МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 32

УТВЕРЖДАЮ

Руководитель направления

проф., д.т.н., проф.

(должность, уч. степень, звание)

А.Л. Ронжин

(инициалы, фамилия)

(подпись)

«30» августа 2021 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Электрические машины и аппараты» (Наименование дисциплины)

Код направления подготовки	13.03.02
Наименование направления подготовки	Электроэнергетика и электротехника
Наименование направленности	Электромеханика
Форма обучения	заочная

Лист согласования рабочей программы дисциплины

Программу составил (а)

доц. к.т.н. И.Н. Жел	
	фамилия)
(должность, уч. степень, звание) (подпись, дата) (инициалы, с	•
Программа одобрена на заседании кафедры № 32	
«30» августа 2021 г., протокол № 1	
Заведующий кафедрой № 32	
д.т.н., проф. А.Л. Ро	нжин
(уч. степень, звание) (подпись, дата) (инициалы, с	фамилия)
Ответственный за ОП ВО 13.03.02(01) доц., к.т.н., доц. С.В. Сол	пеный
(должность, уч. степень, звание) (подпись, дата) (инициалы, с	
Заместитель директора института №3 по методической работе доц., к.э.н., доц. Г.С. Армашон	ра-Тепсиму
ДОЦ., К.Э.Н., ДОЦ. 1.С. Армашов (должность, уч. степень, звание) (подпись, дата) (инициалы, с	

Аннотация

Дисциплина «Электрические машины и аппараты» входит в образовательную программу высшего образования — программу бакалавриата по направлению подготовки 13.03.02 «Электроэнергетика и электротехника» направленности «Электромеханика». Дисциплина реализуется кафедрой «№32».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ОПК-1 «Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности»

ОПК-4 «Способен использовать методы анализа и моделирования электрических цепей и электрических машин»

ОПК-6 «Способен проводить измерения электрических и неэлектрических величин применительно к объектам профессиональной деятельности»

Содержание дисциплины охватывает круг вопросов, связанных с электромагнитными и электромеханическими процессами, проходящими внутри электромеханических преобразователей энергии переменного и постоянного тока.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, практические занятия, самостоятельная работа обучающегося, курсовое проектирование.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 8 зачетных единиц, 288 часов.

Язык обучения по дисциплине «русский».

1. Перечень планируемых результатов обучения по дисциплине

.1. Цели преподавания дисциплины

Целью преподавания дисциплины является ознакомление студентов с основами теории электрических машин и аппаратов, устройством, существующими типами, их характеристиками и особенностями применения.

- 1.2. Дисциплина входит в состав обязательной части образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа) компетенции	Код и наименование компетенции	Код и наименование индикатора достижения компетенции
Общепрофессиональные компетенции	ОПК-1 Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности	ОПК-1.Д.3 демонстрирует знание требований к оформлению документации (ЕСКД, ЕСПД, ЕСТД) и умение выполнять чертежи простых объектов профессиональной деятельности с использованием современных информационных технологий
Общепрофессиональные компетенции	ОПК-4 Способен использовать методы анализа и моделирования электрических цепей и электрических машин	ОПК-4.Д.5 анализирует установившиеся режимы работы трансформаторов и вращающихся электрических машин различных типов, использует знание их режимов работы и характеристик ОПК-4.Д.6 применяет знания функций и основных характеристик электрических и электронных аппаратов
Общепрофессиональные компетенции	ОПК-6 Способен проводить измерения электрических и неэлектрических величин применительно к объектам профессиональной деятельности	ОПК-6.Д.1 выбирает средства измерения электрических и неэлектрических величин применительно к объектам профессиональной деятельности ОПК-6.Д.2 использует технические устройства и оборудование для измерения электрических и неэлектрических величин применительно к объектам профессиональной деятельности ОПК-6.Д.3 обрабатывает результаты измерений электрических и неэлектрических величин и оценивает их погрешность

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- «Физика»,
- «Математика»,
- «Электротехника»,
- «Механика».

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и могут использоваться при изучении других дисциплин:

- «Электрический привод»,
- «Электромехатроника».

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

Deve verse see see see see see see see see see	Всего	Трудоемкость	по семестрам
Вид учебной работы	Beero	№6	№7
1	2	3	4
Общая трудоемкость дисциплины,	8/ 288	4/ 144	4/ 144
ЗЕ/ (час)			
Из них часов практической подготовки			
Аудиторные занятия, всего час.	40	20	20
в том числе:			
лекции (Л), (час)	16	8	8
практические/семинарские занятия (ПЗ), (час)	4	4	
лабораторные работы (ЛР), (час)	20	8	12
курсовой проект (работа) (КП, КР), (час)	*		*
экзамен, (час)	18	9	9
Самостоятельная работа, всего (час)	230	115	115
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Экз., Экз.	Экз.	Экз.

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Tuestingue : Tuesqueisi, Tumbi giruqinishinibi, im Tpj	QUOMITICO I	_			
Разделы, темы дисциплины	Лекции	ПЗ (СЗ)	ЛР	КΠ	CPC
т азделы, темы дисциплины	(час)	(час)	(час)	(час)	(час)
Сем	естр 6				
Раздел 1. Общие вопросы электромеханического					
преобразования энергии					
Тема 1.1. Электромеханические преобразователи					
энергии (ЭМПЭ): определение, классификация,					
области применения					
Тема 1.2. Основные законы электромагнетизма	2		2		25
Тема 1.3. Силы, действующие в					
электромеханических системах.					
Тема 1.4. Условия непрерывного преобразования					
энергии в ЭМПЭ, основные типы электрических					
машин переменного и постоянного тока					

Раздел 2. Вопросы теории машин постоянного тока Тема 2.1. Принцип работы и устройство машин постоянного тока Тема 2.2. Конструкция машин постоянного тока Тема 2.3. Математические модели и физические процессы машин постоянного тока	2	4	2		30
Тема 2.4. Генераторы постоянного тока Тема 2.5. Двигатели постоянного тока					
Раздел 3. Вопросы теории асинхронных машин и трансформаторов Тема 3.1. Принцип работы и устройство асинхронных машин Тема 3.2. Конструкция асинхронных машин Тема 3.3. Математические модели и физические процессы асинхронных машин Тема 3.4. Асинхронная машина в режиме генератора	2		2		30
Тема 3.5. Асинхронная машина в режиме двигателя					
Раздел 4. Вопросы теории синхронных машин Тема 4.1. Принцип работы и устройство синхронных машин Тема 4.2. Конструкция синхронных машин Тема 4.3. Математические модели и физические процессы синхронных машин Тема 4.4. Синхронная машина в режиме генератора Тема 4.5. Синхронная машина в режиме двигателя	2		2		30
Итого в семестре:	8	4	8		115
Семест	o 7			•	
Раздел 5. Электромеханические аппараты Тема 5.1. Основные физические явления в электрических аппаратах. Тема 5.2. Основные электрические и электромеханические процессы в электрических аппаратах. Тема 5.3. Электромеханические аппараты автоматики и распределительных устройств низкого напряжения.	4		6		50
Раздел 6. Силовые электронные аппараты Тема 6.1. Силовые электронные ключи. Тема 6.2. Пассивные компоненты и охладители силовых электронных приборов. Тема 6.3. Системы управления силовыми электронными аппаратами Тема 6.4. Гибридные электрические аппараты	4		6		65
Выполнение курсового проекта				0	
Итого в семестре:	8		12		115
Итого	16	4	20	0	230

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий.

Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

1		F 1	1	1		_
Номер	Назва	ание и со,	держание раздело	в и тем	лекционных занятий	

раздела	
1	Общие вопросы электромеханического преобразования энергии. Электромеханические преобразователи энергии (ЭМПЭ): определение, классификация, области применения. Основные законы электромагнетизма. Силы, действующие в электромеханических системах. Условия непрерывного преобразования энергии в ЭМПЭ, основные типы электрических машин переменного и постоянного тока.
2	Вопросы теории машин постоянного тока. Принцип работы и устройство машин постоянного тока. Конструкция машин постоянного тока. Математические модели и физические процессы машин постоянного тока. Генераторы постоянного тока. Двигатели постоянного тока.
3	Вопросы теории асинхронных машин и трансформаторов. Принцип работы и устройство асинхронных машин. Конструкция асинхронных машин. Математические модели и физические процессы асинхронных машин. Асинхронная машина в режиме генератора. Асинхронная машина в режиме двигателя.
4	Вопросы теории синхронных машин. Принцип работы и устройство синхронных машин. Конструкция синхронных машин. Математические модели и физические процессы синхронных машин. Синхронная машина в режиме генератора. Синхронная машина в режиме двигателя.
5	Электромеханические аппараты. Основные физические явления в электрических аппаратах. Основные электрические и электромеханические процессы в электрических аппаратах. Электромеханические аппараты автоматики и распределительных устройств низкого напряжения.
6	Силовые электронные аппараты. Силовые электронные ключи. Пассивные компоненты и охладители силовых электронных приборов. Системы управления силовыми электронными аппаратами. Гибридные электрические аппараты.

4.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

				Из них	$N_{\underline{0}}$
$N_{\underline{0}}$	Темы практических	Формы практических	Трудоемкость,	практической	раздела
Π/Π	занятий	занятий	(час)	подготовки,	дисцип
				(час)	лины
		Семестр 6			
1	Построение схемы и	Расчетно-	2	2	2
	звезды пазовых	графическое задание			
	ЭДС простой				
	петлевой обмотки				
	машины				
	постоянного тока				
2	Построение схемы и	Расчетно-	2	2	2
	звезды пазовых	графическое задание			
	ЭДС простой				
	волновой обмотки				
	машины				
	постоянного тока				
	Beer	0	4		

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

	•				J 1 1		
$N_{\underline{0}}$	Наименование	лабо	раторных р	работ	Трудоемкость,	Из них	№

Π/Π		(час)	практической	раздела
			подготовки,	дисцип
			(час)	лины
	Семестр (6		
1	Испытания генератора постоянного тока	2	2	1
	независимого возбуждения			
2	Испытания асинхронных машин в режиме	2	2	2
	двигателя			
3	Испытания трансформаторов	2	2	3
4	Испытания синхронного двигателя	2	2	4
	Семестр	7		
1	Исследование теплового режима катушки	2	2	5
	электромагнита при кратковременном и			
	повторно-кратковременном режиме			
2	Исследование контактных соединений	2	2	5
3	Снятие тяговой характеристики	2	2	5
	электромагнита			
4	Исследование нереверсивной схемы	3	3	6
	управления асинхронным двигателем			
5	Исследование микропроцессорного	3	3	6
	терминала для управления и защиты			
	асинхронного двигателя			
	Bcero	20		

4.5. Курсовое проектирование/ выполнение курсовой работы

Цель курсового проекта: проектирование электрической машины и ее системы запуска.

Примерные темы заданий на курсовой проект приведены в разделе 10 РПД. Обязательно указать темы на курсовой проект и выделить для него время в СРС.

4.6. Самостоятельная работа обучающихся

Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего, час	Семестр 6, час	Семестр 7, час
1	2	3	4
Изучение теоретического материала дисциплины (TO)	30	15	15
Курсовое проектирование (КП, КР)	30		30
Расчетно-графические задания (РГЗ)			
Выполнение реферата (Р)			
Подготовка к текущему контролю успеваемости (ТКУ)	36	18	18
Домашнее задание (ДЗ)			
Контрольные работы заочников (КРЗ)	4	2	2
Подготовка к промежуточной аттестации (ПА)	130	80	50
Всего:	230	115	115

5. Перечень учебно-методического обеспечения

для самостоятельной работы обучающихся по дисциплине (модулю)

Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8.

Таблица 8– Перечень печатных и электронных учебных изданий

Шифр/ URL адрес	Библиографическая ссылка	Количество экземпляров в библиотеке (кроме электронных экземпляров)
621.314 Э	Мартынов А.А., Тимофеев С.С., Машины	36
45	постоянного тока: учебное пособие СПб.:	
	ГУАП, 2016	
	Б.Э. Фридман, С.В. Соленый, О.Я	60
	Соленая, Е.В. Евсеев. Электрические	
	аппараты. Методические указания к	
	выполнению лабораторных работ № 1 - 15.	
	Санкт-Петербург, ГУАП, 2015.	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационно-

телекоммуникационной сети «Интернет»

URL адрес	Наименование
	Не предусмотрено

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10– Перечень программного обеспечения

№ п/п	Наименование
1	MathCad Prime 3.0

8.2. Перечень информационно-справочных систем,используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п	Наименование
	Не предусмотрено

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Лекционная аудитория	21-21
2	Мультимедийная лекционная аудитория 31-04	
3	Специализированная лаборатория 31-02	
4	Специализированная лаборатория	31-05

- 10. Оценочные средства для проведения промежуточной аттестации
- 10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств	
Экзамен	Список вопросов к экзамену;	
	Перечень контрольных работ.	
Выполнение курсового проекта	Экспертная оценка на основе требований к	
	содержанию курсового проекта.	

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции	Vanateronyaryura ahamarananyu vy kangraryunyu	
5-балльная шкала	Характеристика сформированных компетенций	
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий. 	
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и, по существу, излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 	

Оценка компетенции	Vanatetaniative ahangenapaun wexamitataning	
5-балльная шкала	Характеристика сформированных компетенций	
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий. 	
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 	

10.3. Типовые контрольные задания или иные материалы. Вопросы для экзамена представлены в таблице 15.

Таблица 15 – Вопросы для экзамена

№ п/п	Перечень вопросов для экзамена	Код индикатора
1	Классификация электрических машин (ЭМ) по назначению, мощности, роду тока.	ОПК-1.Д.3
	Принципиальная конструктивная схема и основные типы магнитопроводов ЭМ.	
	Активные материалы, применяемые в электромашиностроении. Потери мощности в ЭМ, к.п.д.	
2	Закон электромагнитной индукции применительно к электрическим машинам. Принцип работы и устройство машины постоянного тока. Э.Д.С. и момент машины постоянного тока.	ОПК-4.Д.5
	Принцип образования простой петлевой обмотки. Принцип образования простой волновой обмотки Магнитное поле машины постоянного тока в режиме холостого хода.	
	Кривая намагничивания Магнитное поле при нагрузке. Реакция якоря при щетках установленных на нейтрали.	
3	Сущность явления коммутации. Способы улучшения коммутации. Классификация генераторов постоянного тока. Характеристики генератора постоянного тока с независимым возбуждением. Условия самовозбуждения генераторов. Внешние характеристики генераторов с параллельным,	ОПК-4.Д.6
	последовательным и смешанным возбуждением. Параллельная работа генератора постоянного тока с сетью. Принцип обратимости.	
4	Энергетическая диаграмма машины постоянного тока для генераторного режима. Характеристики двигателя с параллельным возбуждением. Характеристики двигателя с последовательным возбуждением.	ОПК-6.Д.1

	Пуск двигателей постоянного тока непосредственным включением в	
	сеть.	
5	Пуск двигателей постоянного тока с помощью пускового реостата.	ОПК-6.Д.2
	Регулирование частоты вращения двигателей постоянного тока.	
	Промышленные схемы регулирования частоты вращения.	
	Электромашинный усилитель.	
	Особенности авиационных электрических машин постоянного тока.	
6	Электромагниты. Магнитное сопротивление и магнитная	ОПК-6.Д.3
	проводимость участка магнитной цепи. Законы Кирхгофа для	
	магнитных цепей. Влияние потоков рассеивания на индуктивность в	
	стержневой магнитной системе. Расчет индуктивности катушки	
	броневого цилиндрического электромагнита с учетом потоков	
	рассеивания.	
	Электромагниты переменного тока. Влияние рабочего зазора на	
	величину тока в катушке электромагнита переменного тока. Потери	
	в магнитопроводах из-за гистерезиса и вихревых токов. Влияние	
	короткозамкнутого витка.	
	Сила тяги электромагнита. Статическая характеристика	
	электромагнита и метод ее измерения. Сила тяги электромагнита	
	переменного тока. Применение короткозамкнутого витка. Сравнение	
	электромагнитов постоянного и переменного тока.	
	Динамика работы электромагнита при включении и отпускании	
	электромагнита. Ускорение и замедление срабатывания и	
	отпускания электромагнита. Динамика электромагнита переменного	
	тока	
	Электромеханические реле. Характеристики управления аппаратов	
	релейного действия. Классификация реле по области применения, по	
	принципу действия, по выполняемым функциям. Термины: контакт-	
	детали, контактный элемент, контактный узел. Согласование	
	тяговых и механических характеристик реле	

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16.

Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код индикатора
	Учебным планом не предусмотрено	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

Tuestingu 17 Tiepe tens tem gan kypeessete iipeektiipessamin ssimeimin kypeessen puoetsi		
$N_{\underline{0}}$	Примерный перечень тем для курсового проектирования/выполнения курсовой	
Π/Π	работы	
1	Проектирование машины постоянного тока с независимым возбуждением и	
	системы пуска	
2	Проектирование синхронного двигателя с постоянными магнитами и системы	
	пуска	
3	Проектирование асинхронного двигателя с короткозамкнутым ротором и системы	
	пуска	
4	Проектирование асинхронного двигателя с фазным ротором и системы пуска	

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

№ п/п	Примерный перечень вопросов для тестов	Код индикатора
	Не предусмотрено	

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п	Перечень контрольных работ			
1	Определить тепловую мощность, выделяющуюся в одном метре длины медного			
1	<u>.</u>			
	шинопровода распределительного устройства, по которому протекает ток I = 840			
	А. Шинопровод нагрет до температуры υ = 90oC, его диаметр D = 20 мм.			
2	Определить коэффициент поверхностного эффекта и тепловую мощность,			
	деляющуюся в одном метре длины круглого медного шинопровода, диаметром			
	$=45$ мм, по которому протекате ток $I=2400$ А промышленной частоты 50 Γ ц			
3	Определить коэффициент поверхностного эффекта и тепловую мощность,			
	выделяющуюся в одном метре длины круглого алюминиевого шинопровода,			
	диаметром $d = 45$ мм, по которому протекает ток $I = 2400$ А промышленной			
	частоты 50 Гц			
4	Определить тепловую мощность, выделяющуюся в магнитопроводе			
	электромагнита, катушка которого намотана круглым проводом диаметром d = 4			
	мм и имеет 250 витков. Магнитнопровод выполнен из листовой			
	электротехнической стали марки 1512, толщина листа $\delta = 0.5$ мм. Коэффициент			
	заполнения магнитопровода k3= 0,9. При подключении катушки к источнику			
	переменного напряжения частоты $f = 50 \Gamma$ ц плотность тока составляет $j = 1,0$			
	A/мм2 . Размеры магнитопровода $a = b = 70$ мм, $H = 320$ мм, $B = 180$ мм.			
5	Определить тепловую мощность, выделяющуюся в магнитопроводе			
	электромагнита, катушка которого намотана круглым проводом диаметром d = 4			
	мм и имеет 250 витков. Магнитопровод выполнен из сплошного бруса стали. При			
	подключении катушки к источнику переменного напряжения частоты $f = 50 \Gamma$ ц			
	плотность тока составляет $j = 1,0$ A/мм2 . Размеры магнитопровода $a = b = 70$ мм,			
	H = 320 MM, B = 180 MM			

- 10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.
- 11. Методические указания для обучающихся по освоению дисциплины Целью преподавания дисциплины является ознакомление студентов с основами теории электрических аппаратов, электрических машин, их устройством, существующими типами, их характеристиками и особенностями применения.
- 11.1. Методические указания для обучающихся по освоению лекционного материала.

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении

фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- Введение.
- Общие вопросы электромеханического преобразования энергии.
- Общие вопросы электрических аппаратов.
- Вопросы теории машин постоянного тока.
- Вопросы теории асинхронных машин и трансформаторов.
- Вопросы теории синхронных машин.

11.2. Методические указания для обучающихся по прохождению практических занятий

Практическое занятие является одной из основных форм организации учебного процесса, заключающаяся в выполнении обучающимися под руководством преподавателя комплекса учебных заданий с целью усвоения научно-теоретических основ учебной дисциплины, приобретения умений и навыков, опыта творческой деятельности.

Целью практического занятия для обучающегося является привитие обучающимся умений и навыков практической деятельности по изучаемой дисциплине.

Планируемые результаты при освоении обучающимся практических занятий:

- закрепление, углубление, расширение и детализация знаний при решении конкретных задач;
- развитие познавательных способностей, самостоятельности мышления, творческой активности;
- овладение новыми методами и методиками изучения конкретной учебной дисциплины;
- выработка способности логического осмысления полученных знаний для выполнения заданий;
- обеспечение рационального сочетания коллективной и индивидуальной форм обучения.

Требования к проведению практических занятий

На практических занятиях предусматривается проведение расчетов по тематикам дисциплины, обсуждение вариантов решения рассматриваемой проблемы и задачи, оценка рациональности использования выбранного решения.

11.3. Методические указания для обучающихся по выполнению лабораторных работ

В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задание и требования к проведению лабораторных работ

Студенты разбиваются на подгруппы, по 3-4 человека. Перед проведением лабораторной работы обучающемся следует внимательно ознакомиться с методическими указаниями по ее выполнению. В соответствии с заданием обучающиеся должны подготовить необходимые данные, получить от преподавателя допуск к выполнению лабораторной работы, выполнить указанную последовательность действий, получить требуемые результаты, оформить и защитить отчет по лабораторной работе.

Структура и форма отчета о лабораторной работе

Отчет о лабораторной работе должен включать в себя: титульный лист, формулировку задания, теоретические положения, используемые при выполнении лабораторной работы, описание процесса выполнения лабораторной работы, полученные результаты и выводы.

Требования к оформлению отчета о лабораторной работе

По каждой лабораторной работе выполняется отдельный отчет. Титульный лист оформляется в соответствии с шаблоном (образцом) приведенным на сайте ГУАП (www.guap.ru) в разделе «Сектор нормативной документации». Текстовые и графические материалы оформляются в соответствии с действующими ГОСТами и требованиями, приведенными на сайте ГУАП (www.guap.ru) в разделе «Сектор нормативной документации».

11.4. Методические указания для обучающихся по прохождению курсового проектирования/выполнения курсовой работы

Курсовой проект/ работа проводится с целью формирования у обучающихся опыта комплексного решения конкретных задач профессиональной деятельности.

Курсовой проект/ работа позволяет обучающемуся:

Структура пояснительной записки курсового проекта/ работы

- титульный лист, оформленный в соответствии с требованиями норм учебнометодической документации ГУАП;
- индивидуальное задание на расчет и проектирование устройства, полученное у преподавателя;
 - расчет главных размеров и конструктивных параметров устройства;
 - электромагнитный расчет устройства;
 - тепловой расчет устройства;
 - заключение.

Требования к оформлению пояснительной записки курсового проекта/ работы

Пояснительная записка оформляется в соответствии с требованиями норм учебнометодической документации ГУАП.

11.5. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихсяявляются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ (для обучающихся по заочной форме обучения).
- 11.6. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

Система оценок при проведении промежуточной аттестации осуществляется в соответствии с требованиями Положений «О текущем контроле успеваемости и промежуточной аттестации студентов ГУАП, обучающихся по программы высшего образования» и «О модульно-рейтинговой системе оценки качества учебной работы студентов в ГУАП».

Проведение текущего контроля успеваемости осуществляется с помощью вопросов, приведенных в таблице 15. Оценивание текущего контроля успеваемости оценивается по системе зачет/ не зачет. Положительный результат текущего контроля успеваемости дает студенту дополнительный балл при проведении промежуточной аттестации.

11.7. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

— экзамен — форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Система оценок при проведении промежуточной аттестации осуществляется в соответствии с требованиями Положений «О текущем контроле успеваемости и промежуточной аттестации студентов ГУАП, обучающихся по программы высшего образования» и «О модульно-рейтинговой системе оценки качества учебной работы студентов в ГУАП».

Промежуточная аттестация оценивается по результатам текущего контроля успеваемости. В случае, если студент по уважительной причине не выполнил требования текущего контроля, ему предоставляется возможность сдать задолженности по пропущенным темам. Форма проведения промежуточной аттестации – письменная.

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой