МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 1

УТВЕРЖДАЮ

Руководитель направления

д.ф.-м.н., доц.

(должность, уч. степень, звание)

А.О. Смирнов

(инициалы, фамилия)

(подпись)

«14» ___мая 2020 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Механика» (Наименование дисциплины)

Код направления подготовки/ специальности	01.03.02	
Наименование направления подготовки/ специальности	Прикладная математика и информатика	
Наименование направленности	Прикладная математика и информатика в наукоемком производстве	
Форма обучения	очная	

Лист согласования рабочей программы дисциплины

Программу составил (а)	01-	
доцент, к.т.н.	14.05.2020	Е.Э. Аман
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Программа одобрена на заседа «14» мая 2020 г, протокол №	1 1	
Заведующий кафедрой № 1	0.1/	
д.фм.н.,доц.	14.05.2020	А.О. Смирнов
(уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Ответственный за ОП ВО 01.00 д.фм.н.,доц. (уч. степень, звание)	3.02(01) 14.05.2020 (подпись, дата)	А.О. Смирнов (инициалы, фамилия)
Заместитель директора инстит	ута ФПТИ по методической р	работе
доц.,к.фм.н., доц.	« <u>14» 05 2020г</u>	В.А. Голубков
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)

Аннотация

Дисциплина «Механика» входит в образовательную программу высшего образования — программу бакалавриата по направлению подготовки/ специальности 01.03.02 «Прикладная математика и информатика» направленности «Прикладная математика и информатика в наукоемком производстве». Дисциплина реализуется кафедрой «№1».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

УК-2 «Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений»

ОПК-1 «Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности»

ОПК-3 «Способен применять и модифицировать математические модели для решения задач в области профессиональной деятельности»

Содержание дисциплины охватывает круг вопросов, связанных с решением профессиональных задач моделирования и расчета, проектирования и конструирования механических и электромеханических элементов и устройств технических объектов. Формирование базовых знаний по моделированию и расчету, проектированию и конструированию механических и электромеханических элементов и устройств основано на изучении студентами основных понятий и законов механики в приложении к вопросам оптимального построения структурных и кинематических схем механизмов, расчета на прочность, жесткость и устойчивость деталей и узлов механизмов, оптимизации конструктивных параметров и проектирования механизмов.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: *лекции*, *лабораторные работы*, *самостоятельная работа обучающегося*.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 7 зачетных единиц, 252 часа.

Язык обучения по дисциплине «русский »

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Цель преподавания дисциплины состоит в формировании базовых знаний по моделированию и расчету, проектированию и конструированию механических и электромеханических элементов и устройств, изучении методов моделирования, конструирования, исследования и оптимизации параметров и конструкций механических и электромеханических элементов и устройств технических объектов, методов вычислительной механики, привитии обучающимся навыков инженерных расчетов.

- 1.2. Дисциплина входит в состав обязательной части образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа) компетенции	Код и наименование компетенции	Код и наименование индикатора достижения компетенции
Универсальные компетенции	УК-2 Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений	УК-2.3.1 знать виды ресурсов и ограничений для решения профессиональных задач; основные методы оценки разных способов решения задач; действующее законодательство и правовые нормы, регулирующие профессиональную деятельность УК-2.У.1 уметь проводить анализ поставленной цели и формулировать задачи, которые необходимо решить для ее достижения; анализировать альтернативные варианты для достижения намеченных результатов; использовать нормативно-правовую документацию в сфере профессиональной деятельности УК-2.В.1 владеть методиками разработки цели и задач проекта; методами оценки потребности в ресурсах, продолжительности и стоимости проекта; навыками работы с нормативно-правовой документацией
Общепрофессиональные компетенции	ОПК-1 Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности	ОПК-1.3.1 знать фундаментальные законы природы и основные физические и математические законы ОПК-1.У.1 уметь применять физические законы и математические методы для решения задач теоретического и прикладного характера ОПК-1.В.1 владеть навыками теоретического и экспериментального исследования объектов профессиональной деятельности

Общепрофессиональные компетенции	ОПК-3 Способен применять и модифицировать математические модели для решения задач в области профессиональной	ОПК-3.3.1 знать методы разработки математических моделей ОПК-3.У.1 уметь выбирать математический аппарат для разработки модели процесса, объекта, явления ОПК-3.В.1 владеть навыками разработки математических моделей с использованием пакетов прикладных программ; оценки целесообразности и
		-
	деятельности	метода моделирования

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- «Математика. Аналитическая геометрия и линейная алгебра»,
- «Математика. Математический анализ»,
- «<u>Физика</u>».

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и могут использоваться при изучении других дисциплин:

- «Теория автоматического управления»,
- «Компьютерное моделирование процессов измерения»,
- «Управление инновационными проектами».

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

Dry wyo fivo ii no fiore v	Dagna	Трудоемкость по семестрам		
Вид учебной работы	Всего	№3	№4	
1	2	3	4	
Общая трудоемкость дисциплины,	7/ 252	4/ 144	3/ 108	
ЗЕ/ (час)	11 232	4/ 144		
Из них часов практической подготовки				
Аудиторные занятия, всего час.	102	68	34	
в том числе:				
лекции (Л), (час)	51	34	17	
практические/семинарские занятия (ПЗ),				
(час)				
лабораторные работы (ЛР), (час)	51	34	17	
курсовой проект (работа) (КП, КР), (час)				
экзамен, (час)	36	36		
Самостоятельная работа, всего (час)	114	40	74	
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Экз., Зачет	Экз.	Зачет	

Примечание: **кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий.

Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

<u>Таблица 3 – Разделы, темы дисциплины, их труд</u>	Лекции	П3 (С3)	ЛР	КП	CPC
Разделы, темы дисциплины	(час)	(час)	(час)	(час)	(час)
Сем	естр 3	(-3.2)	(()	()
Раздел 1. Кинематика	20		15		20
Тема 1.1. Кинематика точки	20		13		20
Тема 1.2. Способы задания ориентации твердого	4		3		4
тела	4		3		4
Тема 1.3. Пространственное движение твердого	4		3		4
тела	4		3		4
Тема 1.4. Плоскопараллельное движение			3		
Тема 1.5. Сложное движение точки и твердого тела	4		3		4
Раздел 2. Динамика	14				20
Тема 2.1. Основные определения и динамические			9		
характеристики механических систем	3				4
Тема 2.2. Основные теоремы динамики	3		3		4
Тема 2.3. Динамические уравнения Эйлера	3		3		4
Тема 2.4. Движение динамически симметричного	3		3		4
тела с неподвижной точкой в поле тяжести	2		3		4
Тема 2.5. Движение систем переменного состава					
Итого в семестре:	34		34		40
Семестр	o 4				
Раздел 3. Прочность, жесткость и	8		9		40
устойчивость элементов конструкции			9		
Тема 3.1. Основные понятия и определения	2		2		10
Тема 3.2. Простое сопротивление	2		3		10
Тема 3.3. Сложное сопротивление	2		3		10
Тема 3.4. Основы расчета на прочность	2		3		10
· ·					34
Раздел 4. Детали машин	9		8		
Тема 4.1. Основы расчета зубчатых колес	3				12
Тема 4.2. Валы и оси, опоры	3		4		12
Тема 4.3. Муфты	3		4		10
Итого в семестре:	17		17		74
Итого	51	0	51	0	114

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Номер раздела	Название и содержание разделов и тем лекционных занятий
1	Раздел 1. Кинематика
	Тема 1.1. Кинематика точки
	Скорость и ускорение точки. Естественный трехгранник Френе.
	Криволинейные системы координат.
	Тема 1.2. Способы задания ориентации твердого тела
	Твердое тело, неподвижная и связанная с телом система

	T
	координат. Ортогональные матрицы поворота и их свойства. Теорема Эйлера о конечном повороте. Углы конечного вращения: углы Эйлера и «самолетные» углы. Тема 1.3. Пространственное движение твердого тела
	Угловая скорость. Формула Эйлера о распределении скоростей точек твердого тела. Угловое ускорение. Формула Ривальса о распределении ускорений точек твердого тела. Кинематический винт.
	Тема 1.4. Плоскопараллельное движение Определение плоскопараллельного движения. Формулы Эйлера и Ривальса в плоскопараллельном движении. Мгновенный центр скоростей. Мгновенный центр ускорений. Тема 1.5. Сложное движение точки и твердого тела
	Абсолютное, переносное и относительное движение твердого
	тела. Сложение скоростей. Сложение ускорений. Сложение
	угловых скоростей. Сложение угловых ускорений.
2	Раздел 2. Динамика
_	Тема 2.1. Основные определения и динамические характеристики
	механических систем
	Динамика материальной точки. Потенциальные силы. Способы вычисления основных динамических характеристик системы. Тема 2.2. Основные теоремы динамики
	Инерциальные и неинерциальные системы отсчета. Основные
	теоремы динамики в инерциальных системах отсчета. Основные теоремы динамики в неинерциальных системах отсчета. Общее
	уравнение динамики.
	Тема 2.3. Динамические уравнения Эйлера
	Динамические уравнения Эйлера. Случай Эйлера. Регулярная
	прецессия в случае Эйлера. Тема 2.4. Движение динамически симметричного тела с
	неподвижной точкой в поле тяжести
	Вынужденная регулярная прецессия динамически симметричного
	тела.
	Тема 2.5. Движение систем переменного состава
3	Раздел 3. Прочность, жесткость и устойчивость элементов
	конструкции
	Тема 3.1. Основные понятия и определения Формы тел, изучаемых в сопротивлении материалов. Гипотезы о свойствах материала. Связи. Расчётная модель. Основные
	принципы. Силы внешние и внутренние. Метод сечений.
	Внутренние силовые факторы. Виды нагружения стержня. Напряжения. Зависимости между напряжениями и внутренними силовыми факторами. Деформации.
	Тема 3.2. Простое сопротивление
	Растяжение (сжатие). Сдвиг. Кручение. Изгиб. Объемная
	деформация
	Тема 3.3. Сложное сопротивление
	Напряжённое состояние в точке тела. Тензор напряжений. Главные площадки и главные напряжения и их определение. Типы
	напряжённых состояний. Эллипсоид напряжений.
	Деформированное состояние в точке тела. Тензор деформаций.
	Главные деформации. Обобщённый закон Гука для изотропного
	материала. Объёмная деформация.
	Тема 3.4. Основы расчета на прочность
	Теория максимального касательного напряжения. Энергетическая

	теория. Теория прочности Мора. Пределы применимости теорий		
	прочности. Понятие о механизме разрушения.		
4	Раздел 4. Детали машин		
	Тема 4.1. Основы расчета зубчатых колес		
	Требования, предъявляемые к механизмам. Общие		
	замечания и выбор материалов. Способы упрочнения.		
	Технологичность и экономичность конструкции. Значение		
	стандартов и нормалей.		
	Тема 4.2. Валы и оси, опоры		
	Общие сведения и классификация. Валы и оси. Подшипники		
	скольжения. Подшипники качения.		
	Тема 4.3. Муфты		
	Общие сведения. Соединительные и сцепные муфты.		

4.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

				Из них	$N_{\underline{0}}$
$N_{\underline{0}}$	Темы практических	Формы практических	Трудоемкость,	практической	раздела
п/п	занятий	занятий	(час)	подготовки,	дисцип
				(час)	лины
		едусмотрено			
	Всего				

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

			Из них	$\mathcal{N}_{\underline{0}}$
$N_{\underline{0}}$	Наименование лабораторных работ	Трудоемкость,	практической	раздела
Π/Π	паименование лаоораторных раоот	(час)	подготовки,	дисцип
			(час)	лины
	Семестр 4	4		
1	Построение ортов естественного	3		1
	трехгранника по известным векторам			
	скорости и ускорения			
2	Вычисление проекций ускорения на орты	3		1
	локального базиса криволинейной системы			
	координат			
3	Определение точности акселерометра	3		1
4	Нахождение кинематического винта	3		1
5	Метод остановки	3		1
6	Потенциальные силы	3		2
7	Вычисление абсолютной угловой скорости	3		2
	волчка			
8	Эффект Джанибекова	3		2
	Семестр 5			
10	Исследование прочностных характеристик	3		3
	материала при растяжении			

11	Определение модуля сдвига при кручении	3	3
12	Исследование плоского и косого изгиба	3	3
	консольного стержня прямоугольного		
	поперечного сечения		
13	Исследование КПД механических передач	4	4
14	Исследование КПД винтового механизма	4	4
	Bcero	51	

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего, час	Семестр 3, час	Семестр 4, час
1	2	3	4
Изучение теоретического материала дисциплины (TO)	80	30	50
Курсовое проектирование (КП, КР)			
Расчетно-графические задания (РГЗ)			
Выполнение реферата (Р)			
Подготовка к текущему контролю успеваемости (ТКУ)	14	4	10
Домашнее задание (ДЗ)			
Контрольные работы заочников (КРЗ)			
Подготовка к промежуточной аттестации (ПА)	20	6	14
Всего:	114	40	74

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8. Таблица 8– Перечень печатных и электронных учебных изданий

		Количество
Шифр/ URL адрес	Библиографическая ссылка	экземпляров в
		библиотеке
		(кроме
		электронных
		экземпляров)
	Биргер, И.А. Сопротивление материалов: учебное пособие	
	/И.А.Биргер, Р.Р. Мавлютов М.: Ленанд, 2015 560 с	
	Режим доступа:	

http://znanium.com/catalog.php?item=booksearch&code Загл. с	
экрана	
Степин, П. А. Сопротивление материалов: учебник/ П. А.	
Степин. –13-е изд., стер. – СПб.: Лань, 2014 - 320 с Режим	
доступа: https://e.lanbook.com/book/3179#authors Загл. с экрана	
Сопротивление материалов: учебник/Схиртладзе А.Г.,Чеканин	
А.В.,Волков В.В М.:КУРС, ИНФРА-М, 2018 192 с	
Режим доступа: https://znanium.com/read?id=303322 Загл. с	
экрана	
Прикладная механика (основы структурного, кинематического	
и динамического анализа механизмов):учебник/Соболев А.Н.,	
Некрасов А.Я., Схиртладзе А.Г., Бровкина Ю.И М.:КУРС,	
ИНФРА-М, 2017 160 с Режим доступа:	
<u>https://znanium.com/read?id=18015</u> Загл. с экрана	
Жуков, В.А. Детали машин и основы конструирования:	
Основы расчета и проектирования соединений и передач:	
учебное пособие.	
– 2-е изд. [Электронный ресурс] - Электрон. дан	
М.:ИНФРА- М,2015 416 с Режим доступа:	
<u>http://znanium.com/bookread2.php?book=501585</u> Загл. с экрана	
Теория механизмов и машин (проектирование и	
моделирование механизмов и их элементов): учебник.	
/Соболев А.Н., Некрасов А.Я., Схиртладзе А.Г М.:КУРС,	
НИЦ ИНФРА-М, 2016 256 с Режим доступа:	
http://znanium.com/catalog.php?item=booksearch&code Загл. с	
экрана	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет»

URL адрес	Наименование
https://e.lanbook.com/	ЭБС «Лань»

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10– Перечень программного обеспечения

№ п/п	Наименование
	Не предусмотрено

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п	Наименование
	Не предусмотрено

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Лекционная аудитория — укомплектована специализированной (учебной) мебелью, набором демонстрационного оборудования и учебно-наглядными пособиями, обеспечивающими тематические иллюстрации, соответствующие рабочим учебным программам дисциплин (модулей).	Фонд лекционных аудиторий ГУАП
2	Аудитории для проведения лабораторных занятий — укомплектованы специализированной (учебной) мебелью, техническими средствами обучения, служащими для представления учебной информации. В лаборатории исследования механических элементов приборов (ауд. 11-05) имеются следующие лабораторные установки: разрывная машина ИМ-4р; лабораторная установка для измерения прогиба консольного стержня; лабораторная установка для определения момента трения в подшипниках качения; установка для определения модуля сдвига, главных напряжений при кручении и совместном действии изгиба и кручения ТМт14М. В лаборатории исследования кинематических и точностных характеристик приборов (ауд. 12-06) имеются следующие лабораторные установки: автоматизированный лабораторный комплекс «Детали машин. Передачи редукторные»; лабораторная установка для экспериментального исследования винтового механизма; лабораторная установка для исследования точности зубчатого механизма.	Фонд аудиторий ГУАП для проведения лабораторных занятий (ул. Гастелло 15, ауд. 11-05, 12-06)
3	Помещение для самостоятельной работы — укомплектовано специализированной (учебной) мебелью, оснащено компьютерной техникой с возможностью подключения к сети "Интернет" и обеспечено доступом в электронную информационно-образовательную среду организации.	Фонд аудиторий ГУАП
4	Учебная аудитория для текущего контроля и промежуточной аттестации — укомплектована специализированной (учебной) мебелью, техническими средствами обучения, служащими для представления учебной информации.	Фонд аудиторий ГУАП (ул. Гастелло 15, ауд. 11-05, 12-06)

- 10. Оценочные средства для проведения промежуточной аттестации
- 10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Экзамен	Список вопросов к экзамену;
	Тесты.
Зачет	Список вопросов;
	Тесты.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции	W Vanastanyarus ahan unapayus u ta marayus		
5-балльная шкала	Характеристика сформированных компетенций		
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий. 		
«хорошо» «зачтено»	 – обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; – не допускает существенных неточностей; – увязывает усвоенные знания с практической деятельностью направления; – аргументирует научные положения; – делает выводы и обобщения; – владеет системой специализированных понятий. 		
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий. 		
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 		

Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	Код индикатора
1	Запишите формулы Эйлера и Ривальса для плоскопараллельного	УК-2.3.1
	движения.	
2	Запишите динамические уравнения Эйлера.	
3	Определите наибольшее значение силы F, действующей на поршень,	
	если его масса равна т. Поршень двигателя внутреннего сгорания	
	совершает горизонтальные колебания согласно закону $X = r(\cos\omega t +$	
	$(r/41)\cos 2\omega t)$, где $r-$ длина кривошипа, $1-$ длина шатуна, $\omega-$	
	постоянная по величине угловая скорость вала.	
4	Объясните, с какой целью применяется естественный трехгранник Френе.	УК-2.У.1
5	Приведите примеры задач, где в качестве модели можно	
	использовать материальную точку, где – твердое тело.	
6	С какой целью выполняют прочностной расчет деталей и узлов	
_	машин?	****
7	Как себя ведет угловая скорость тела в случае плоскопараллельного	УК-2.В.1
	движения? Угловое ускорение? Скорость и ускорение произвольной	
0	точки твердого тела?	-
8	Выполните геометрическое построение для ортов локального базиса	
	цилиндрической системы координат (ер, еф, еz), найдите базисные	
9	орты аналитически. Проверьте ортогональность полученного базиса. Исследуйте случай. Будем считать, что Земля - это сфера,	-
9	равномерно вращающаяся вокруг неподвижной оси проходящей	
	через ее центр и северный полюс. Человек начинает свое движение	
	находясь на экваторе с постоянной скоростью. В каком направлении	
	ему пойти, чтобы величина его абсолютного ускорения оказалась	
	минимальна?	
10	Запишите формулу для вычисления проекции скорости	ОПК-1.3.1
	материальной точки на орт еі криволинейной системы координат.	
11	Предположим, матрицы А1, А2, А3 задают последовательные	
	повороты в связанных с поворачиваемым телом осях. Запишите	
	матрицу результирующего поворота.	
12	Запишите теорему Эйлера о распределении скоростей точек	
	твердого тела.	
13	Найти величину усилия, сжимающего предмет М в прессе, при	ОПК-1.У.1
	следующих условиях: усилие Р = 0,2 кН и направлено	
	перпендикулярно рычагу ОА, имеющему неподвижную ось О; в	
	рассматриваемом положении пресса тяж ВС перпендикулярен ОВ и	
	делит угол ECD пополам, причем угол CED = arctg0,2 =11o20';	
1.4	длина OA = 1 м, OB = 10 см.	-
14	Лебедка снабжена храповым колесом диаметра d1 с собачкой А. На	
	барабан диаметра d2, неподвижно скрепленный с колесом, намотан трос, поддерживающий груз Q. Определить давление на ось В	
	грос, поддерживающий груз Q. Определить давление на ось в собачки. Весом собачки пренебречь.	
15	Как зависят углы прецессии, нутации и собственного вращения от	1
13	времени в случае регулярной прецессии?	
16	Стержень вращается с постоянной угловой скоростью ω вокруг оси,	ОПК-1.В.1
10	перпендикулярной стержню. Ползун движется вдоль стержня от оси	JIII 1.D.1

	абсолютного ускорения ползуна в тот момент, когда его расстояние	
17	от оси вращения составляет 1. На кривошипе расположено 3 шестеренки одинакового радиуса, кривошип вращается с угловой скоростью ω. Первая шестеренка, центр которой совпадает с началом стержня, закреплена и не вращается. Найдите величину угловой скорости третьей шестеренки.	
18	Сколько способов расчета фермы вы знаете?	
19	Запишите векторное произведение, связывающее орты естественного трехгранника Френе.	ОПК-3.3.1
20	Для опускания грузов употребляется ворот с тормозом. С барабаном, на который намотана цепь, скреплено концентрическое колесо, которое тормозят, надавливая на конец А рычага АВ, соединенного цепью CD с концом D тормозного рычага ED. Диаметр колеса а, диаметр барабана b, ED = 2FE, AB = 10BC. Определить силу P, уравновешивающую груз Q, подвешенный к подвижному блоку. Коэффициент трения между колесом и колодкой f. Размерами колодки F пренебречь.	ОПК-3.У.1
21	Определите ошибку измерения акселерометра, закрепленного на трехосном поворотном стенде по данным измерения и матрице направляющих косинусов, задающей ориентацию акселерометра относительно лабораторной системы.	ОПК-3.В.1

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16. Таблица 16 — Вопросы (задачи) для зачета / дифф. зачета №

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код индикатора
1	Опишите достоинства зубчатых передач (цилиндрические, конические, червячные).	УК-2.3.1
2	Какие критерии работоспособности вы используете для расчета и проектирования червячной передачи.	
3	С какой целью вводятся в механизм лишние степени свободы?	УК-2.У.1
4	Как можно уменьшить габариты фрикционных передач?	
5	Что понимают под тяговой способностью передачи и каким образом можно увеличить в 2 раза тяговую способность действующей передачи?	УК-2.В.1
6	Проверить прочность детали, если в опасной точке действуют напряжения: $\sigma_x = 200$ МПа, $\sigma_y = 500$ МПа, $\tau_{xy} = 100$ МПа. Допускаемое напряжение для материала детали $[\sigma] = 1600$ МПа. Проверку производят по 3й теории прочности.	
7	Произведите проверочный расчет вертикального вала механизма ткацкого станка (см. рисунок и данные в билете). Вал изготовлен методами резания из стали 45 (σ в = 650 МПа, σ т = 470 МПа, σ -1 = 275 МПа, τ -1 = 160 МПа).	
8	Запишите дифференциальные зависимости при изгибе, выполните вывод формул.	ОПК-1.3.1
9	Объясните цель применения основных гипотез и допущений в сопротивлении материалов.	ОПК-1.У.1
10	Какие способы повышения теплостойкости червячных передач вы можете предложить?	
11	Исследуйте диаграмму растяжения – сжатия для конструкционной стали.	ОПК-1.В.1
12	Согласны ли вы что при построении эпюр Q, M для балки,	

	защемлённой одним концом, можно не определять реакции опоры?	
13	Дайте определение стержня, пластины, оболочки, массивного тела?	ОПК-3.3.1
14	Какие различия существуют в расчетах на прочность для хрупких и	
	пластичных материалов.	
15	В чем заключается сущность расчета на прочность, на жесткость?	ОПК-3.У.1
16	В чем сходство и различие понятий «прочность материала» и	
	«прочность детали»?	
17	В чем цель расчета на контактные и изгибные напряжения?	
18	Согласны ли вы что нормально отклонение фактического	ОПК-3.В.1
	напряжения от допустимого 5%? Почему?	
19	Спроектируйте редуктор по заданным параметрам.	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

№ п/п	Примерный перечень вопросов для тестов	Код индикатора
1	Укажите поверхность второго порядка, по которой точка может	УК-2.3.1
	двигаться без ускорения, где a, b, c и p - постоянные	
	- эллипсоид: $x^2/a^2 + y^2/b^2 + z^2/c^2 = 1$	
	- эллиптический параболоид: $x^2/a^2 + y^2/b^2 = z$	
	- двуполостной гиперболоид: $x^2/a^2 + y^2/b^2 - z^2/c^2 = -1$	
	- гиперболический параболоид: $x^2/a^2 - y^2/b^2 = 2pz$	
	Тело повернулось вокруг оси $(1\ 1\ 0)^{\scriptscriptstyle {\rm T}}$ на угол π . Точка A,	УК-2.У.1
	принадлежащая телу, имела до поворота координаты $(1\ 0\ 0)^{T}$. Ее	
2	координаты после поворота	
2	$[-(1\ 0\ 0)^{\mathrm{T}}]$	
	$[-(0\ 1\ 0)^{\mathrm{T}}]$	
	$-(0\ 0\ 1)^{\mathrm{T}}$	
	$-(1/sqrt(2))(0\ 1\ 1)^{T}$	
	Стержень, несущий три шестеренки одинакового радиуса,	УК-2.У.1
3	вращается с угловой скоростью ω. Первая шестеренка, центр	
	которой совпадает с началом стержня, закреплена и не вращается.	
	Какой будет величина угловой скорости третьей шестеренки	
	- ω	
	- 2ω	
	- 3ω	
	- 0	

4	Круглая гладкая ось постоянного поперечного сечения диаметром $d=100$ мм нагружена изгибающим моментом $M=10000$ Нм. Если предел текучести материала $\sigma_{\rm T}=200$ Мпа, то ее запас прочности равен 3 - 4 - 1,5 - 2	УК-2.У.1
5	Твердое тело движется вокруг неподвижной точки, принятой за начало координат, причем проекции угловой скорости тела на неподвижные координатные оси равны $\omega = (\sin t \cos t \ 1)^{\mathrm{T}}$. Укажите ускорение точки с координатами $(1\ 1\ 0)^{\mathrm{T}}$ в момент времени $t = \pi/2$. - $(-1\ -2\ 2)^{\mathrm{T}}$ - $(-2\ -1\ 2)^{\mathrm{T}}$ - $(1\ 2\ -2)^{\mathrm{T}}$	УК-2.В.1
6	Будем считать, что Земля - это сфера, равномерно вращающаяся вокруг неподвижной оси проходящей через ее центр и северный полюс. Человек начинает свое движение находясь на экваторе с постоянной скоростью. В каком направлении ему пойти, чтобы величина его абсолютного ускорения оказалась минимальна? - на восток - на север - на запад - на юг	УК-2.В.1
7	Амплитуда σ_a цикла напряжений связана с максимальным σ_{max} и минимальным σ_{min} напряжениями цикла зависимостью $ - \sigma_a = \frac{\sigma_{max} - \sigma_{min}}{2} \\ - \sigma_a = \frac{\sigma_{max} + \sigma_{min}}{2} \\ - \sigma_a = \sqrt{\sigma_{max}} \frac{\sigma_{min}}{2} \\ - \sigma_a = \frac{1}{\sigma_{max}} + \frac{1}{\sigma_{min}} $	ОПК-1.3.1
8	Укорочение вертикального стержня длиной l , статически сжатого усилием P , составляет δ_0 . Укорочение этого же стержня в случае мгновенного приложения нагрузки P равно	ОПК-1.У.1

	P $2\delta_0$ $\delta_0 \sqrt{\frac{l}{\delta_0}}$ $\delta_0 \left(1 + \sqrt{1 + \frac{2l}{l}}\right)$	
	$\delta_0 \left(1 + \sqrt{1 + \frac{\delta_0}{2l}} \right)$	
9	Сумма нормальных напряжений, действующих по двум взаимно перпендикулярным площадкам, — постоянна и равна сумме главных напряжений — постоянна и равна разности главных напряжений — постоянна и равна удвоенной сумме главных напряжений	ОПК-1.В.1
10	— не постоянна и не равна сумме главных напряжений Условие прочности по второй теории прочности имеет вид - $\sigma 1 \le R$ - $\operatorname{sqrt}(1/2 (\sigma_1 - \sigma_2)^2 + (\sigma_1 - \sigma_3)^2 + (\sigma_2 - \sigma_3)^2) \le R$ - $\sigma 1 - v(\sigma_2 + \sigma_3) \le R$ - $\sigma_1 - \sigma_3 \le R$	ОПК-3.3.1
11	На конец однородного стержня длины 1 и массы m, закрепленного в центре масс, под прямым углом действует сила F. Величина углового ускорения равна - 3F/2ml - 3F/ml - 6F/ml - 12F/ml	ОПК-3.У.1
12	При каком значении коэффициента восстановления удар считается абсолютно неупругим? 1 - 0 - 1 - ±1	ОПК-3.В.1

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

Тиолиц	15 Tiepe iens kenripensiish pueer	
№ п/п	Перечень контрольных работ	
	Не предусмотрено	

10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в

локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

- 11. Методические указания для обучающихся по освоению дисциплины
- 11.1. Методические указания для обучающихся по освоению лекционного материала

Основное назначение лекционного материала – логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- изложена в разделе 4.
- 11.2. Методические указания для обучающихся по выполнению лабораторных работ

В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задание и требования к проведению лабораторных работ

Лабораторные работы по дисциплине «Механика» проводятся в лабораториях кафедры № 1 (ауд. 11-05, 12-06). Для проведения лабораторных работ используются лабораторные установки, позволяющие выполнять экспериментальные исследования по всем основным разделам дисциплины «Механика».

Цель лабораторных работ — исследование кинематических и силовых параметров механизмов, механических характеристик материалов, изучение стандартов и нормалей, регламентирующих механические испытания элементов конструкций, кинематическую точность, а также получение навыков обработки экспериментальных данных с использованием современных информационных технологий.

Порядок проведения лабораторной работы:

- 1. Вводная часть
- получение обучающимся допуска к работе (устный опрос)
- получение обучающимся задания
- сообщение преподавателем указаний к работе (описание лабораторной установки, напоминание о порядке выполнения работы и исследуемых параметрах, показ способов выполнения отдельных операций, предупреждение о возможных ошибках)
 - 2. Основная часть
 - выполнение обучающимся поставленной в ходе эксперимента задачи
- сообщение преподавателем (в случае необходимости) дополнительных указаний (повторный показ или разъяснение исполнительских действий)
 - 3. Заключительная часть
- В заключительной части студент должен продемонстрировать полученные результаты преподавателю.

Структура и форма отчета о лабораторной работе

Отчет о лабораторной работе должен содержать следующие разделы:

- цель лабораторной работы
- формулировка задания
- основная часть (должна содержать описание лабораторной установки, необходимые таблицы, графики, экспериментальные данные и результаты расчетов)
- вывод (описываются итоги работы, проводится анализ полученных результатов).

Требования к оформлению отчета о лабораторной работе

Требования к оформлению отчета о лабораторной работе изложены в действующем стандарте ГОСТ 7.32-2001 (с учетом изменений 2019 г.) «Отчет о научно-исследовательской работе. Структура и правила оформления», который можно найти в Интернете на сайте ГУАП http://guap.ru/guap/standart/titl_main.shtml.

11.3. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихсяявляются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ (для обучающихся по заочной форме обучения).

В ходе выполнения самостоятельной работы обучающийся изучает теоретический материал дисциплины, выполняет отчеты по лабораторным работам, размещенные в ИСО ГУАП: http://pro.guap.ru/, https://lms.guap.ru/

11.4. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

Текущий контроль успеваемости обучающихся проводится в соответствии с СТО ГУАП СМК 3.76 «Положение о текущем контроле успеваемости и промежуточной аттестации студентов и аспирантов ГУАП, обучающихся по образовательным программам высшего образования».

По дисциплине «Механика» предусматриваются следующие возможные методы текущего контроля успеваемости обучающихся:

- устный опрос на занятиях;
- защита отчетов по лабораторным работам;
- тестирование.

В течение семестра обучающиеся загружают в ИСО ГУАП отчетные материалы, а преподаватели оценивают загруженные материалы в соответствии с установленными СТО ГУАП СМК 3.76 требованиями к прохождению текущего контроля успеваемости. В ИСО ГУАП фиксируется общее количество баллов, полученных обучающимися к моменту проведения промежуточной аттестации: http://pro.guap.ru/, https://lms.guap.ru/.

11.5. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

- экзамен форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».
- зачет это форма оценки знаний, полученных обучающимся в ходе изучения учебной дисциплины в целом или промежуточная (по окончании семестра) оценка знаний обучающимся по отдельным разделам дисциплины с аттестационной оценкой «зачтено» или «не зачтено».

Вариантом промежуточной аттестации наряду с устными экзаменом и зачетом по механике может быть письменное тестирование.

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой