МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

«САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

Кафедра конструирования и технологий электронных и лазерных средств (№23)

	УТВЕРЖДАЮ
Руковод	итель направления
доц.,к.т.і	I.
	(должность, уч. степень, звание)
О.В. Тих	оненкова
	(инициалы, фамилия)
	(20,2200)
«19	(подпись) » июня 20 20 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Материаловедение» (Наименование дисциплины)

Код направления подготовки/ специальности	11.05.01
Наименование направления подготовки/ специальности	Радиоэлектронные системы и комплексы
Наименование направленности	Радиоэлектронные системы передачи информации
Форма обучения	очная

Лист согласования рабочей программы дисциплины

Программу составил (а)

(должность, уч. степень, звание)

М.А.Плотянская Доцент к.т.н. (инициалы, фамилия) (должность, уч. степень, звание) Программа одобрена на заседании кафедры № 23 __2020 г, протокол № 10/20_____ « 18 » мая____ Заведующий кафедрой № 23 д.т.н.,проф. А.Р. Бестугин (инициалы, фамилия) (подпись, дата) Ответственный за ОП ВО 11.05.01(02) К.Н. Тимофеев к.т.н.,доц. (инициалы, фамилия) (должность, уч. степень, звание) (подпись, дата) Заместитель директора института №2 по методической работе О.Л. Балышева доц.,к.т.н.,доц.

(подпись, дата)

(инициалы, фамилия)

Аннотация

Дисциплина «Материаловедение» входит в образовательную программу высшего образования по направлению подготовки/ специальности 11.05.01 «Радиоэлектронные системы и комплексы» направленности «Радиоэлектронные системы передачи информации». Дисциплина реализуется кафедрой «№23».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

УК-1 «Способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий»

ОПК-1 «Способен представить адекватную современному уровню знаний научную картину мира на основе знания основных положений, законов и методов естественных наук и математики»

Содержание дисциплины охватывает круг вопросов, связанных с получением студентами теоретических знаний и практических навыков по материаловедению, материалам, применяемым в конструкциях устройств, методам и средствам контроля и исследования их характеристик.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, самостоятельная работа студента.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 4 зачетных единицы, 144 часа.

Язык обучения по дисциплине «русский».

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Целью дисциплины «Материаловедение» является формирование базовой основы конструкторско-технологической подготовки специалистов, способных к проектно-конструкторской, технологической, научно-исследовательской и управленческой деятельности в области приборостроения.

- 1.2. Дисциплина входит в состав обязательной части образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа) компетенции	Код и наименование компетенции	Код и наименование индикатора достижения компетенции
Универсальные компетенции	УК-1 Способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий	УК-1.3.1 знать методы системного и критического анализа; методики разработки стратегии действий для выявления и решения проблемной ситуации
Общепрофессиональные компетенции	ОПК-1 Способен представить адекватную современному уровню знаний научную картину мира на основе знания основных положений, законов и методов естественных наук и математики	ОПК-1.3.1 знать фундаментальные законы природы и основные физические математические законы ОПК-1.У.1 уметь применять физические законы и математически методы для решения задач теоретического и прикладного характера ОПК-1.В.1 владеть навыками использования знаний физики и математики при решении практических задач

2. Место дисциплины в структуре ОП

Дисциплина базируется на знаниях, ранее приобретенных студентами при изучении следующих дисциплин: «Введение в направление», «Физика», «Химия»,

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и используются при изучении конструкторскотехнологических дисциплин профессионального цикла.

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

тионици 2 объем и грудовиность диодинини		
D ~ ~ ~	Всего	Трудоемкость по
Вид учебной работы		семестрам
		№2
1	2	3
Общая трудоемкость дисциплины,	4/ 144	4/ 144
ЗЕ/ (час)	4/ 144	4/ 144
Аудиторные занятия, всего час.	51	51
в том числе:		
лекции (Л), (час)	34	34
практические/семинарские занятия (ПЗ),		
(час)		
лабораторные работы (ЛР), (час)	17	17
курсовой проект (работа) (КП, КР), (час)		
экзамен, (час)	54	54
Самостоятельная работа, всего (час)	39	39
Вид промежуточной аттестации: зачет,		
дифф. зачет, экзамен (Зачет, Дифф. зач,	Экз.	Экз.
Экз.**)		

Примечание: ** кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Разделы, темы дисциплины	Лекции	ЛР	CPC
	(час)	(час)	(час)
Раздел 1. Классификация электротехнических материалов.	2		2
Раздел 2. Основы материаловедения.	4		4
Раздел 3. Свойства металлов и сплавов.	3		4
Раздел 4. Свойства неметаллических материалов.	3		4
Раздел 5. Электрические свойства материалов.	4		5
Раздел 6. Проводниковые материалы.	3	2	2
Раздел 7. Диэлектрические материалы.	3	4	4
Раздел 8. Полупроводниковые материалы.	3	4	2
Раздел 9. Магнитные материалы.	3	4	4
Раздел 10. Конструкционные материалы.	4	3	6
Раздел 11. Особенности свойств наноразмерных и	2		2
наноструктурных материалов.			
Итого в семестре:	34	17	39
Итого:	34	17	39

4.2. Содержание разделов и тем лекционных занятий.

Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Номер	Название и содержание разделов и тем лекционных занятий
раздела	тазвание и содержание разделов и тем лекциониви запитии

Раздел	Классификации электротехнических материалов.
1.	Основные материалы электромеханического оборудования и их свойства. Технологические материалы, применяемые в технологических процессах производства электромеханических изделий. Конструкционные материалы: металлы и сплавы, пластмассы, стекла, керамика, клеи. Вспомогательные материалы для обеспечения
	необходимых условий при проведении технологических операций.
Раздел 2.	Основы материаловедения. Строение металлов и сплавов, основные физические свойства кристаллической структуры. Типы кристаллических решеток. Поликристаллические и монокристаллические структуры. Полиморфизм и анизотропия кристаллических структур. Дефекты кристаллической структуры, их влияние на свойства материалов. Процессы диффузии.
Раздел	Свойства металлов и сплавов.
3.	Формирование структуры металлов и сплавов при кристаллизации. Полиморфные превращения. Строение сплавов. Диаграммы состояния систем сплавов с полной и ограниченной растворимостями в твердом состоянии. Назначение, сущность и характеристика операций термической обработки. Термическая обработка стали. Особенности термической обработки цветных металлов и сплавов. Обеспечение заданных механических и технологических свойств при термической обработке. Назначение, сущность и характеристика операций химико-термической обработки. Обеспечение заданных механических и технологических свойств при химико-термической обработке
Раздел	Свойства неметаллических материалов.
4.	Классификация полимеров. Термопластичные полимеры и их свойства. Термореактивные полимеры и их свойства. Композиционные пластмассы. Наполнители пластмасс, состав и топология. Классификация стекол по стеклообразующему химическому соединению. Состав и свойства оксидных стекол. Методы поверхностной и объемной модификации стекол. Ситаллы и их свойства. Керамика, химический и фазовый состав. Операции керамической технологии. Свойства и область применения керамических изделий
	Механические свойства конструкционных материалов. Классификация и виды испытаний для определения механических свойств. Характеристика основных технологических методов обработки электротехнических и конструкционных материалов. Технологические свойства материалов.
Раздел 5.	Электрические свойства материалов Основные понятия и элементы зонной теории. Зонные структуры металлов, диэлектриков и полупроводников. Характеристика электрических свойств проводников, полупроводников и диэлектриков. Удельная электрическая проводимость Концентрация носителей заряда в проводниках и полупроводниках. Подвижность носителей заряда, зависимость от структуры и температуры.
Раздел 6	Проводниковые материалы
Раздел 7	Диэлектрические материалы. Поляризация диэлектриков в электрическом поле. Диэлектрические потери и

электрическая прочность диэлектриков. Механические, термические и физико-химические свойства диэлектриков.

Газообразные диэлектрики. Жидкие диэлектрики. Электроизоляционные пластмассы. Полимеры, получаемые полимеризацией и поликонденсацией.

Активные диэлектрики. Характеристика сегнетоэлектриков и пьезоэлектриков.

Свойства и область применения резины. Технологические процессы изготовления стекла. Свойства и область применения керамики. Слюда и слюдяные материалы. Лаки, эмали, компаунды и клеи.

Раздел 8

Полупроводниковые материалы.

Классификация полупроводников. Электропроводность полупроводников и ее зависимость от различных факторов. Фотопроводимость полупроводников. Термоэлектрические явления в полупроводниках. Гальваномагнитные эффекты в полупроводниках.

Характеристика простых полупроводников. Технологические операции получения монокристаллических полупроводниковых материалов. Физические методы очистки полупроводниковых материалов. Характеристика и свойства основных бинарных полупроводниковых соединений. Твердые растворы на основе простых полупроводников и химических соединений.

Раздел 9

Магнитные материалы

Явления ферромагнетизма и ферримагнетизма. Образование доменной структуры в ферромагнетиках. Процесс намагничивания во внешнем магнитном поле. Явление гистерезиса. Параметры магнитных свойств материалов. Классификация магнитомягких материалов, область применения. Низкочастотные и высокочастотные магнитомягкие материалы — ферриты. Аморфные магнитомягкие материалы. Магнитотвердые материалы — источники постоянного магнитного поля. Требование к параметрам и зависимость от состава и структуры. Термическая обработка магнитомягких и магнитотвердых материалов.

Раздел 10.

Конструкционные материалы.

Назначение и основные требования, предъявляемые к конструкционным металлам и сплавам, используемым в электромеханических изделиях.

Состав, основные марки и состояние поставки углеродистых и легированных сталей. Назначение и условия выбора основных марок сталей для изделий электромеханики.

Характеристика и свойства цветных металлов и сплавов. Состав, основные марки и состояние поставки.

Стойкость материалов к электрохимической и к химической коррозии. Методы повышения коррозионной стойкости и защиты от коррозии. Жаропрочность и методы ее повышения. Хладостойкость материалов. Влияние радиационного облучения на физико-механические свойства материалов.

Характеристика и свойства сплавов с особыми тепловыми свойствами: сплавы с минимально возможными температурными коэффициентами линейного расширения и заданными температурными коэффициентами линейного расширения.

Сплавы с особыми упругими свойствами. Структура, физико-механические свойства сплавов.

Конструкционные пластики и композиционные материалы, используемые в электромеханике.

Основные требования, предъявляемые к пластическим массам. Виды, характеристики и марки конструкционных пластиков , используемых в изделиях приборостроения.

Назначение, характеристика и область применения композиционных материалов.

Раздел 11.

Особенности свойств наноразмерных и наноструктурных материалов.

Методы получения наноструктурных металлических сплавов. Влияние размера кристаллического зерна на физические, механические и технологические свойства сплавов. Наноструктурные композиционные материалы.

4.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

№ п/п	Темь	і практических занятий	Формы практических занятий	Трудоемкость, (час)	№ раздела дисцип лины
	Учебным планом не предусмотрено				

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

№ п/п	Наименование лабораторных работ	Трудоемкость, (час)	№ раздела дисцип лины
	Семестр 2		
1.	Исследование свойств проводящих сплавов 2		6
2.	Исследование свойств пассивных диэлектриков 2		7
3.	Исследование прямого и обратного пьезоэффекта 2		7
4.	4. Исследование свойств полупроводниковых материалов. 4		8
5.	5. Исследование свойств магнитомягких материалов. 2		9
6.	6. Исследование свойств магнитотвердых материалов. 2		9
7.	7. Исследование микротвердости поверхности детали 3		10
	Всего	17	

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

r	DI 11 00 1P.	/
Вид самостоятельной работы	Всего,	Семестр 3,
Вид самостоятсявной расоты	час	час
1	2	3
Изучение теоретического материала	20	20
дисциплины (ТО)	20	20
Курсовое проектирование (КП, КР)		
Расчетно-графические задания (РГЗ)		
Выполнение реферата (Р)		
Подготовка к текущему контролю	9	9
успеваемости (ТКУ)	9	9
Домашнее задание (ДЗ)		
Контрольные работы заочников (КРЗ)		
Подготовка к промежуточной	10	10
аттестации (ПА)	10	10
Всего:	39	39

5. Перечень учебно-методического обеспечения

для самостоятельной работы обучающихся по дисциплине (модулю)

Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий

Перечень печатных и электронных учебных изданий приведен в таблице 8.

Таблица 8- Перечень печатных и электронных учебных изданий

Шифр	Библиографическая ссылка / URL адрес	К-во экз.
	Материаловедение: учеб.пособие для вузов / В.В.Плошкин. – М.:	
	Издательство Юрайт, 2013. – 463.	
	Материаловедение : учебник для бакалавров / Г.Г.Бондаренко,	
	Т.А.Кабанова, В.В.Рыбалко; под ред. Г.Г.Бондаренко. –	
	М.:ИздательствоЮрайт, 2012. – 359.	
	Пасынков, В.В. Материалы электронной техники / В.В. Пасынков, В.С.	
	Сорокин. – СПб. : "Лань", 2007. – 368 с.	
	Технология материалов микро- и наноэлектроники / Моск. гос. ин-т	
	стали и сплавов (технолог. ун-т) М.: МИСиС, 2007 542с.	
	Волков Г.М., Зуев В.М. Материаловедение. М.: Изд. центр	60
	«Академия», 2012.	
	Материаловедение и технология металлов: Учебник для вузов	20
	/Под общ.ред. Г.П.Фетисова. М.: Высшая школа, 2001.	
	Плотянская М.А., Киршина И.А., Филонов О.М.	100
	Материаловедение и материалы электронной техники: Текст	
	лекций / СПбГУАП. СПб., 2004	
	Брандон Д., Каплан У. Микроструктура материалов. Методы	12
	исследования и контроля. – М.: Техносфера, 2004.	
	Мэтьюз Ф., Роллингс Р. Композиционные материалы. Механика	12
	и технологии. – М.: Техносфера, 2004.	12
	621.7 - Е72 Ермаков С.С., Вязников Н.Ф. Порошковые стали и	12
	изделия Л.: Машиностроение, 1990	12
		5
	669-К65 Конструкционные и электротехнические материалы:	3
	Учебное пособие / Под ред. В.А. Филикова. М.: Высшая школа,	
	1990.	
	Ларин В.П., Поповская Я.А. Проектирование технологических	
	процессов изготовления деталей приборов: Учеб. пособие/	
	СПбГУАП, СПб.,2003.	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 — Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет»

URL адрес	Наименование
	Доступ в ЭБС «Лань» осуществляется по договору № 695-7 от
http://e.lanbook.com/books	30.11.2011
http://znanium.com/bookread	Доступ в ЭБС «ZNANIUM» осуществляется по договору № 186-
_	ЭБС от 08.02.2012

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

Two made to the perpendicular terms	
№ п/п	Наименование
	Не предусмотрено

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п	Наименование	
	Не предусмотрено	

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории
1	Мультимедийная лекционная аудитория	
2	Специализированная лаборатория «Материаловедение и	14-03Гаст
	технология конструкционных материалов»	

- 10. Оценочные средства для проведения промежуточной аттестации
- 10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Экзамен	Список вопросов к экзамену;
	Экзаменационные билеты;
	Задачи;
	Тесты.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции	Vарактаристика сформирорании ву компатанний
5-балльная шкала	Характеристика сформированных компетенций

Оценка компетенции	Vanorezanyaryarya ahan mpanayyy w yay gazayyyy
5-балльная шкала	Характеристика сформированных компетенций
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий.
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий.
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий.
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений.

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена
1	Классификация электротехнических материалов по свойствам и
	области применения
2	Зависимость свойств материалов от их состава и структуры
3	Кристаллические материалы, их характеристики.
4	Дефекты кристаллических структур. Причины их появления и влияние
	на свойства.
5	Свойства металлических сплавов. Фазовый состав сплавов.
6	Диаграммы фазового состава сплавов.
7	Свойства полимеров и пластмасс на их основе.
8	Свойства стекол и область их применения.
9	Керамика. Состав, структура и технология.
10	Композиционные материалы. Классификация, свойства и перспективы
	развития.
11	Материалы с особыми электрическими свойствами. Классификация,

	область применения.
12	Зонная теория твердого тела. Свойства электронов проводимости.
13	Проводимость металлов и сплавов. Зависимость удельного
13	
1.4	электрического сопротивления от структуры и внешнего воздействия.
14	Классификация проводниковых материалов по области их применения.
15	Явление сверхпроводимости. Критические параметры
1.0	сверхпроводящего состояния.
16	Классификация сверхпроводников по свойствам и области применения.
17	Собственные полупроводники и их свойства.
18	Примесные полупроводники. Донорные и акцепторные примеси,
1.0	методы легирования.
19	Контактные явления на границе двух полупроводников.
20	Фотоэлектрические явления в полупроводниках и их применение в
	полупроводниковых приборах.
21	Термоэлектрические явления в полупроводниках и их применение.
22	Классификация полупроводниковых материалов и технологические
	аспекты их получения.
23	Классификация диэлектриков и область применения.
24	Поляризация диэлектриков в электрическом поле.
25	Диэлектрические потери и их оценка.
26	Активные диэлектрики. Физические эффекты в активных диэлектриках
	и область применения.
27	Магнитные свойства материалов. Физические основы их проявления.
28	Ферромагнетизм. Характеристики упорядоченной магнитной
	структуры.
29	Закономерности намагничивание ферромагнетиков. Магнитный
	гистерезис, магнитная анизотропия, явление магнитострикции.
30	Классификация магнитных материалов по свойствам и области
	применения.
31	Магнитомягкие материалы. Классификация, свойства.
32	Магнитотвердые материалы. Классификация, свойства.
33	Специальные магнитные материалы: аморфные сплавы, материалы для
	магнитной записи, магнитострикционные преобразователи.
34	Классификация конструкционных материалов. Параметры оценки их
	свойств.
35	Методы термической обработки металлов и сплавов.
36	Свойства конструкционных сталей.
37	Свойства сплавов с высокой удельной прочностью на основе
	алюминия, титана, магния.
38	Свойства конструкционных неметаллических материалов: пластмассы,
	стекла, керамика.
39	Особенности свойств наноструктурных материалов.
40	Технология получения наноструктурных и наноразмерных материалов.
	томпология получения напоструктурных и напоразмерных материалов.

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16. Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета
	Учебным планом не предусмотрено

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

№ п/п	Примерный перечень вопросов для тестов
1	Назовите характерные отличия в свойствах кристаллических и аморфных
1	материалов.
2	Назовите точечные дефекты кристаллов.
3	Что происходит с термопластами при нагревании выше температуры стеклования?
4	Твердые растворы замещения или твердые растворы внедрения обладают неограниченной растворимостью компонентов?
5	При каком условии образуется неравновесная кристаллическая структура?
6	Назовите поверхностные дефекты кристаллических структур.
7	Фазовый состав керамики?
8	Назовите стеклообразующие химические соединения.
9	От чего зависит энергия активации процесса диффузии?
10	При каком условии можно получить аморфное состояние металла?
11	Какие диэлектрики называются неполярными?
12	Зависимость электрического сопротивления полупроводников от температуры
13	Какие материалы обладают магнитно-упорядоченной структурой?
14	Требования к материалу припоя
15	.Каким параметром определяется скорость намагничивания ферромагнетика?
16	Является ли структурно-зависимым параметром температура магнитной точки Кюри
17	Назовите полупроводниковые бинарные соединения $A^{/\!/\!/}B^Y$
18	При каких воздействиях нарушается сверхпроводящее состояние?
19	Как влияют дефекты кристаллической структуры на прочность сплавов?

20	Этапы и цели операции «старения» алюминиевых сплавов?

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п	Перечень контрольных работ	онтрольных работ	
	Не предусмотрено		

10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

11. Методические указания для обучающихся по освоению дисциплины

Целью дисциплины является – получение студентами необходимых знаний, умений и навыков в области создания поддерживающей образовательной среды преподавания инженерных дисциплин. Обучающимся предоставляется возможность развить и продемонстрировать навыки в области, связанной с получением студентами теоретических знаний и практических навыков по материаловедению, материалам, применяемым в конструкциях устройств, методам и средствам контроля и исследования их характеристик.

Методические указания для обучающихся по освоению лекционного материала

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимся лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально—деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научится методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- тематические лекции по разделам курса; - контрольные вопросы к разделам курса.

Лекционные материалы имеются в изданном виде, в виде электронных ресурсов библиотеки ГУАП.

Методические указания для обучающихся по прохождению лабораторных работ

В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач у обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задание и требования к проведению лабораторных работ

Лабораторные работы выполняются в лаборатории материаловедения на лабораторных установках с заполнением протокола измерений.

Структура и форма отчета о лабораторной работе

Отчет по лабораторной работе включает обязательные пункты, представленные в методических указаниях.

Требования к оформлению отчета о лабораторной работе

Требования к оформлению отчета представлены в методических указаниях

Методические указания изданы в виде электронных ресурсов библиотеки ГУАП Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихся являются учебно-методический материал по дисциплине;

Методические указания для обучающихся по прохождению промежуточной аттестации

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Система оценок при проведении промежуточной аттестации осуществляется в соответствии с требованиями Положений «О текущем контроле успеваемости и промежуточной

аттестации студентов ГУАП, обучающихся по программам высшего образования» и «О модульно-рейтинговой системе оценки качества учебной работы студентов в ГУАП».

Инф. система каф. 23_Плотянская M_Конспект Инф. система каф. 23_Плотянская M_МУ к ЛР Инф. система каф. 23_Плотянская M_МУ к СРС

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой