осуществлять сбор и анализ исходных данных для расчета и проектирования деталей, узлов и устройств радиотехнических систем ПК-3.В.1 владеть навыками обоснования и инженерного расчета основных технических характеристик деталей, узлов и устройств радиотехнических систем		

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- Математика. Математический анализ;
- Физика;
- Электротехника;
- Электроника;
- Радиотехнические цепи и сигналы;
- Электропитание устройств и систем.

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и могут использоваться при изучении других дисциплин:

- Схемотехника аналоговых электронных устройств;
- Основы телевидения;
- Устройства приема и обработки сигналов;
- Основы конструирования и технологии производства РЭС;
- Основы компьютерного проектирования.

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

		Трудоемкость по
Вид учебной работы	Всего	семестрам
		№5
1	2	3
Общая трудоемкость дисциплины, 3E/ (час)	4/ 144	4/ 144
Аудиторные занятия, всего час.	51	51
в том числе:		
лекции (Л), (час)	34	34
практические/семинарские занятия (ПЗ),		
(час)		
лабораторные работы (ЛР), (час)	17	17
курсовой проект (работа) (КП, КР), (час)		
экзамен, (час)	45	45
Самостоятельная работа, всего (час)	48	48
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач,	Экз.	Экз.
Экз.**)		

Примечание: ** кандидатский экзамен

1. Содержание дисциплины

1.1. Распределение трудоемкости дисциплины по разделам и видам занятий

Разделы дисциплины и их трудоемкость приведены в таблице 2.

Таблица 2. – Разделы дисциплины и их трудоемкость

Разделы, темы дисциплины	Лекции	ПЗ (СЗ)	ЛР	КП	CPC
	(час)	(час)	(час)	(час)	(час)
	Семестр	5			
Раздел 1. Устройства усиления	17	-	8	-	10
и генерирования радиосигналов					
Раздел 2. Виды модуляции и	17	-	9	-	11
модулирующие устройства					
Итого в семестре:	34		17		21
Итого:	34	0	17	0	21

1.2. Содержание разделов и тем лекционных занятий

Содержание разделов и тем лекционных занятий приведено в таблице 3.

Таблица 3 - Содержание разделов и тем лекционных занятий

Номер раздела	Название и содержание разделов и тем лекционных занятий	
Номер раздела	Название и содержание разделов и тем лекционных занятий	
1	Устройства усиления и генерирования радиосигналов	
	Тема 1.1 Генераторы с внешним возбуждением	
	Предназначение и применение устройств генерирования и	
	усиления радиосигналов. Элементная база. Принцип работы	

генераторов с внешним возбуждением (ГВВ). Обобщенная схема ГВВ. Энергетические соотношения для входной и выходной цепей. Схемы питания входной и выходной цепей ГВВ. Электрические режимы активного элемента (АЭ) в ГВВ: недонапряженный, перенапряженный и критический. Гармонический анализ импульсов выходного тока АЭ. Влияние питающих напряжений на режим АЭ. Оптимизация режима ГВВ изменением сопротивления нагрузки и угла отсечки выходного тока АЭ. Усилители мощности и умножители частоты на ГВВ, их особенности и принципиальные схемы.

Тема 1.2 Цепи согласования и фильтрации в ГВВ

Основные требования, предъявляемые к цепям согласования (ЦС). Согласование АЭ с нагрузкой на заданной частоте. Узкополосные ЦС и фильтрация низших гармоник. Г, П и Т- образные ЦС и их применение в ГВВ. Простая и сложная схемы выхода радиопередатчика. Комбинированные цепи согласования. Учет потерь в цепях согласования. Широкополосные ЦС на трансформаторах-линиях (ТЛ).

Тема 1.3 Сложение мощностей генераторов

Обоснование сложения мощностей. Параллельное и двухтактное включение АЭ. Сложение мощностей в контуре. Принцип мостового сложения мощностей. Практические мостовые схемы сложения мощностей: синфазные и квадратурные, на R, L, C-элементах и отрезках длинных линий.

Тема 1.4 ГВВ в диапазоне СВЧ

Основные проблемы усиления и генерирования колебаний на СВЧ. Применение элементов с распределенными параметрами. Микрополосковые (МПЛ) и коаксиальные линии. Транзисторные ГВВ на МПЛ. Применение МПЛ в мостовых схемах сложения мощностей. Генераторы на металлокерамических лампах и коаксиальных резонаторах.

Тема 1.5 Возбудители высокочастотных колебаний

Условия возникновения автоколебаний и схемы транзисторных автогенераторов (АГ). Режимы самовозбуждения. Требования к стабильности частоты и анализ воздействия дестабилизирующих факторов на частоту АГ. Параметрические способы повышения стабильности частоты АГ. Стабилизация частоты АГ с помощью кварцевого резонатора. Схемы АГ с кварцевыми резонаторами. Синтезаторы частоты. Методы прямого и косвенного синтеза. Цифровые синтезаторы частоты.

Виды модуляции и модулирующие устройства Тема 2.1 Аналоговая модуляция

Амплитудная модуляция, основные параметры характеристики. Модуляция изменением смещением напряжения питания, энергетические соотношения, модуляционные характеристики, требования к модулятору. модулируемых Схемотехническая реализация каскадов. энергетическая эффективность, Однополосная модуляция, методы реализации, структурные схемы. Угловые виды Методы модуляции, основные параметры и характеристики. реализации, стабилизация центральной частоты, структурные схемы.

2

Тема 2.2 Импульсная модуляция

Радиоимпульсы и их параметры. Виды импульсной модуляции: амплитудно-импульсная, частотно-импульсная и фазо-импульсная. Способы получения и энергетические соотношения. Импульсные модуляторы с частичным и полным разрядом накопителя.

Тема 2.3 Цифровая модуляция

Требования современным К системам передачи информации. Предел Шеннона. Графическое представление манипулированных сигналов. Сигнальные созвездия. Принципы Относительная квадратурной манипуляции. фазовая манипуляция. Квадратурная амплитудно-фазовая манипуляция. Структурные схемы квадратурных манипуляторов. манипулированных сравнение Характеристики сигналов, разновидностей одночастотной манипуляции.

Тема 2.4 Приборы СВЧ с динамическим управлением

Устройство и принцип действия пролетного клистрона. Основные характеристики и параметры клистронов. Многорезонаторные пролетные клистроны. Модуляция в клистронных ГВВ. Магнетронный генератор. Принцип работы. Виды колебаний, способы их разделения. Рабочие и нагрузочные характеристики магнетронов. Модуляция магнетронных генераторов.

1.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 4.

Таблица 4 – Практические занятия и их трудоемкость

	<u> </u>	1 37 1			
п/п	Темы практических занятий	Формы практических занятий	Трудоем кость, (час)	№ раздела дисцип- лины	
	Учебным планом не предусмотрено				
		Всего:			

1.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Лабораторные занятия и их трудоемкость

№ /п	Наименование лабораторных работ	Трудое мкость, (час)	№ раздела дисциплины
	Семестр 5		
	Исследование транзисторного генератора с	2	1
	внешним возбуждением.		
	Исследование мостовой схемы сложения мощностей	2	1
	транзисторных генераторов.		
	Исследование транзисторных LC – автогенераторов.	2	1
	Исследование транзисторных автогенераторов с	2	1
	кварцевой стабилизацией частоты.		
	Исследование схем частотной модуляции.	2	2
	Исследование амплитудной модуляции	2	2
	транзисторных генераторов.		

Исследование импульсных модуляторов	2	2
Цифровая модуляция	3	2
Bcero:	17	

1.5. Курсовое проектирование (работа)

Учебным планом не предусмотрено

3.1. Самостоятельная работа обучающихся Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7. Виды самостоятельной работы и ее трудоемкость

таолица 7. Виды самостоятельной	ouco ibi ni cc	трудосикость
Вид самостоятельной работы	Вс	Семес
	его, час	тр 5, час
1	2	3
Самостоятельная работа, всего	48	48
изучение теоретического материала		
дисциплины (ТО)	40	40
расчетно-графические задания	4	4
(PГ3)	4	
Подготовка к текущему контролю	4	4
(TK)	4	

4. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

5. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8. Таблица 8– Перечень печатных и электронных учебных изданий

Шифр/		Количество экземпляров в
URL адрес	Библиографическая ссылка	библиотеке
ОКЕ адрес		(кроме электронных экземпляров)
621.396	Цифровые и аналоговые системы	20
Ц75	передачи: учебник для вузов / В. И.	
	Иванов, В. Н. Гордиенко, Г. Н. Попов и др.	
	- М.: Горячая линия - Телеком, 2003 232	
	c.	
621.313	Павлов, Б.А. Генераторы с внешним	55
П12	возбуждением: учеб. пособие / Б.А.	
	Павлов, Л.Д. Вилесов, В. Н. Филатов.	
	ГУАП. СПб., 2003. 28 с.	
621.396.61	Φ илатов, B . H . Модуляция в	70
Ф51	радиопередающих устройствах: учеб.	
	пособие / В.Н. Филатов, Б.А. Павлов, Л.Д.	
	Вилесов. ГУАП. СПб., 2009. 60 с.	
621.396 Ш	Проектирование устройств генерирования	30

31	и формирования сигналов в системах
	подвижной радиосвязи: учебное пособие /
	В.В. Шахгильдян, В.Л. Карякин М.:
	СОЛОН-ПРЕСС, 2011 400 с.

6. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет»

URL адрес	Наименование
http://window.edu.ru/resource/742/44742/files/filatov-	Возбудители радиопередающих
voz.pdf	устройств: Учебное пособие.

7. Перечень информационных технологий

7.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

№ п/п	Наименование	
	Не предусмотрено	

7.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п		Наименование
	Не предусмотрено	

8. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Лекционная аудитория	
2 Специализированная лаборатория «Устройств генерирования и формирования сигналов»		52-25 (БМ)
3	Стенды	52-25 (БМ)

9. Оценочные средства для проведения промежуточной аттестации

9.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

			7		F)	·
ı	Вил проме	жуточной аттестациі	TX.	Пеп	enem o	ценочных ср	елстр
ı	Бид промс	жуточной аттестации	.VI	1100	CACUD O	испочных ср	СДСТВ

Экзамен	Список вопросов к экзамену

9.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 - Критерии оценки уровня сформированности компетенций

Оценка компетенции	оценки уровня сформированности компетенции		
5-балльная шкала	Характеристика сформированных компетенций		
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий. 		
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 		
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий. 		
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 		

9.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	
1	Общие сведения о радиопередающих устройствах (РПДУ). Основные	
	параметры и структурная схема радиопередатчика.	
2	Принципы построения и работы генераторов с внешним возбуждением	

	T
	(ΓBB) .
3	Обобщенная схема и параметры ГВВ.
4	Энергетические соотношения для выходной цепи ГВВ.
5	Энергетические соотношения для входной цепи ГВВ.
6	Основные режимы АЭ в ГВВ.
7	Гармонический анализ импульсов выходного тока АЭ.
8	Оптимизация режима АЭ в ГВВ. Оптимизация режима ГВВ выбором угла отсечки АЭ.
9	Оптимизация режима АЭ в ГВВ выбором сопротивления нагрузки.
10	Настроечные характеристики ГВВ. Работа ГВВ на расстроенную нагрузку.
11	Пассивные цепи РПДУ. Назначение, требования, параметры.
12	Узкополосные цепи согласования, их типы и применение.
13	Фильтрация высших гармоник в оконечном усилителе. Простая схема
	выхода передатчика.
14	Сложная схема выхода передатчика.
15	Схемы питания ГВВ.
16	Способы сложение мощностей ГВВ.
17	Принцип построения мостовых схем сложения мощностей генераторов.
18	Практические схемы мостового сложения мощностей.
19	Промежуточные каскады передатчиков.
20	Общие вопросы построения возбудителей РПДУ.
21	Транзисторные автогенераторы (АГ). Основные соотношения и
	условия самовозбуждения.
22	Режимы самовозбуждения АГ.
23	Нестабильность частоты АГ. Параметрическая стабилизация.
24	Свойства кварца и кварцевого резонатора, конструкция кварцевого
	резонатора.
25	Принципы стабилизации частоты АГ с помощью кварца.
26	Схемы включения кварца в АГ.
27	Принципы построения синтезаторов частот.
28	Способы прямого синтеза сетки частот.
29	Метод косвенного синтеза частот.
30	Амплитудно модулированный сигнал, его параметры и основные
	энергетические соотношения.
31	Способы создания АМ сигнала.
32	Однополосная модуляция. Методы формирования ОМ сигнала.
33	Балансный и кольцевой модуляторы.
34	Фильтровый способ формирования ОМ сигнала.
35	Фазо-компенсационный способ формирования ОМ сигнала.
36	Угловая модуляция. Взаимосвязь ЧМ и ФМ, их параметры.
37	Схемы частотной модуляции на варикапе.
38	Частотная модуляция на реактивном транзисторе.
39	ФМ на RLC-фазовращателе.
40	Косвенные способы получения угловой модуляции.
41	Цифровая модуляция. Предельные возможности системы передачи.
42	Представление модулированных сигналов с помощью диаграмм.
43	Принципы квадратурной манипуляции.
44	Относительная фазовая манипуляция (QPSK).
45	Относительный кодер.
46	Квадратурная амплитудная манипуляция.
47	Частотная манипуляция.
· · · · · · · · · · · · · · · · · · ·	

48	Многочастотная манипуляция (OFDM).	
49	Взаимодействие потока электронов с электрическим и магнитным	
	полями.	
50	Устройство и принцип действия магнетрона.	
51	Устройство и принцип действия клистрона.	
52	Устройство и принцип действия ЛБВ и ЛОВ.	

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16.

Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета
	Учебным планом не предусмотрено

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

№ п/п	Примерный перечень вопросов для тестов
	Не предусмотрено

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п	Перече Не предусмотрено		еречень контрольных работ

- Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.
 - Методические указания для обучающихся по освоению дисциплины

Методические указания для обучающихся по освоению лекционного материала

Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимся лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;

- развитие профессионально–деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научится методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Структура предоставления лекционного материала:

- изложение материала с использованием доски;
- изложение материала с использованием проектора, демонстрация слайдов;
- пояснение конструкции электронных приборов и блоков с использованием стендов.

Методические указания для обучающихся по прохождению лабораторных работ

В ходе выполнения лабораторных работа обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом и относится к средствам, обеспечивающим решение следующих основных задач у обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

[621.396 У 82] Устройства генерирования и формирования сигналов: методические указания к выполнению лабораторных работ / сост. Л. Д. Вилесов [и др.]. - СПб.: ГУАП, 2012. - 38 с.

Радиотехнические системы передачи информации. Лабораторный практикум / Уч. пособие – СПб.: Изд-во ПУ, 2013.- 196.

Задание и требования к проведению лабораторных работ

[621.396 У 82] Устройства генерирования и формирования сигналов: методические указания к выполнению лабораторных работ / сост. Л. Д. Вилесов [и др.]. - СПб.: ГУАП, 2012. - 38 с.

Радиотехнические системы передачи информации. Лабораторный практикум / Уч. пособие – СПб.: Изд-во ПУ, 2013.- 196.

Структура и форма отчета о лабораторной работе

Изложены на сайте ГУАП (http://guap.ru/guap/standart/ob1 main.shtml).

Требования к оформлению отчета о лабораторной работе

Изложены на сайте ГУАП (http://guap.ru/guap/standart/ob1 main.shtml).

Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Перечень тем для самостоятельной работы:

- 1. Цепи питания и смещения генераторов с внешним возбуждением.
- 2. Туннельные, лавинно-пролетные диоды и диоды Ганна.
- 3. Генераторы на туннельных и лавинно-пролетных диодах, на диодах Ганна.
- 4. Цифровые синтезаторы частоты с ФАПЧ.
- 5. Цифровые фазовые дискриминаторы.
- 6. Делители с переменным коэффициентом деления.
- 7. Лампы бегущей волны и их применение.
- 8. Лампы обратной волны и их применение.

Методическими материалами, направляющими самостоятельную работу обучающихся является учебно-методический материал по дисциплине.

9.4. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

9.5. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя экзамен – форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Система оценок при проведении промежуточной аттестации осуществляется в соответствии с требованиями Положений «О текущем контроле успеваемости и промежуточной аттестации студентов ГУАП, обучающихся по программы высшего образования» и «О модульно-рейтинговой системе оценки качества учебной работы студентов в ГУАП».

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой