МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Ивангородский гуманитарно-технический институт (филиал)

федерального государственного автономного образовательного учреждения высшего образования "Санкт-Петербургский государственный университет аэрокосмического приборостроения"

Кафедра прикладной математики, информатики и информационных таможенных технологий (Кафедра 2)

УТВЕРЖДАЮ

Руководитель направления

д.т.н., проф.

(должность, уч. степень, звание)

М.Б. Сергеев

(Inniquation, quagnit

" 22 "

2023 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

"Компьютерное моделирование"

(Наименование дисциплины)

Код направления подготовки/специальности	09.03.01
Наименование направления подготовки/ специальности	Информатика и вычислительная техника
Наименование направленности	Программное обеспечение средств вычислительной техники и автоматизированных систем
Форма обучения	очная

Лист согласования рабочей программы дисциплины

Программу составил(а)		
проф., д.фм.н.	Mony 14.06.2023	Ю.В. Рождественский
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Программа одобрена на заседании Кафедры 2		
" 14 " 06 2023 г., протокол № 10		
Заведующий Кафедрой 2		
. 1	F. J. 4.06.2023	F.A. G
к.фм.н., доцент (уч. степень, звание)	110дпись, дата)	Е.А. Яковлева (инициалы, фамилия)
Ответственный за ОП ВО 09.03.01(05)	,	
зав.каф., к.фм.н., доц.	EGh 14.06.2023	Е.А. Яковлева
(должность, уч. степень, звание)	подпись, дата)	(нициалы, фамилия)
Заместитель Директора ИФ ГУАП по методическ	сой работе	
· · · · · · · · · · · · · · · · · · ·	1.2	
(полжность уч. степень, звание)	(TONTHACE 1972)	Н.В. Жданова

Аннотация

Дисциплина "Компьютерное моделирование" входит в образовательную программу высшего образования по направлению подготовки/специальности 09.03.01 "Информатика и вычислительная техника" направленности "Программное обеспечение средств вычислительной техники и автоматизированных систем". Дисциплина реализуется Кафедрой прикладной математики, информатики и информационных таможенных технологий (Кафедрой 2).

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ПК-8 "Способен организовать проведение работ по выполнению научно-исследовательских и опытно-конструкторских работ"

Содержание дисциплины охватывает круг вопросов, связанных с анализом и синтезом математических моделей и их реализацией в пакетах численного, структурного и символьного моделирования.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, самостоятельная работа обучающегося, консультации.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 4 зачетных единицы, 144 часа.

Язык обучения по дисциплине "русский".

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Получение студентами необходимых знаний и навыков в области компьютерного моделирования, как программного средства для решения практических задач, компонентов информационных систем и аппаратно-программных комплексов.

- 1.2. Дисциплина входит в состав части, формируемой участниками образовательных отношений, образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.
- В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа) компетенции	Код и наименование компетенции	Код и наименование индикатора достижения компетенции
Профессиональные компетенции	проведение работ по выполнению	ПК-8.3.2. Знать методику организации и проведения научно- исследовательских и опытно-конструкторских работ ПК-8.У.1. Уметь обрабатывать и анализировать научно- техническую информацию и результаты исследования, управлять ресурсами соответствующего структурного подразделения организации при выполнении научно- исследовательских и опытно-конструкторских работ

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- Нормативная документация
- Обработка экспериментальных данных
- Основы научных исследований

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и могут использоваться при изучении других дисциплин:

- Исследование операций
- Компьютерное зрение
- Математические методы и модели
- Методы оптимальных решений
- Распознавание образов
- Системный анализ
- Технология оцифровки трехмерных объектов
- Цифровая обработка изображений

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

Вид учебной работы	Всего	Трудоемкость по семестрам	
	БССТО	5	
Общая трудоемкость дисциплины, ЗЕ/час.	4/144	4/144	
из них часов практической подготовки	17	17	
Аудиторные занятия, всего час.	51	51	

Dur vuotivo ii notioni i		Трудоемкость по семестрам	
Вид учебной работы	Всего	5	
в том числе:			
- лекции (Л), час.	34	34	
- практические/семинарские занятия (ПЗ, СЗ), час.			
- лабораторные работы (ЛР), час.	17	17	
- курсовой проект/работа (КП, КР), час.			
Экзамен, час.	36	36	
Самостоятельная работа (СРС), всего час.	57	57	
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.) 4. Содержание дисциплины	Экз.	Экз.	

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Разделы, темы дисциплины	Лекции, час.	ПЗ (СЗ), час.	ЛР час.	КП/ КР час.	СРС час.
Семестр 5					
Раздел 1. Виды моделей Тема 1.1. Общие основы теории моделирования Тема 1.2. Основные области применения компьютерного моделирования Тема 1.3. Основные методы в вычислительной математике	10	0	5	0	17
Раздел 2. Классификация математических моделей Тема 2.1. Линейные математические модели Тема 2.2. Математические модели с непрерывным и дискретным временем	8	0	0	0	10
Раздел 3. Компьютерные модели в современном мире Тема 3.1. Математические моделирование в биологии и демографии, социологии и экономике Тема 3.2. Моделирование вооруженных конфликтов Тема 3.3. Компьютерное моделирование в медицине Тема 3.4. Модели теории катастроф и детерминированного хаоса в метеорологии и социологии.	12	0	8	0	20
Раздел 4. Имитационное моделирование Тема 4.1. Имитационное моделирование динамических систем	4	0	4	0	10
Итого в семестре:	34	0	17	0	57
Итого:	34	0	17	0	57

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий.

Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Номер	Название и содержание разделов и тем лекционных занятий
раздела	название и содержание разделов и тем лекционных запитии

Номер раздела	Название и содержание разделов и тем лекционных занятий			
1	Виды моделей			
	Тема 1.1. Общие основы теории моделирования Моделирования моделирование как метод познания окружающего мира. Исторический очерк. Виды моделей. Геометрические физические и математические модели. Модели прямой аналогии. Основы теории размерностей и теории подобия Адекватность моделей. Математические модели: свойства, классификационные признаки и классы; жизненный цикл математической модели, операции над математическими моделями. Вычислительный и компьютерный эксперимент этапы планирования и осуществления. Роль вычислительной техники и компьютерного эксперимента в теории и практике моделирования. Прямая и обратная задачи математического моделирования. Тема 1.2. Основные области применения компьютерного моделирования Примеры описания технических, экономических и экологических систем. Динамика тела, брошенного под углом в горизонту (задача баллистики). Компьютерные модели в демографии, биологии, экологии, медицины, экономики, а также моделирование сражений. Тема 1.3. Основные методы в вычислительной математике Численные методы: понятие о погрешности при вычислениях, определение корня функции, численное дифференцирование и интегрирование, метод Рунге – Кутта для решения обыкновенных дифференциальных уравнений понятие о методе наибыстрейшего спуска, метод сетки. Вероятностные методы вычислительной математики: метод			
	Монте Карло, генератор случайных чисел.			
2	Классификация математических моделей Тема 2.1. Линейные математические модели Классификация динамических систем. Линейные и нелинейные, стационарные и нестационарные, непрерывные и дискретные, детерминированные и стохастические динамические системы. Описание динамических систем в частотной и временной областях. Концепция пространства состояний. Управляемость и наблюдаемость динамических систем			
	Системы с сосредоточенными и распределенными параметрами. Линеаризация нелинейных моделей. Приложения обыкновенных дифференциальных уравнений и их систем к задачам механики, электротехники, биологии, экономики. Фазовая плоскость и фазовый портрет динамической системы. Тема 2.2. Математические модели с непрерывным и дискретным временем Линейные и нелинейные модели динамических систем. Исследование нелинейных динамических систем. Формальное описание динамических систем в терминах дифференциальных уравнений. Исследование устойчивости динамических систем. Методы дискретизации динамических систем. Дискретное отображение Фейгенбаума. Дискретное отображение			
•	Рикера.			
3	Компьютерные модели в современном мире Тема 3.1. Математические моделирование в биологии и демографии, социологии и экономике Моделирование численности популяции: уравнение Мальтуса, учет конечного количества пищи – уравнение Фелхьюста. Описание динамического равновесия системы «хищник-жертва». Система нелинейных уравнений Лотки			

Моделирование численности популяции: уравнение Мальтуса, учет конечного количества пищи — уравнение Фелхьюста. Описание динамического равновесия системы «хищник-жертва». Система нелинейных уравнений Лотки-Вольтера. Описание конкуренции в природе: несколько хищников — один тип жертвы, несколько видов хищников — несколько видов жертвы. Применение биологических моделей в демографии. Математическая модель организованной преступности. Метод корреляции и регрессии, его применение в социальных исследованиях. Метод многофакторного анализа, возможности его применения для изучения социальной сферы. Инкрементальный метод. Метод нейронных сетей. Техника и процедура социального моделирования. Динамическая односекторная модель экономического роста модель Солоу. Модель Солоу с производственной функцией Кобба-Дугласа. «Золотое правило» экономического роста.

Тема 3.2. Моделирование вооруженных конфликтов

Математическое моделирование военных конфликтов с помощью системы дифференциальных уравнений, модель Л. Ричардсона, модель Ланчестера, бинарная модель вооруженного конфликта.

Тема 3.3. Компьютерное моделирование в медицине

Модель кровотока, сердечной мышцы, распространения эпидемий. Усовершенствованная модель пандемии с учетом вакцинации населения.

Тема 3.4. Модели теории катастроф и детерминированного хаоса в метеорологии и социологии.

Задача измерения береговой линии, самоподобие, понятие фрактала, понятие фрактальной размерности, объекты дробной размерности. Модели теории катастроф и детерминированного хаоса в метеорологии и социологии. Понятие детерминированного хаоса как свойства решений системы трех нелинейных дифференциальных уравнений, простейшая модель атмосферы, аттрактор Лоренца, понятие промежутка прогноза, применение фрактальных характеристик для контроля и управления технологическими процессами.

Номер раздела	Название и содержание разделов и тем лекционных занятий				
4	Имитационное моделирование				
	Тема 4.1. Имитационное моделирование динамических систем Суть имитационного моделирования, алгоритм клеточного автомата, классическая задача игра - "Жизнь". О применении				
	имитационного моделирования в не технических науках: экология и моделирование, модели внутривидовой				
	конкуренции, моделирование в системах массового обслуживания, имитационное моделирование систем управления				
	качеством в экономике, динамические модели популяций, теории вооруженного конфликта, градостроительстве, сети				
	автомобильных и железнодорожных путей, моделирование террористических актов и оценка потерь.				

4.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

№ п/п	Темы практических занятий	Формы практических занятий	Трудоемкость, час.	Из них практической подготовки, час.	№ раздела дисциплины	
	Учебным планом не предусмотрено					
		Всего	0	0		

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

№ п/п	Наименование лабораторных работ	Трудоемкость, час.	Из них практической подготовки, час.	№ раздела дисциплины
	Семестр 5			
1	Вводное занятие	1	1	1
2	Моделирование движения тела, брошенного под углом к горизонту	4	4	1
3	Моделирование биологической системы «хищник-жертва»	4	4	3
4	Моделирование распространения эпидемий	4	4	3
5	Игра «Жизнь»	4	4	4
	Bcero	17	17	

4.5. Курсовое проектирование/выполнение курсовой работы

Учебным планом не предусмотрено.

4.6. Самостоятельная работа обучающихся

Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего, час.	Семестр 5, час.
Изучение теоретического материала дисциплины (ТО)	41	41
Курсовое проектирование (КП, КР)	0	0
Расчетно-графические задания (РГЗ)	0	0

Вид самостоятельной работы	Всего, час.	Семестр 5, час.
Выполнение реферата (Р)	0	0
Подготовка к текущему контролю успеваемости (ТКУ)	8	8
Домашнее задание (ДЗ)	0	0
Контрольные работы заочников (КРЗ)	0	0
Подготовка к промежуточной аттестации (ПА)	8	8
Всего	57	57

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий

Перечень печатных и электронных учебных изданий приведен в таблице 8.

Таблица 8 – Перечень печатных и электронных учебных изданий

Шифр/ URL адрес	Библиографическая ссылка	Количество экземпляров в библиотеке (кроме электронных экземпляров)
https://znanium.com/catalog/product/1062639	Компьютерное моделирование : учебник / В. М. Градов, Г. В. Овечкин, П. В. Овечкин, И. В. Рудаков. — Москва : КУРС : ИНФРА-М, 2020. — 264 с ISBN 978-5-906818-79-9 Текст : электронный URL: https://znanium.com/catalog/product/1062639 — Режим доступа: по подписке.	-
URL: https://znanium.com/catalog/product/1042658	Тарасик, В. П. Математическое моделирование технических систем : учебник / В.П. Тарасик. — Минск : Новое знание ; Москва : ИНФРА-М, 2020. — 592 с. — (Высшее образование: Бакалавриат) ISBN 978-5-16-011996-0 Текст : электронный — Режим доступа: по подписке.	-
https://znanium.com/catalog/product/1091193	Шапкин, А. С. Математические методы и модели исследования операций: учебник / А. С. Шапкин, В. А. Шапкин. — 7-е изд, — Москва: Издательско-торговая корпорация «Дашков и К°», 2019 398 с - ISBN 978-5-394-02736-9 Текст: электронный.	-
https://znanium.com/catalog/product/962150	Бородин, А. В. Методы оптимальных решений : учеб. пособие / А.В. Бородин, К.В. Пителинский. — Москва : ИНФРА-М, 2019. — 203 с. — (Высшее образование: Бакалавриат). — www.dx.doi.org/10.12737/textbook_5bf281507f96c2.75870898 ISBN 978-5-16-106589-1 Текст : электронный.	-
URL: https://znanium.com/catalog/product/1840951	Невежин, В. П. Теория игр. Примеры и задачи : учебное пособие / В.П. Невежин. — Москва : ФОРУМ : ИНФРА-М, 2022. — 128 с. — (Высшее образование) ISBN 978-5-00091-563-9 Текст : электронный. – Режим доступа: по подписке.	-
https://e.lanbook.com/book/217433	Болотский, А. В. Математическое программирование и теория игр: учебное пособие для вузов / А. В. Болотский. — 4-е изд., стер. — Санкт-Петербург: Лань, 2022. — 116 с. — ISBN 978-5-507-44192-1. — Текст: электронный //Лань: электронно-библиотечная система. — Режим доступа: для авториз. пользователей.	-

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети "Интернет"

Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети "Интернет", необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети "Интернет"

URL адрес	Наименование
http://window.edu.ru/	Бесплатная электронная библиотека онлайн "Единое окно к образовательным ресурсам"

URL адрес	Наименование
https://www.intuit.ru/	Национальный Открытый Университет "ИНТУИТ"
https://elibrary.ru/	eLIBRARY.RU - Научная электронная библиотека
http://lib.guap.ru/	Библиотека ГУАП
https://znanium.com/	Электронно-библиотечная система Znanium
https://e.lanbook.com/	ЭБС Лань
https://www.book.ru/	BOOK.RU - современная электронная библиотека для вузов и ссузов от правообладателя
https://urait.ru/	Образовательная платформа Юрайт

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине. Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10 – Перечень программного обеспечения

№ п/п	Наименование
1	MATLAB

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11 – Перечень информационно-справочных систем

№ п/п	Наименование
	Учебным планом не предусмотрено

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице 12.

Таблица 12 - Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Фонд аудиторий ИФ ГУАП для проведения лекционных и практических (семинарских) занятий	
2	Лаборатория программирования и баз данных	207
3	Кабинет информационных технологий и программных систем	212

10. Оценочные средства для проведения промежуточной аттестации

10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Экзамен	- Список вопросов к экзамену- Тесты

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции 5-балльная шкала	Характеристика сформированных компетенций
"отлично" "зачтено"	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий.
"хорошо" "зачтено"	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий.
"удовлетворительно" "зачтено"	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий.
"неудовлетворительно" "не зачтено"	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений.

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	Код индикатора
1	Понятие модели. История возникновения и современное понимание термина «модель».	ПК-8.3.2
2	Объект и система как базовые понятия компьютерного моделирования.	ПК-8.3.2
3	Различные подходы к классификации моделей.	ПК-8.3.2
4	Вычислительный эксперимент. Этапы вычислительного эксперимента.	ПК-8.3.2
5	Моделирование как метод познания мира.	ПК-8.У.1
6	Примеры описания технических, экономических и экологических систем.	ПК-8.У.1

№ п/п	Перечень вопросов (задач) для экзамена	Код индикатора
7	Динамика тела, брошенного под углом к горизонту (задача баллистики).	ПК-8.3.2
8	Компьютерные модели в демографии, биологии, экологии, медицине, экономике	ПК-8.3.2
9	Математические модели боевых и военных действий	ПК-8.3.2
10	Имитационное моделирование в экологии	ПК-8.У.1
11	Линейные и нелинейные модели динамических систем. Исследование нелинейных динамических систем.	ПК-8.3.2
12	Формальное описание динамических систем в терминах дифференциальных уравнений. Исследование устойчивости динамических систем.	ПК-8.У.1
13	Методы дискретизации динамических систем. Дискретное отображение Фейгенбаума. Дискретное отображение Рикера.	ПК-8.3.2
14	Метод Монте - Карло как вид стохастического моделирования	ПК-8.3.2
15	Модели развития популяций вида «жертва-хищник».	ПК-8.У.1
16	Применение численные методов в моделировании (понятие о погрешности при вычислениях, определение корня функции, численное дифференцирование и интегрирование)	ПК-8.3.2
17	метод Рунге — Кутта для решения обыкновенных дифференциальных уравнений, методе наибыстрейшего спуска, метод сетки.	ПК-8.У.1
18	Описание динамических систем в частотной и временной областях. Концепция пространства состояний.	ПК-8.3.2
19	Управляемость и наблюдаемость динамических систем. Системы с сосредоточенными и распределенными параметрами.	ПК-8.3.2
20	Линеаризация нелинейных моделей	ПК-8.3.2
21	Понятие фрактала, понятие фрактальной размерности, объекты дробной размерности.	ПК-8.3.2
22	Модели теории катастроф и детерминированного хаоса в метеорологии и социологии.	ПК-8.У.1
23	Понятие детерминированного хаоса как свойства решений системы трех нелинейных дифференциальных уравнений, простейшая модель атмосферы, аттрактор Лоренца, понятие промежутка прогноза, применение фрактальных характеристик для контроля и управления технологическими процессами.	ПК-8.У.1
24	Моделирование численности популяции: уравнение Мальтуса, учет конечного количества пищи – уравнение Фелхьюста.	ПК-8.3.2
25	Описание динамического равновесия системы «хищник-жертва». Система нелинейных уравнений Лотки-Вольтера. Описание конкуренции в природе: несколько хищников — один тип жертвы, несколько видов хищников — несколько видов жертвы.	ПК-8.У.1
26	Применение биологических моделей в демографии. Математическая модель организованной преступности.	ПК-8.3.2
27	Метод корреляции и регрессии, его применение в социальных исследованиях. Метод многофакторного анализа, возможности его применения для изучения социальной сферы.	ПК-8.3.2
28	Динамическая односекторная модель экономического роста - модель Солоу. Модель Солоу с производственной функцией Кобба-Дугласа. «Золотое правило» экономического роста.	ПК-8.3.2
29	Модель кровотока, сердечной мышцы, распространения эпидемий.	ПК-8.3.2
30	Усовершенствованная модель пандемии с учетом вакцинации населения.	ПК-8.3.2
31	Классическая задача игра - "Жизнь".	ПК-8.У.1
32	провести линеаризацию системы дифференциальных уравнений	ПК-8.У.1
33	смоделировать игру "Жизнь"	ПК-8.У.1
34	по имеющимся данным получить решение задачи о военном конфликте	ПК-8.У.1
35	Применить метод Рунге-Кутта для решения дифференциального уравнения	ПК-8.У.1
36	использовать имитационное моделирование для решения задачи о	ПК-8.У.1

№ п/п	Перечень вопросов (задач) для экзамена	
37	использовать метод Монте-Карло для решения задачи	ПК-8.У.1
38	оценить темпы экономического роста	ПК-8.У.1
39	использовать модель "хищник-жертва" для моделирования ситуации	ПК-8.У.1
40	Инкрементальный метод.	ПК-8.3.2
41	Техника и процедура социального моделирования.	ПК-8.3.2
42	Метод нейронных сетей.	ПК-8.3.2

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16.

Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код индикатора	
Учебным планом не предусмотрено			

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для выполнения курсовой работы

№ п/п	Примерный перечень тем для выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

№ п/п	Примерный перечень вопросов для тестов	Код индикатора
1	математическое моделирование - это	ПК-8.3.2
2	Имитационное моделирование используется для	ПК-8.3.2
3	С помощью клеточных автоматов можно моделировать	ПК-8.3.2
4	Метод Монте-Карло является методом -	ПК-8.3.2
5	что такое клеточный автомат?	ПК-8.3.2
6	модель явлется динамической,если	ПК-8.3.2
7	аттарактор Лоренца - это	ПК-8.3.2
8	система нелинейных уравнений Лотка-Вольтерра используется для моделирования	ПК-8.3.2
9	что такое фрактал?	ПК-8.3.2
10	что такое фрактальная размерность?	ПК-8.3.2
11	модель детерминированного хаоса -	ПК-8.3.2
12	Дискретное отображение Фейгенбаума - это	ПК-8.3.2
13	Дискретное отображение Рикера - это	ПК-8.3.2
14	метод Рунге-Кутта применяется для	ПК-8.3.2
15	стохастическое моделирование изучает -	ПК-8.3.2
16	компьютерная модель не может быть применена в следующих случаях-	ПК-8.3.2
17	регрессионные модели основываются на методе	ПК-8.3.2

№ п/п	Примерный перечень вопросов для тестов	Код индикатора
18	для моделирования социально-экономических процессов применяется	ПК-8.3.2

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п	Перечень контрольных работ
	Учебным планом не предусмотрено

10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

11. Методические указания для обучающихся по освоению дисциплины

11.1. Методические указания для обучающихся по освоению лекционного материала.

Основное назначение лекционного материала – логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими лисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
 - развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления;
 - появление необходимого интереса, необходимого для самостоятельной работы;
 - получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Выделяются следующие виды лекций:

- Вводная лекция

Вводная лекция к дисциплине знакомит обучающихся с целью и назначением курса, его ролью и местом в системе дисциплин. В ходе такой лекции связывается теоретический и практический материал с практикой будущей работы, рассказывается общая методика работы над курсом, предлагаются литературные источники, помогающие усвоению материала дисциплины и освоению компетенций, ставятся научные проблемы, выдвигаются гипотезы, определяется форма текущего контроля и промежуточной аттестации.

Вводная лекция к разделу. Аналогично вводной лекции к дисциплине раскрывает ряд вопросов, но связанных не с дисциплиной в целом, а с тематикой конкретного раздела.

- Обзорная лекция

Проводится с целью систематизации знаний на более высоком уровне, рассмотрения особо трудных вопросов дисциплины.

- Проблемная лекция

На данной лекции новое знание вводится как неизвестное, которое необходимо "открыть". В рамках лекции создается проблемная ситуация, которую обучающие решают поэтапно с подсказками и помощью преподавателя.

- Лекция вдвоем

Эта разновидность лекции является продолжением и развитием проблемного изложения материала в диалоге двух преподавателей. Здесь моделируются реальные ситуации обсуждения теоретических и практических вопросов двумя специалистами.

- Лекция с заранее запланированными ошибками

Данная лекция призвана активизировать внимание обучающихся, развивать их мыслительную деятельность, формировать умение выступать в роли экспертов.

Задача преподавателя состоит в том, чтобы заложить в лекцию определенное количество ошибок содержательного, методического, поведенческого характера. Подбираются наиболее типичные ошибки, которые обычно не выпячиваются, а как бы затушевываются. Задача обучающихся состоит в том, чтобы по ходу лекции отмечать ошибки, фиксировать и называть их в конце.

- Лекция-пресс-конференция

Преподаватель просит обучающихся задавать письменно вопросы по данной теме. В течение двух-трех минут обучающиеся формулируют наиболее интересующие их вопросы и передают преподавателю, который в течение трех-пяти минут сортирует вопросы по их содержанию и начинает лекцию. Лекция излагается не как ответы на вопросы, а как связный текст, в процессе изложения которого формируются ответы.

- Лекция-консультация

Материал излагается в виде вопросов и ответов или вопросов, ответов и дискуссий.

Структура предоставления лекционного материала:

- Вводная часть лекции

Первое представление о лекции содержится уже в формулировке темы. Она должна быть краткой, выражать суть основной идеи, быть привлекательной по форме. Целесообразно здесь сказать на значение этой темы для последующего усвоения знаний и развития личности обучающихся, для будущей профессиональной деятельности. Далее можно сообщить цели лекции и ее план. Желательно сориентировать слушателей на последующий контроль знаний, полезно указать на связь нового материала с пройденным и предыдущим. Темп изложения этой части лекции, как правило, должен быть выше темпа изложения основного, что заставляет обучающихся психологически собраться и сосредоточиться. Вводная часть лекции обычно занимает 5-7 минут.

- Основная часть лекции

Переходу к изложению первого вопроса, как правило, должна предшествовать пауза. В это время лектор может проверить, все ли слушатели готовы к восприятию лекции (позы, выражения лиц, разговоры). Заметив обучающихся, не готовых к восприятию, опытные преподаватели произносят краткую мобилизующую фразу, останавливают взгляд на нерадивых, реже - называют фамилию, имя и не тратят время на длительные замечания.

Для того чтобы преодолеть потенциальную пассивность слушателей, необходимо всеми возможными способами придать лекции проблемный характер, побуждая слушателей к самостоятельной познавательной активности и творчеству.

К таким активным средствам можно отнести:

- обращение к обучающимся с вопросами, уточняющими понимание основных идей и фактов темы;
- организацию мини-столкновений различных точек зрения по выдвинутым преподавателем положениям;
- постановку вопросов, задач с множественностью решений и др.;
- индивидуальный стиль изложения материала;
- обеспечение обратной связи.

- Заключение

В процессе чтения лекции преподаватель должен позаботиться о ее завершении. Рассчитать время, а не прерывать лекцию на полуслове. Обычно для заключения материала бывает достаточно 5-7 минут. Завершая лекцию, преподаватель отвечает на вопросы слушателей, подводит итог, дает методические указания к самостоятельной работе, комментирует предлагаемую литературу. Заканчивать лекцию нужно конструктивно по содержанию и положительно по эмоциональному настрою. Обучающиеся должны уйти заинтересованными, заинтригованными, желающими опробовать завтра же предложения лектора, а также в хорошем настроении и активном тонусе.

11.2. Методические указания для обучающихся по выполнению лабораторных работ.

В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
- получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Лабораторные работы проводятся в форме практической подготовки. При выполнении лабораторных работ обучающиеся выполняют отдельный трудовые функции, связанные с будущей профессиональной деятельностью:

- принятие проектных решений;
- выполнение действий согласно инструкции, образцу или самостоятельно принятого решения;
- оформление отчетности.

Выполнение обучающимся лабораторных работ не в полном объеме может привести к понижению оценки за дисциплину изза низкого уровня освоения компетенций:

- выполнение менее 75% лабораторных работ понижение максимальной оценки на 1 балл;
- выполнение менее 50% лабораторных работ понижение максимальной оценки на 2 балла;
- невыполнение лабораторных работ понижение максимальной оценки на 3 балла.

Задание и требования к проведению лабораторных работ.

Задания и требования к лабораторным работам размещены в Личном кабинете ГУАП в разделе дисциплины.

Структура и форма отчета о лабораторной работе.

Отчет о лабораторной работе сдается в электронном виде (документ Word, документ PDF) через Личный кабинет ГУАП. Отчет к лабораторной работе содержит следующие элементы:

- титульный лист с названием дисциплины, номером и названием лабораторной работы;
- цели и задачи работы;

- залание:
- ход работы (при необходимости);
- математическая модель;
- схема алгоритма (при необходимости);
- текст программы (при необходимости);
- контрольные примеры;
- выводы.

Требования к оформлению отчета о лабораторной работе.

- Общие требования и рекомендации по выполнению письменных работ : методические указания / С.-Петерб. гос. ун-т аэрокосм. приборостроения ; сост. А. А. Сорокин. СПб. : Изд-во ГУАП, 2017. 32 с.
- Общие требования и рекомендации по выполнению письменных работ : методические указания *(с изменениями от 09.01.2019)* [Электронный ресурс] / Ивангородский филиал С.-Петерб. гос. ун-т аэрокосм. приборостроения ; сост. А. А. Сорокин. Ивангород : 2019. 37 с. URL: http://ifguap.ru/rp/ReportsFormattingRules.pdf, Личный кабинет ГУАП
- 11.3. Методические указания для обучающихся по прохождению самостоятельной работы.

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихся являются:

- учебно-методический материал по дисциплине.
- 11.4. Методические указания для обучающихся по прохождению консультаций.

По изучаемой дисциплине проводятся следующие виды консультаций:

- Консультация перед экзаменом проводится с целью:
 - уточнения организационных моментов;
 - систематизации знаний;
 - $^{\circ}$ ответы на вопросы, вызывающие трудности при подготовке к экзамену.

Консультация имеет форму лекции, после которой преподаватель отвечает на вопросы обучающихся или в виде беседы в форме "ответ-вопрос".

- Консультация со слабоуспевающими обучающимися предназначена для:
 - ликвидации пробелов при изучении дисциплины;
 - разъяснения спорных вопросов и вопросов, наиболее сложных для изучения;
 - закрепления пройденного материала;
 - ликвидации академических задолженностей.

Проводится регулярно согласно графику консультаций преподавателя (не реже 1 раза в 2 недели).

- Консультация по проектной и научно-исследовательской деятельности обучающихся проводится с целью:
 - расширения научного кругозора обучающихся;
 - рассмотрения вопросов, не включенных в программу изучаемой дисциплины;
 - углубленного изучения материала курса;
 - помощи обучающимся в подготовке научных статей и докладов на конференции;
 - подготовки в участию в конкурсах и олимпиадах.

Проводится регулярно согласно графику консультаций преподавателя или по устной договоренности между обучающимся и преподавателем.

11.5. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины. Невыполнение требований или их части по прохождению текущего контроля успеваемости при успешном прохождении промежуточной аттестации может привести к понижению итоговой оценки.

Возможные методы текущего контроля:

- устный опрос на занятиях;
- систематическая проверка выполнения индивидуальных и домашних заданий;
- защита отчетов по лабораторным работам;
- проведение контрольных работ;
- тестирование;

- контроль самостоятельных работ;
- проведение контрольных работ;
- доклад на научной конференции;
- написание научной статьи.

11.6. Методические указания для обучающихся по прохождению тестирования.

Использование тестовых заданий возможно как при текущем контроле, так и при проведении промежуточной аттестации. Тесты могут проводиться как в письменной форме, так и с использованием электронных средств обучения.

Можно выделить основные уровни теста, в которых проверка возрастает от контроля знаний (индикатор достижения компетенции - "знать") до применения навыков при решении типовых и нетиповых задач ((индикаторы достижения компетенции - "уметь" и "владеть"):

- Первый уровень узнавание ранее изученного материала;
- Второй уровень репродуктивный в заданиях не содержится материала для ответа или же его извлечение требует не только запоминания материала, но и его понимания (подстановка, конструктивный тест, типовая задача);
- Третий уровень нетиповые задачи повышенной сложности, для которых требуется самостоятельное нахождение методов решения;
- Смешанный использование элементов всех трех уровней для проверки разных индикаторов достижения компетенций.

Критерии оценки тестовых работ базируются на 100-бальной шкале согласно МДО ГУАП. СМК 2.77 "Положение о модульно-рейтинговой системе оценки качества учебной работы студентов в ГУАП" (допустимо применение любого количественного показателя оценки с приведением его к 100-процентной шкале):

- менее 55 "не зачтено" или "неудовлетворительно" (2);
- от 55 до 69 "зачтено" или "удовлетворительно" (3);
- от 70 до 84 "зачтено" или "хорошо" (4);
- от 85 до 100 "зачтено" или "отлично" (5).

11.7. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

- экзамен – форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой "отлично", "хорошо", "удовлетворительно", "неудовлетворительно".

Экзамен проводится в одной из следующих форм:

- в письменной форме в виде ответа на вопросы экзаменационного билета
- в письменной форме в виде теста
- с примением средств электронного обучения (LMS ГУАП)

В случае дистанционной формы промежуточной аттестации, экзамен проводится в виде теста с применением средств электронного обучения.

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой