МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 13

УТВЕРЖДАЮ Руководитель направления

д.т.н.,проф.

(должность, уч. степень, звание)

А.П. Ковалев

(инициалы, фамилия)
(подпись)

«<u>29</u>»<u>05</u> 2020 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Основы гидрогазодинамики и гидравлики» (Наименование дисциплины)

Код направления подготовки/ специальности	25.03.01	
Наименование направления подготовки/ специальности	Техническая эксплуатация летательных аппаратов и двигателей	
Наименование направленности	Эксплуатация и испытания авиационной и космической техники	
Форма обучения	заочная	

Лист согласования рабочей программы дисциплины

Программу составил (а)

доц.,к.т.н.		С.Г. Бурлуцкий
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Программа одобрена на заседа		
« <u>14</u> » <u>05</u> <u>2</u> 020 г, протокол	№ <u>10</u>	
Заведующий кафедрой № 13	STAL	
к.т.н.,доц.		Н.А. Овчинникова
(уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Ответственный за ОП ВО 25.03	3.01(01)	
доц.,к.т.н.		С.Г. Бурлуцкий
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Заместитель директора инстит	In But	В.Е. Таратун
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)

Аннотация

Дисциплина «Основы гидрогазодинамики и гидравлики» входит в образовательную программу высшего образования по направлению подготовки/ специальности 25.03.01 «Техническая эксплуатация летательных аппаратов и двигателей» направленности «Эксплуатация и испытания авиационной и космической техники». Дисциплина реализуется кафедрой «№13».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ОПК-1 «Способен использовать основные законы математики, единицы измерения, фундаментальные принципы и теоретические основы физики, теоретической механики, гидравлики, имеющие отношение к техническому обслуживанию воздушных судов»

ОПК-7 «Способен проводить измерения и инструментальный контроль при эксплуатации авиационной техники, проводить обработку результатов и оценивать погрешности»

Содержание дисциплины охватывает круг вопросов, связанных с получением студентами необходимых и навыков в области основ гидрогазодинамики и гидравлики, представляет студентам возможность развить и продемонстрировать навыки в этой области.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, практические занятия, самостоятельная работа обучающегося.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 4 зачетных единицы, 144 часа.

Язык обучения по дисциплине «русский ».

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Дисциплина имеет полидисциплинарный характер, и в соответствии с общими целями образовательной программы подготовки бакалавра по направлению 25.03.01 «Техническая эксплуатация летательных аппаратов и двигателей», имеет целью получение студентами необходимых навыков в области основ гидрогазодинамики и гидравлики, представляет студентам возможность развить и продемонстрировать навыки в этой области.

- 1.2. Дисциплина входит в состав обязательной части образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа) компетенции	Код и наименование компетенции	Код и наименование индикатора достижения компетенции
Общепрофессиональные	ОПК-1 Способен	ОПК-1.3.1 знать основные законы,
компетенции	использовать	положения и методы высшей
	основные законы	математики, методы формализации
	математики,	прикладных задач, возникающих в ходе
	единицы	профессиональной деятельности; законы
	измерения,	физики и химии для оценки значений
	фундаментальные	параметров физических систем; методы
	принципы и	расчета и типовые расчетные модели
	теоретические	элементов авиационных конструкций на
	основы физики,	прочность, жесткость и устойчивость;
	теоретической	основные эксплуатационно-технические
	механики,	свойства функциональных систем
	гидравлики,	летательных аппаратов и авиационных
	имеющие	двигателей
	отношение к	ОПК-1.У.2 уметь решать прикладные
	техническому	задачи, возникающие в ходе
	обслуживанию	профессиональной деятельности;
	воздушных судов	выбирать типовые расчетные модели
		элементов авиационных конструкций и
		варьируемые параметры; оценивать
		основные эксплуатационно-технические
		свойства функциональных систем
		летательных аппаратов и авиационных
		двигателей; анализировать химические
		процессы, происходящие при
		взаимодействии веществ, рассчитывать
		возможности их протекания
		ОПК-1.В.3 владеть методами решения
		прикладных задач, возникающих в ходе
		профессиональной деятельности, а также
		расчета элементов авиационных
		конструкций на прочность, жесткость и

		устойчивость; методами оценивания значений параметров физических систем и эксплуатационно-технических свойств функциональных систем летательных аппаратов и авиационных двигателей
Общепрофессиональные компетенции	ОПК-7 Способен проводить измерения и инструментальный контроль при эксплуатации авиационной техники, проводить обработку результатов и оценивать погрешности	ОПК-7.В.3 владеть способами измерений и инструментального контроля, при эксплуатации авиационной техники, обработки их результатов и оценивания погрешностей

2. Место дисциплины в структуре ОП

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и могут использоваться при изучении других дисциплин:

- Автоматика и управление
- Моделирование систем и процессов
- Авиационные приборы и измерительно-вычистительные комплексы
- Основы конструкции космических аппаратов
- Самолетное оборудование
- Динамика полета
- Служебные системы космических аппаратов
- Конструкция и прочность двигателей ракетно-космической техники
- Термодинамика и теплотехник
- Механика космического полета
- Целевые системы космических аппаратов
- Конструкция и прочность авиационных двигателей
- Гидравлика
- Конструкция и прочность двигателей ракетно-космической техники
- Техническое обслуживание и ремонт летательных аппаратов и двигателей
- Техническая диагностика
- Системы автоматического управления летательных аппаратов и их силовых установок
 - Основы теории технической эксплуатации летательных аппаратов
 - Пилотажно-навигационные комплексы
 - Аэродинамика(прикладная)
 - Системы стабилизации и ориентации космических аппаратов
 - Технические средства регистрации и анализа состояния авиационной техники
- Системы автоматического управления летательных аппаратов и их силовых установок
 - Основы испытания авиационной и космической техники
 - Системы стабилизации и ориентации космических аппаратов
 - Безопасность полетов и поддержание летной годности

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

		Трудоемкость по		
Вид учебной работы	Всего	семестрам		
		№6		
1	2	3		
Общая трудоемкость дисциплины, 3E/ (час)	4/ 144	4/ 144		
Аудиторные занятия, всего час.	16	16		
в том числе:				
лекции (Л), (час)	6	6		
практические/семинарские занятия (ПЗ), (час)	6	6		
лабораторные работы (ЛР), (час)	4	4		
курсовой проект (работа) (КП, КР), (час)				
экзамен, (час)	9	9		
Самостоятельная работа, всего (час)	119	119		
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Экз.	Экз.		

Примечание: кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Разделы, темы дисциплины	Лекции (час)	ПЗ (СЗ) (час)	ЛР (час)	КП (час)	СРС (час)
Сем	естр 6				
Тема №1. Основные физико-механические свойства жидкостей и газов, взаимодействующих с летательными аппаратами	2	2	2		24
Тема №2 Основы аэрогидростатики и кинематика жидкости и газа.	1	1			24
Тема №3. Основные положения динамики «идеальной» (невязкой) среды	1	1	2		24
Тема №4 Основные положения динамики вязкой среды	1	1			24
Тема №5. Аэродинамические и термодинамические нагрузки, действующие на летательный аппарат и элементы его конструкции	1	1			23
Итого в семестре:	6	6	4		119
Итого	6	6	4	0	119

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Номер раздела	Название и содержание разделов и тем лекционных занятий	
Тема №1. Основные	1.1. Определение (понятие) жидкости и газа. Понятие	
физико-механические	сплошности. Критерий сплошности.	
свойства жидкостей и	Условия полета летательных аппаратов. Свойства	
газов, взаимодействующих	пространства, гипотеза сплошности. Свойства атмосферы.	
с летательными	Стандартная атмосфера. Определение сплошности среды.	
	Критерий Кнудсена.	
аппаратами	1.2. Свойства сплошной среды, определяющие характер	
	взаимодействия набегающего потока с обтекаемой	
	поверхностью.	
	Непрерывность функций, характеризующих пространство,	
	дифференцируемость по координатам и времени,	
	сжимаемость, скорость звука и ее связь со сжимаемостью	
	среды, число М, вязкость текучей среды, число Re, законы	
	переноса количества движения, тепла, массы, элементы	
	термодинамики, структура течений, идеальная жидкость -	
	простейшая модель сплошной среды.	
Тема №2 Основы	2.1. Основы аэрогидростатики. Силы, действующие в	
аэрогидростатики и	жидкости и газе. Нормальные и касательные напряжения.	
кинематика жидкости и	Свойство давлений в идеальной жидкости и в среде,	
газа.	находящейся в равновесии. Гидростагическое и	
	гидродинамическое давление. Основное уравнение	
	гидростатики. Равновесие жидкости при наличии	
	негравитационных массовых сил. Приложения основных	
	положений гидростатики.	
	2.2. Основы кинематики жидкости и газа. Поле скоростей	
	и ускорений. Линии тока и траектории. Уравнения линий	
	тока и траектории. Трубка тока и струйка тока. Деформация	
	газожидкого объема. Скорость объемной деформации.	
	Дивергенция вектора скорости. Вращение элементарного	
	объема. Вихрь вектора скорости. Основная теорема	
	кинематики. Полная производная скорости, давления.	
	плотности, температуры по времени.	
	Потенциальное течение. Циркуляция скорости. Связь	
	элементарной циркуляции скорости с интенсивностью	
	вихря. Плоский вихрь. Закон сохранения массы в	
	дифференциальной форме и в форме постоянства расхода.	
Тема №3. Основные	3.1. Дифференциальные уравнения движения идеальной	
положения динамики	среды. Дифференциальные уравнения движения идеальной	
«идеальной» (невязкой)	жидкости. Граничные и начальные условия. Интеграл	
среды	Бернулли для несжимаемой жидкости и газа и для	
	сжимаемой газовой среды. Решение задач на применение	
	интеграла Бернулли. Поперечное обтекание цилиндра средой	
	без учета вязкости. Коэффициент давления. Вращающийся	
	цилиндр в потенциальном потоке, возникновение	
	поперечной силы, ее идентификация с подъемной силой	
	Жуковского. Подход Жуковского к определению подъемной	
	силы профиля крыла. Связь циркуляции скорости с	
	подъемной силой крыла. Коэффициент подъемной силы	
	пластинки под углом атаки. Решение задач.	

- 3.2. Газодинамические функции. Зависимость давления, плотности и температуры газа в потоке от скорости течения. Максимальные и критические параметры взаимодействия потока с поверхностью тела. Задачи на определение теплового и динамического нагружения поверхности.
- 3.3. Течение газожидких сред по каналу переменного течения. Связь относительного изменения скорости течения с площадью поперечного сечения канала (уравнение Гюгонио), следствия из уравнения Гюгонио. Сверхзвуковое сопло, возможные режимы течения. Газодинамический расчет сопла.

О характере распространения слабых и сильных возмущений. Плоская ударная волна и скачок уплотнения. Поведение параметров газа на прямом и косом скачках уплотнения. Коэффициент подъемной силы пластинки в сверхзвуковом потоке. Решение задач о прохождении газа через скачки уплотнения.

Тема №4 Основные положения динамики вязкой среды

- 4.1. Дифференциальные уравнения движения с учетом вязких сил. Дифференциальные уравнения движения с учетом вязких сил (уравнения Навье-Стокса). Первый закон термодинамики. Уравнение энергии. Общие положения о переносе тепла теплопроводностью и конвекцией. Теплопроводность. Теплоотдача и теплопередача. Теплообмен излучением. Уравнение энергии. Краевые условия. Анализ размерностей в механике сплошных сред. Метод обобщенных переменных, Теплопроводность при стационарном и нестационарном режиме. Постановка задачи об определении поля температур в теле, погруженном в неподвижную и движущуюся среду.
- 4.2. Основные положения теории тонкого сдвигового слоя и методы решения уравнений в частных производных. Упрощение уравнений движения вязкой среды в приближении пограничного слоя. Ламинарный пограничный слой на пластине. Турбулентность и осреднение параметров среды в турбулентных течениях. Уравнения динамики вязкой среды в форме Рейнольдса. Современные понятия о структуре турбулентного пограничного слоя. Замыкание уравнений турбулентного движения. Исследования теплопередачи методами теории пограничного слоя.
- **4.3.** Шероховатость поверхности и ее влияние на переход к турбулентной форме течения и на сопротивление трения. Современные понятия о допустимой шероховатости поверхности крыла и фюзеляжа самолета. Переход к турбулентной форме течения. Полуэмпирические подходы к расчету сопротивления трения в турбулентных пограничных слоях.
- **4.4. Конечно разностный метод решения уравнений пограничного слоя.** Математическая классификация уравнений в частных производных. Производная функции в конечно разностном виде. Методы построения конечноразностных схем. Примеры представления в конечно-

разностном виде уравнений гидродинамики и
теплопроводности, определение температуры стенки и
теплового потока в стенку. Метод прогонки и его
применение к решению уравнений пограничного слоя.
5.1. Результирующее силовое и тепловое воздействие
потока на обтекаемое тело. Аэродинамические
характеристики тел вращения несущих и управляющих
поверхностей. Скоростная и связанная системы координат.
Составляющие аэродинамической силы и
аэродинамического момента. Слагаемые силы лобового
сопротивления: сопротивление давления и трения,
индуктивное, волновое, интерференционное. Современные и
перспективные направления снижения вредного
сопротивления. Методы снижения тепловых нагрузок.
Теплообменные затраты.
Влияние сжимаемости среды на аэродинамические
характеристики. Критические режимы полета. Управление
аэродинамическими силами и моментами.
5.2. Теория подобия в аэродинамике и термодинамике.
Критерии, характеризующие условия обтекания. Задача о
моделировании движения летательного аппарата в
аэродинамических установках. Экспериментальное
исследование теплопередачи.
5.3. Проблема входа ЛА в атмосферу.
Параметры орбиты. Формы спускаемых аппаратов.
Траектория спуска, перегрузки. Аэродинамический нагрев.
Способы защиты от нагрева. Массоунос. Определение
равновесной стенки ЛА.

4.3. Практические (семинарские) занятия Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

	<u> </u>	T **	1	3.0
№ п/п	Темы практических занятий	Формы практических занятий	Трудоемкость, (час)	№ раздела дисцип лины
		Семестр 6		
1	Расчет сопротивления	Построение ситуационной	2	4.1
	трения модели крыла	модели		
	самолета			
2	Расчет летных	Построение ситуационной	1	5.1
	характеристик	модели		
3	Условия возможности	Построение ситуационной	1	5.2
	полета самолета на данной	модели		
	высоте			
4	Расчет предельной по тяге	Построение ситуационной	1	5.2
	перегрузки	модели		
5	Расчет длины разбега	Построение ситуационной	1	5.3
	самолета	модели		
	Bce	его	6	

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

			№
No	Наименование лабораторных работ	Трудоемкость,	раздела
п/п	паименование лаоораторных раоот	(час)	дисцип
			лины
	Семестр 6		
1	Методы и устройства измерения параметров потока	2	1.2
2	Экспериментальное определение коэффициента	2	3.1
	подъемной силы модели крыла по измеренным		
	давлениям на поверхности		
	Всего	4	

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

тионици / Виды симостоятельной рассты и се трудосимость				
Вид самостоятельной работы	Всего,	Семестр 6,		
Вид самостоятсявной расоты	час	час		
1	2	3		
Изучение теоретического материала	119	119		
дисциплины (ТО)	119	119		
Курсовое проектирование (КП, КР)				
Расчетно-графические задания (РГЗ)				
Выполнение реферата (Р)				
Подготовка к текущему контролю				
успеваемости (ТКУ)				
Домашнее задание (ДЗ)				
Контрольные работы заочников (КРЗ)				
Подготовка к промежуточной				
аттестации (ПА)				
Всего:	119	119		

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8. Таблица 8– Перечень печатных и электронных учебных изданий

	(кроме электронных экземпляров)
Бендерский Б.Я. Аэрогидрогазодинамика	
Учебное пособие. Москва-Ижевск НИЦ	
«Регулярная и хаотическая	
динамика».2007.496 стр.	
Системы обеспечения вихревой	
безопасности полетов летательных	
аппаратов. В. И. Бабкни. Л.С.	
Белоцерковский Л.И. Турчак и др	
Отв. редактор Л.И. Турчак. ВЦ им	
Дородницына РАН. М.: Наука. 2008. 273	
Техника и методы аэродинамического	
эксперимента. Харитонов А.М.	
Издательство НГТУ г. Новосибирск. 2000	
Лойцянский Л.Г. Механика жидкости и	
газа. Учебник для вузов	
Изд. 6-е перераб. и доп. — м. Наука. главн.	
Ред. Физматлит 1987. 840 стр.	
Летательные аппараты: лабораторный	
практикум В.И. Боковая, А Д. Дорофеев,	
И.С. Зегжда и др С-Пб ГУАП. 2009 г., 47	
стр.	
Аэрогидромеханика. Учебник для	
авиационных специальностей вузов АМ.	
Мхитарян, В.В. Устинов, А.Г. Баскакова и	
др. Под общ Ред А.М. Мхитаряна. М.:	
Машиностроение. 1984 334. Ил. 5336	
M93	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет»

URL адрес	Наименование

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

Two man to Trepe tems inporparimentor occurre tems	
№ п/п	Наименование
	Не предусмотрено

8.2. Перечень информационно-справочных систем,используемых при осуществлении образовательного процесса по дисциплине

Таблица 11- Перечень информационно-справочных систем

№ п/п	Наименование
	Не предусмотрено

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Лекционная аудитория 13-04	
2	2 Специализированная лаборатория «Аэродинамическая 51-08	
	лаборатория»	

10. Оценочные средства для проведения промежуточной аттестации

10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Экзамен	Список вопросов.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции	Vanarranyaryua ahan amanayuu waarranyuu	
5-балльная шкала	Характеристика сформированных компетенций	
«отлично» «зачтено»	 – обучающийся глубоко и всесторонне усвоил программный материал; – уверенно, логично, последовательно и грамотно его излагает; – опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; – умело обосновывает и аргументирует выдвигаемые им идеи; – делает выводы и обобщения; – свободно владеет системой специализированных понятий. 	
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; 	

Оценка компетенции 5-балльная шкала	Характеристика сформированных компетенций
	 владеет системой специализированных понятий.
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий.
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений.

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена
1	Определение (понятие) жидкости и газа. Понятие сплошности.
	Критерий сплошности.
2	Условия полета летательных аппаратов. Свойства пространства,
	гипотеза сплошности.
3	Свойства атмосферы. Стандартная атмосфера.
4	Определение сплошности среды. Критерий Кнудсена
5	Свойства сплошной среды, определяющие характер взаимодействия
	набегающего потока с обтекаемой поверхностью.
6	Непрерывность функций, характеризующих пространство,
	дифференцируемость по координатам и времени.
7	Сжимаемость, скорость звука и ее связь со сжимаемостью среды, число
	М, вязкость текучей среды, число Re.
8	Законы переноса количества движения, тепла, массы: элементы
	термодинамики, структура течений.
9	Идеальная жидкость — простейшая модель сплошной среды.
10	Основы аэрогидростатики. Силы, действующие в жидкости и газе
11	Нормальные и касательные напряжения Свойство давлений в
	идеальной жидкости и в среде, находящейся в равновесии.
12	Гидростатическое и гидродинамическое давление
13	Основное уравнение гидростатики. Равновесие жидкости при наличии
	негравитационных массовых сил.
14	Приложения основных положений гидростатики.
15	Основы кинематики жидкости и газа. Поле скоростей и ускорений.
	Линии тока и траектории.
16	Уравнения линий тока и траектории. Трубка тока и струйка тока.

17	Деформация газожидкого объема. Скорость объемной деформации
18	Дивергенция вектора скорости. Вращение элементарного объема.
	Вихрь вектора скорости.
19	Основная теорема кинематики. Полная производная скорости,
	давления, плотности, температуры по времени
20	Потенциальное течение. Циркуляция скорости.
21	Связь элементарной циркуляции скорости с интенсивностью вихря.
	Плоский вихрь.
22	Закон сохранения массы в дифференциальной форме и в форме
	постоянства расхода.
23	Дифференциальные уравнения движения идеальной среды.
24	Дифференциальные уравнения движения идеальной жидкости.
	Граничные и начальные условия.
25	Интеграл Бернулли для несжимаемой жидкости и газа и для сжимаемой
	газовой среды.
26	Решение задач на применение интеграла Бернулли.
27	Поперечное обтекание цилиндра средой без учета вязкости.
	Коэффициент давления.
28	Вращающийся цилиндр в потенциальном потоке, возникновение
	поперечной силы, ее идентификация с подъемной силой Жуковского.
29	Подход Жуковского к определению подъемной силы профиля крыла.
	Связь циркуляции скорости с подъемной силой крыла.
30	Коэффициент подъемной силы пластинки под углом атаки. Решение
	задач.
31	Газодинамические функции. Зависимость давления, плотности и
	температуры газа в потоке от скорости течения.
32	Максимальные и критические параметры взаимодействия потока с
	поверхностью тела.
33	Задачи на определение теплового и динамического нагружения
	поверхности.
34	Течение газожидких сред по каналу переменного течения. Связь
	относительного изменения скорости течения с площадью поперечного
	сечения канала (уравнение Гюгонио)
35	Следствия из уравнения Гюгонио. Сверхзвуковое сопло: возможные
	режимы течения. Газодинамический расчет сопла.
36	Характер распространения слабых и сильных возмущений. Плоская
	ударная волна и скачок уплотнения.
37	Поведение параметров газа на прямом и косом скачках уплотнения.
38	Коэффициент подъемной силы пластинки в сверхзвуковом потоке.
	Решение задач о прохождении газа через скачки уплотнения.
39	Дифференциальные уравнения движения с учетом вязких сил
	(уравнения Навь-Стокса).
40	Первый закон термодинамики. Уравнение энергии.
41	Общие положения о переносе тепла теплопроводностью и конвекцией.
42	Теплопроводность, теплоотдача и теплопередача. Теплообмен
	излучением. Уравнение энергии. Краевые условия.
43	Анализ размерностей в механике сплошных сред. Метод обобщенных
	переменных.
44	Теплопроводность при стационарном и нестационарном режиме.
45	Постановка задачи об определении поля температур в теле,
	погруженном в неподвижную и движущуюся среду.

46	Основные положения теории тонкого сдвигового слоя и методы
	решения уравнений в частных производных.
47	Упрощение уравнений движения вязкой среды в приближении
	пограничного слоя. Ламинарный пограничный слой на пластине.
48	Турбулентность и осреднение параметров среды в турбулентных
	течениях. Уравнения динамики вязкой среды в форме Рейнольдса.
49	Современные понятия о структуре турбулентного пограничного слоя.
	Замыкание уравнений турбулентного движения.
50	Исследования теплопередачи методами теории пограничного слоя.
51	Шероховатость поверхности и ее влияние на переход к турбулентной
	форме течения и на сопротивление трения.
52	Современные понятия о допустимой шероховатости поверхности
	крыла и фюзеляжа самолета.
53	Переход к турбулентной форме течения. Полуэмпирические подходы к
	расчету сопротивления трения в турбулентных пограничных слоях.
54	Конечно— разностный метод решения уравнений пограничного слоя.
55	Математическая классификация уравнений в частных производных.
	Производная функции в конечно - разностном виде.
56	Методы построения конечно-разностных схем.
57	Примеры представления в конечно-разностном виде уравнений
	гидродинамики и теплопроводности, определение температуры стенки
	и теплового потока в стенку.
58	Метод прогонки и его применение к решению уравнений пограничного
	слоя.
59	Результирующее силовое и тепловое воздействие потока на обтекаемое
	тело.
60	Аэродинамические характеристики тел вращения несущих и
	управляющих поверхностей. Скоростная и связанная системы
	координат.
61	Составляющие аэродинамической силы и аэродинамического момента.
62	Слагаемые силы лобового сопротивления, сопротивление давления и
	трения, индуктивное, волновое, интерференционное.
63	Современные и перспективные направления снижения вредного
	сопротивления.
64	Методы снижения силовых нагрузок. Теплообменные аппараты.
65	Влияние сжимаемости среды на аэродинамические характеристики.
66	Критические режимы полета. Управление аэродинамическими силами
	и моментами.
67	Теория подобия в аэродинамике и термодинамике. Критерии
	характеризующие, условия обтекания.
68	Задача о моделировании движения летательного аппарата в
	аэродинамических установках. Экспериментальное исследование
	теплопередачи.
69	Проблема входа ЛА в атмосферу.
70	Параметры орбиты. Траектория спуска, перегрузки.
71	Фермы спускаемых аппаратов. Аэродинамический нагрев.
72	Способы защиты от нагрева. Массоунос. Определение равновесной
	стенки ЛА.

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16. Таблица 16 — Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета
	Учебным планом не предусмотрено

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

Ī	№ п/п	Примерный перечень вопросов для тестов	
Учебным планом не предуст		Учебным планом не предусмотрено	

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п	Перечень контрольных работ
	Учебным планом не предусмотрено

10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

11. Методические указания для обучающихся по освоению дисциплины

11.1. Методические указания для обучающихся по освоению лекционного материала.

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровени которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;

- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

Лекционный материал предоставляется в соответствии с таблицей 4.

11.2. Методические указания для обучающихся по участию в семинарах

Основной целью для обучающегося является систематизация и обобщение знаний по изучаемой теме, разделу, формирование умения работать с дополнительными источниками информации, сопоставлять и сравнивать точки зрения, конспектировать прочитанное, высказывать свою точку зрения и т.п. В соответствии с ведущей дидактической целью содержанием семинарских занятий являются узловые, наиболее трудные для понимания и усвоения темы, разделы дисциплины. Спецификой данной формы занятий является совместная работа преподавателя и обучающегося над решением поставленной проблемы, а поиск верного ответа строится на основе чередования индивидуальной и коллективной деятельности.

При подготовке к семинарскому занятию по теме прослушанной лекции необходимо ознакомиться с планом его проведения, с литературой и научными публикациями по теме семинара.

11.3. Методические указания для обучающихся по прохождению практических занятий.

Практическое занятие является одной из основных форм организации учебного процесса, заключающаяся в выполнении обучающимися под руководством преподавателя комплекса учебных заданий с целью усвоения научно-теоретических основ учебной дисциплины, приобретения умений и навыков, опыта творческой деятельности.

Целью практического занятия для обучающегося является привитие обучающимся умений и навыков практической деятельности по изучаемой дисциплине.

Планируемые результаты при освоении обучающимся практических занятий:

- закрепление, углубление, расширение и детализация знаний при решении конкретных задач;
- развитие познавательных способностей, самостоятельности мышления, творческой активности;
- овладение новыми методами и методиками изучения конкретной учебной дисциплины;
- выработка способности логического осмысления полученных знаний для выполнения заданий;
- обеспечение рационального сочетания коллективной и индивидуальной форм обучения.

Требования к проведению практических занятий

Практические занятия проводятся в развитие тематики лекций с учетом обеспеченности иллюстративным материалом и соответствующих разделов учебной литературы, изучаемых студентами.

Отдельные практические занятия проводятся на учебной лаборатории систем сбора и обработки информации кафедры №13.

11.4. Методические указания для обучающихся по выполнению лабораторных работ

В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задание и требования к проведению лабораторных работ

Дисциплиной предусмотрено выполнение лабораторных работ, указанных в таблице 6.

Структура и форма отчета о лабораторной работе

Структура включает в себя:

- Цели выполнения лабораторной работы
- Задачи выполнения лабораторной работы
- Исходные данные
- Порядок выполнения лабораторной работы
- Графический материал, включая фотографии процесса работы с модулируемыми в работе органами управления
- Выводы по итогам лабораторной работы
- Список использованной литературы

Требования к оформлению отчета о лабораторной работе

Титульный лист отчета по лабораторной работе соответствует стандартной форме титульного листа (Приложение №1).

11.5. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихсяявляются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ (для обучающихся по заочной форме обучения).
- 11.6. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

- экзамен форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».
- зачет это форма оценки знаний, полученных обучающимся в ходе изучения учебной дисциплины в целом или промежуточная (по окончании семестра) оценка знаний обучающимся по отдельным разделам дисциплины с аттестационной оценкой «зачтено» или «не зачтено».
- дифференцированный зачет это форма оценки знаний, полученных обучающимся при изучении дисциплины, при выполнении курсовых проектов, курсовых работ, научно-исследовательских работ и прохождении практик с аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой