МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 23

УТВЕРЖДАЮ
Руководитель направления
-
доц., к.т.н.
(должность, уч. степень, звание)
О.В. Тихоненкова
(инициалы, фамилия)
Obruux -
(подпись)
«23» июня 2021 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Электроника» (Наименование дисциплины)

Код направления подготовки/ специальности	11.05.01		
Наименование направления подготовки/ специальности	Радиоэлектронные системы и комплексы		
Наименование направленности	Радиоэлектронные системы передачи информации		
Форма обучения	очная		

Лист согласования рабочей программы дисциплины

Программу составил (а)		
ст. преподаватель	Manuel	А.С. Параскун
(должность, уч. степень, звание)	(поличсь, дата)	(инициалы, фамилия)
	20,06,21	
Программа одобрена на заседани	ии кафедры № 23	
«17» мая 2021 г, протокол № 9/2	1	
Заведующий кафедрой № 23	J-	
д.т.н., проф.		А.Р. Бестугин
(уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
	20,06,21	
Ответственный за ОП ВО 11.05.0	01(02)	
к.т.н., доц.	Mer.	К.Н. Тимофеев
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
	20,06,21	
Заместитель директора институт	а №2 по методической рабо	оте
доц., к.т.н., доц.	Bacca	О.Л. Балышева
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
	20,00,21	

Аннотация

Дисциплина «Электроника» входит в образовательную программу высшего образования — программу специалитета по направлению подготовки/ специальности 11.05.01 «Радиоэлектронные системы и комплексы» направленности «Радиоэлектронные системы передачи информации». Дисциплина реализуется кафедрой «№23».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ОПК-3 «Способен к логическому мышлению, обобщению, прогнозированию, постановке исследовательских задач и выбору путей их достижения, освоению работы на современном измерительном, диагностическом и технологическом оборудовании, используемом для решения различных научно-технических задач в области радиоэлектронной техники и информационно-коммуникационных технологий»

ОПК-5 «Способен выполнять опытно-конструкторские работы с учетом требований нормативных документов в области радиоэлектронной техники и информационно-коммуникационных технологий»

ОПК-6 «Способен учитывать существующие и перспективные технологии производства радиоэлектронной аппаратуры при выполнении научно-исследовательской опытно-конструкторских работ»

Содержание дисциплины охватывает круг вопросов, связанных с изучением физических принципов действия, характеристик, моделей и особенностей в радиотехнических цепях основных типов активных приборов, принципов их построения и механизмов влияния условий эксплуатации на работу активных приборов.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, самостоятельная работа студента, консультации.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 4 зачетных единицы, 144 часа.

Язык обучения по дисциплине «русский»

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Целью преподавания дисциплины «Электроника» является изучение студентами физических принципов действия, характеристик, моделей и особенностей использования в радиотехнических цепях основных типов активных приборов, принципов построения и основ технологии микроэлектронных цепей, механизмов влияния условий эксплуатации на работу активных приборов и микроэлектронных цепей. При изучении этой дисциплины закладываются основы знаний, позволяющих умело использовать современную элементную базу радиоэлектроники и понимать тенденции и перспективы ее развития и практического использования; приобретаются навыки расчета режимов активных приборов в электронных цепях, экспериментального исследования их характеристик, измерения параметров и построения базовых ячеек электронных цепей, содержащих такие приборы.

В области воспитания личности целью подготовки по данной дисциплине является формирование социально-личностных и общекультурных компетенций, таких качеств, как целеустремленность, организованность, трудолюбие, ответственность, гражданственность, коммуникативность, толерантность и др.

- 1.2. Дисциплина входит в состав обязательной части образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа) компетенции	Код и наименование компетенции	Код и наименование индикатора достижения компетенции
Общепрофессиональные компетенции	ОПК-3 Способен к логическому мышлению, обобщению, прогнозированию, постановке исследовательских задач и выбору путей их достижения, освоению работы на современном измерительном, диагностическом и технологическом оборудовании, используемом для решения различных научно-технических задач в области радиоэлектронной техники и информационно-	ОПК-3.3.1 знать методы решения задач анализа и расчета характеристик радиоэлектронных систем и устройств с применением современных средств измерения и проектирования ОПК-3.У.1 уметь выполнять настройку вспомогательного оборудования в соответствии с параметрами анализируемых узлов и блоков радиоэлектронных систем и устройств ОПК-3.В.1 владеть навыками использования методов решения задач анализа и расчета характеристик радиоэлектронных систем и устройств

	коммуникационных	
	технологий	
Общепрофессиональные компетенции	ОПК-5 Способен выполнять опытно-конструкторские работы с учетом требований нормативных документов в области радиоэлектронной техники и информационно-коммуникационных технологий	ОПК-5.3.1 знать основные методы проектирования, исследования и эксплуатации специальных радиотехнических систем ОПК-5.У.1 уметь применять информационные технологии и информационно-вычислительные системы для решения научно-исследовательских и проектных задач радиоэлектроники
Общепрофессиональные компетенции	ОПК-6 Способен учитывать существующие и перспективные технологии производства радиоэлектронной аппаратуры при выполнении научно-исследовательской опытно-конструкторских работ	ОПК-6.3.1 знать современные тенденции развития электроники, измерительной и вычислительной техники, информационных технологий

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- «Математика-1 (Аналитическая геометрия и линейная алгебра)»,
- «Математика-1 (Математический анализ)»,
- «Физика»,
- «Химия»,
- «Материаловедение»,
- «Электротехника».

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и могут использоваться при изучении других дисциплин:

- «Схемотехника аналоговых электронных устройств»,
- «Системы и сети радиосвязи»,
- «Устройства приема-передачи цифровой телекоммуникационной информации»,
- «Основы радиооптики».

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

таблица 2 объем и грудоемкость дисциплин		
		Трудоемкость по
Вид учебной работы	Всего	семестрам
		№ 4
1	2	3
Общая трудоемкость дисциплины,	4/144	4/144
ЗЕ/ (час)	4/ 144	4/ 144
Из них часов практической подготовки		
Аудиторные занятия, всего час.	68	68
в том числе:		
лекции (Л), (час)	34	34
практические/семинарские занятия (ПЗ),		
(час)		
лабораторные работы (ЛР), (час)	34	34
курсовой проект (работа) (КП, КР), (час)		
экзамен, (час)	27	27
Самостоятельная работа, всего (час)	49	49
Вид промежуточной аттестации: зачет,		
дифф. зачет, экзамен (Зачет, Дифф. зач,	Экз.	Экз.
Экз.**)		

Примечание: **кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Разделы, темы дисциплины	Лекции (час)	П3 (C3)	ЛР (час)	КП (час)	CPC (час)
Сем	естр 4				
Раздел 1. Элементы физики твердого тела.					10
Тема 1.1. Физические основы полупроводниковых приборов.	4		2		
Тема 1.2. Контактные явления.	6		2		
Раздел 2. Полупроводниковые приборы.					15
Тема 2.1. Полупроводниковые диоды.	6		4		
Раздел 3. Полупроводниковые приборы.					14
Тема 3.1. Полевые транзисторы.	6		10		
Тема 3.2. Биполярные транзисторы.	6		12		
Раздел 4. Оптоэлектроника.					10
Тема 4.1. Фотоэлектрические и излучательные приборы.	6		4		
Итого в семестре:	34		34		49
Итого	34	0	34	0	49

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

	Название и содержание разделов и тем лекционных			
Номер раздела	занятий			
Раздел 1	Элементы физики твердого тела.			
	1.1. Физические основы полупроводниковых приборов.			
	Основные понятия зонной теории полупроводников. Статистика электронов и дырок в полупроводниках. Вырожденные и невырожденные полупроводники. Концентрация носителей заряда в собственных и примесных полупроводниках в условиях термодинамического равновесия. Неравновесное состояние полупроводника. Процессы переноса носителей заряда в полупроводниках. Генерация и рекомбинация носителей заряда. Влияние электрического поля на объемную и поверхностную электропроводность полупроводников. Температурные зависимости концентрации, подвижности и удельной электропроводности полупроводников. Возникновение объемных неустойчивостей. Оптические и тепловые свойства полупроводников. Фотоэлектрические и термоэлектрические явления.			
	1.2. Контактные явления.			
	Понятие о p-n-переходе, типы p-n-переходов. Физические процессы в p-n-переходе при отсутствии и при наличии внешнего напряжения. Вольтамперная характеристика p-n-перехода. Контакт «металл-полупроводник», зависимость его свойств от работы выхода полупроводника и металла. Гетеропереходы.			
Раздел 2	Полупроводниковые приборы.			
	2.1. Полупроводниковые диоды.			
	Полупроводниковый диод, его характеристики и параметры. Основные виды пробоя p-n-перехода. Переходные процессы в полупроводниковом диоде, накопление и рассасывание избыточного заряда, диффузионная емкость. Эквивалентная схема полупроводникового диода. Основные типы полупроводниковых диодов, их конструкции, параметры и области применения.			
Раздел 3	Полупроводниковые приборы.			
	3.1. Полевые транзисторы.			
	ı			

Полевые транзисторы с затвором в виде р-п-перехода. Их устройство, принцип действия, схемы включения, характеристики и параметры. Зависимость характеристик от температуры. Нагрузочный режим полевого транзистора, нагрузочные характеристики. Физические явления на поверхности полупроводника. Полевые транзисторы с изолированным затвором (МОП- или МДП-тразисторы), их действия, принцип характеристики И параметры. Особенности мощных МДП-транзисторов. Область применения полевых транзисторов.

3.2. Биполярные транзисторы.

Транзистор как система двух взаимодействующих р-п-Возможные режимы работы транзистора: переходов. активный (усилительный), отсечки, насыщения, инверсный. Физические процессы в бездрейфовом транзисторе в активном усилительном режиме. Токи в транзисторе. Коэффициент передачи эмиттерного тока составляющие. Три схемы включения транзистора: с общим эмиттером, с общей базой и общим коллектором. Характеристики транзистора в схемах с общей базой и с общим эмиттером. Влияние температуры на характеристики транзистора. Транзистор как линейный четырехполюсник. Системы малосигнальных (дифференциальных) параметров транзистора. Определение малосигнальных параметров по характеристикам транзистора. Работа транзистора при наличии нагрузки в коллекторной цепи. Нагрузочные характеристики транзистора. Параметры, характеризующие режим усиления, определение их по характеристикам. Выбор рабочей точки транзистора в режиме усиления. Схемотехнические способы задания рабочей Влияние нелинейности входных характеристик на работу транзистора в режиме усиления. Работа транзистора на высоких частотах. Дрейфовые транзисторы. Параметра, характеризующие высокочастотные свойства транзистора. Эквивалентные транзистора (формальные схемы физические). Модели транзистора, используемые при компьютерном проектировании электронных схем. Работа транзистора в режиме переключения. Условия отсечки и насыщения. Переходные процессы в транзисторе при переключении. Параметра транзисторов в импульсном режиме. Транзисторный ключ, построенный по схеме с общим эмиттером. Предельно допустимые параметры транзистора.

Раздел 4	Оптоэлектроника.		
	4.1. Фотоэлектрические и излучательные приборы.		
	Фоторезисторы, их конструкция, характеристики и параметры. Физические процессы в р-п-переходе при воздействии света. Фото ЭДС. Фотогальванические элементы. Фотодиоды, основные режимы их работы. Характеристики и параметры фотодиодов. Основные типы фотодиодов. Фототранзисторы: принцип действия, характеристики, параметры. Области применения различных типов полупроводниковых фотоэлектрических приборов. Излучающие полупроводниковые приборы и их применение.		

4.3. Практические (семинарские) занятия Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

<u>№</u> п/п	Темы практических занятий	Формы практических занятий	Трудоемкость, (час)	Из них практической подготовки, (час)	№ раздела дисцип лины
		Учебным планом не п	ранусмотрано	(4ac)	ЛИНЫ
		у честым планом не п	редусмотрено		
Всего					

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

			Из них	No॒
$N_{\underline{0}}$	№ Наименование лабораторных работ	Трудоемкость,	практической	раздела
п/п	паименование лаоораторных расот	(час)	подготовки,	дисцип
			(час)	лины
	Семестр	4		
1	Определение ширины запрещенной зоны	4		1
	полупроводников			
2	Исследование выпрямительных диодов	4		2
3	Исследование полевых транзисторов с	4		3
	управляемым (р-п) переходом			
4	Исследование полевых транзисторов с	6		3
	изолированным затвором			
5	Исследование биполярных транзисторов,	6		3
	включенных по схеме с общей базой			
6	Исследование биполярных транзисторов,	6		3
	включенных по схеме с общим			
	эмиттером			
7	Исследование фототранзисторов	4		4

Всего	34	

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего,	Семестр 4,
вид самостоятельной работы	час	час
1	2	3
Изучение теоретического материала дисциплины (TO)	24	24
Курсовое проектирование (КП, КР)		
Расчетно-графические задания (РГЗ)		
Выполнение реферата (Р)		
Подготовка к текущему контролю успеваемости (ТКУ)	10	10
Домашнее задание (ДЗ)		
Контрольные работы заочников (КРЗ)		
Подготовка к промежуточной аттестации (ПА)	15	15
Всего:	49	49

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8. Таблица 8— Перечень печатных и электронных учебных изданий

Количество экземпляров в Шифр/ библиотеке Библиографическая ссылка URL адрес (кроме электронных экземпляров) 621.38 Булычев, Анатолий 3 Б 90 Леонидович. Электронные приборы: учебное пособие / А Л. Булычев, В. А. Прохоренко. - Минск : Высш. шк., 1987. - 315 с. 621.315.5/.61 Петров, К. С. Радиоматериалы, 4 ПЗО радиокомпоненты и электроника: учебное пособие / К. С.

	Петров СПб.: ПИТЕР, 2006	
	522 c.	
	ISBN 5-94723-378-9	
621.38	Шишкин, Г. Г. Электроника:	4
Ш65	учебник/Г. Г. Шишкин, А. Г.	
	Шишкин М.: Дрофа, 2009	
	703 c.	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационно-

телекоммуникационной сети «Интернет»

URL адрес	Наименование

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

№ п/п	Наименование	
	Не предусмотрено	

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

тасында	11 Tiepe tens migopmagnomic enpase mism energin
№ п/п	Наименование
	Не предусмотрено

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Лекционная аудитория	24-02 (ул. Гастелло, 15)
2	Лаборатория Электроники	22-09 (ул. Гастелло, 15)

10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Экзамен	Список вопросов к экзамену

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

Таолица 14 – Критерии с	аблица 14 – Критерии оценки уровня сформированности компетенций		
Оценка компетенции 5-балльная шкала	Характеристика сформированных компетенций		
3-оапівная шкала	– обучающийся глубоко и всесторонне усвоил программный		
«отлично» «зачтено»	материал; — уверенно, логично, последовательно и грамотно его излагает; — опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; — умело обосновывает и аргументирует выдвигаемые им идеи; — делает выводы и обобщения; — свободно владеет системой специализированных понятий.		
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и, по существу, излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 		
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу, излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий. 		
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 		

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	Код инликатора
		индикатора

1	Полупроводники с собственной электропроводностью.	ОПК-3.3.1
2	Полупроводники с электронной электропроводностью	ОПК-3.У.1
3	Полупроводники с дырочной электропроводностью.	ОПК-3.В.1
4	Дрейфовый и диффузионный ток в полупроводниках.	ОПК-5.3.1
5	Электронно-дырочный переход в состоянии равновесия.	ОПК-5.У.1
6	Прямое и обратное включение р-п-перехода.	ОПК-6.3.1
7	Теоретическая и реальная вольтамперная характеристика	ОПК-3.3.1
	р-п-перехода.	
8	Виды пробоев р-п-перехода и их особенности.	ОПК-3.У.1
9	Емкости р-п-перехода.	ОПК-3.В.1
10	Выпрямительные диоды.	ОПК-5.3.1
11	Однополупериодный выпрямитель – принцип его	ОПК-5.У.1
	действия.	01110 3.3.1
12	Влияние температуры на вольтамперные характеристики	ОПК-6.3.1
	полупроводниковых диодов.	
13	Графический метод определения параметров рабочего	ОПК-3.3.1
	режима полупроводниковых диодов.	
14	Полупроводниковые стабилитроны, специальные	ОПК-3.У.1
	параметры полупроводниковых стабилитронов.	
15	Анализ работы полупроводникового стабилизатора	ОПК-3.В.1
	напряжения с помощью линии нагрузки.	
16	Варикапы, схемы включения в электрическую цепь,	ОПК-5.3.1
	эквивалентная схема варикапа и его основные параметры.	
17	Туннельные диоды, основные параметры туннельных	ОПК-5.У.1
	диодов, анализ вольт-амперной характеристики	
	туннельного диода с помощью энергетических диаграмм.	
18	Структура полевого транзистора с управляющим р-п	ОПК-6.3.1
	переходом и принцип его работы.	
19	Электрические схемы включения полевых транзисторов с	ОПК-3.3.1
	управляющим р-п переходом и их особенности.	
20	Семейство стоково-затворных характеристик полевых	ОПК-3.У.1
	транзисторов с управляющим р-п переходом и их	
21	особенности.	OHIA A D 1
21	Семейство выходных характеристик полевых транзисторов	ОПК-3.В.1
22	с управляющим р-п переходом и их особенности.	OTHE 5 D 1
22	Зависимость конфигурации «канала» полевых	ОПК-5.3.1
	транзисторов с управляющим р- п переходом от изменения	
	напряжения «сток-исток» при постоянном напряжении	
23	«затвор-исток». Графический способ построения стоково-затворных	ОПК-5.У.1
23	характеристик по выходным характеристикам полевых	OHK-3.9.1
	транзисторов с управляющим р-п переходом.	
24	Структура МДП полевого транзистора с	ОПК-6.3.1
24	«индуцированным» каналом и принцип его работы.	O11K-0.5.1
25	Электрические схемы включения МДП полевых	ОПК-3.3.1
23	транзисторов с «индуцированным» каналом и их	01IK 3.3.1
	особенности.	
26	Семейство стоково-затворных характеристик МДП	ОПК-3.У.1
	полевых транзисторов с «индуцированным» каналом и их	
	особенности.	
27	Семейство выходных характеристик МДП полевых	ОПК-3.В.1
	транзисторов с «индуцированным» каналом и их	
	особенности.	

28	Структура МДП полевого транзистора со «встроенным»	ОПК-5.3.1
20	каналом и принцип его работы.	OHIC C. V. 1
29	Электрические схемы включения МДП полевых	ОПК-5.У.1
20	транзисторов со «встроенным» каналом и их особенности.	OFFIC CD 1
30	Семейство стоково-затворных характеристик МДП	ОПК-6.3.1
	полевых транзисторов со «встроенным» каналом и их	
	особенности.	
31	Семейство выходных характеристик МДП полевых	ОПК-3.3.1
	транзисторов со «встроенным» каналом и их особенности.	
32	Дифференциальные или малосигнальные параметры	ОПК-3.У.1
	полевых транзисторов.	
33	Работа полевых транзисторов в динамическом режиме.	ОПК-3.В.1
34	Отличие определения дифференциальных параметров в	ОПК-5.3.1
	динамическом режиме от их определения в статическом	
	режиме.	
35	Устройство и конструктивные особенности биполярных	ОПК-5.У.1
	транзисторов.	
36	Электрические схемы включения биполярных	ОПК-6.3.1
	транзисторов и их особенности.	
37	Работа биполярного транзистора, включенного по схеме с	ОПК-3.3.1
	общей базой, в режимах «отсечки» и «насыщения».	
38	Работа биполярного транзистора, включенного по схеме с	ОПК-3.У.1
	общей базой, в «активном» режиме.	
39	Семейство статических входных характеристик	ОПК-3.В.1
	биполярного транзистора, включенного по схеме с общей	
	базой, и их особенности.	
40	Семейство статических выходных характеристик	ОПК-5.3.1
	биполярного транзистора, включенного по схеме с общей	
	базой, и их особенности.	
41	Работа биполярного транзистора, включенного по схеме с	ОПК-5.У.1
	общим эмиттером, в режимах «отсечки» и «насыщения».	
42	Работа биполярного транзистора, включенного по схеме с	ОПК-6.3.1
	общим эмиттером, в «активном» режиме.	
43	Семейство статических входных характеристик	ОПК-3.3.1
	биполярного транзистора, включенного по схеме с общим	
	эмиттером, и их особенности.	
44	Семейство статических выходных характеристик	ОПК-3.У.1
	биполярного транзистора, включенного по схеме с общим	
	эмиттером, и их особенности.	
45	Схема включения биполярного транзистора с общим	ОПК-3.В.1
	коллектором в «активном» режиме и ее особенности.	
46	Система Н параметров биполярных транзисторов.	ОПК-5.3.1
47	Фототранзистор, устройство и принцип действия.	ОПК-5.У.1
L		

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16. Таблица 16 — Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код индикатора
	Учебным планом не предусмотрено	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

	Код						
№ п/п	Примерный перечень вопросов для тестов	индикатора					
1	Как из химически чистого полупроводника сформировать	ОПК-3.3.1					
1	полупроводник п-типа?	01IIC 3.3.1					
2	Как подбирают вещества для доноров?	ОПК-3.У.1					
3	Почему полупроводники п-типа называют полупроводниками с	ОПК-3.В.1					
	электронной электропроводностью?	3.B.1					
4	Где находится уровень Ферми в зонной диаграмме	ОПК-5.3.1					
•	полупроводника п-типа?	01111 01011					
5	Куда смещается уровень Ферми в зонной диаграмме	ОПК-5.У.1					
	полупроводника п-типа при увеличении концентрации атомов						
	донорной примеси?						
6	Куда смещается уровень Ферми в зонной диаграмме	ОПК-6.3.1					
	полупроводника п-типа при увеличении температуры?						
7	Что остается на энергетическом уровне донорной примеси при	ОПК-3.3.1					
	полной активации ее атомов?						
8	Как из химически чистого полупроводника сформировать	ОПК-3.У.1					
	полупроводник р-типа?						
9	Какие примеси называются акцепторными?	ОПК-3.В.1					
10	Почему полупроводники р-типа называют полупроводниками с	ОПК-5.3.1					
	дырочной электропроводностью?						
11	Чем отличается полупроводник п-типа от полупроводника р-	ОПК-5.У.1					
	типа?						
12	Какие два тока могут иметь место в полупроводнике?	ОПК-6.3.1					
13	Что такое подвижность носителей зарядов, чему она ровна?	ОПК-3.3.1					
14	В каком случае ток, протекающий в полупроводнике, будет иметь	ОПК-3.У.1					
	дрейфовую и диффузионную составляющие?						
15	Как создается электронно-дырочный переход?	ОПК-3.В.1					
16	В результате чего в (р-п) — переходе формируется	ОПК-5.3.1					
	потенциальный барьер?						
17	Почему диффузионное электрическое поле в (р-п) — переходе	ОПК-5.У.1					
	является тормозящим для основных носителей заряда?						
18	В чем отличие основных носителей заряда от неосновных?	ОПК-6.3.1					
19	Как зависит толщина (р-п) - перехода от концентрации примесей	ОПК-3.3.1					
	врип-областях?						
20	Как и почему изменяется напряжённость электрического поля в	ОПК-3.У.1					
	(р-п) - переходе при его прямом смещении?						

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п		Пе	еречень контрольных работ
	Не предусмотрено	0	

10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

11. Методические указания для обучающихся по освоению дисциплины

11.1. Методические указания для обучающихся по освоению лекционного материала.

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- Лекшии:
- Демонстрация промышленных образцов полупроводниковых приборов;
- Демонстрация электрических схем включения полупроводниковых приборов.
- 11.2. Методические указания для обучающихся по выполнению лабораторных работ.

В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач обучающегося:

приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;

- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задание и требования к проведению лабораторных работ

Исследование характеристик полупроводниковых приборов. Лабораторная работа выполняется бригадой из двух-трех студентов на универсальных измерительных стендах. Проведение исследований осуществляется в соответствии с заданием и в указанной последовательности. Результаты измерений заносятся в протокол испытаний, который по окончании исследований должен быть представлен для проверки преподавателю.

Структура и форма отчета о лабораторной работе

Отчет должен содержать: наименование и цель работы; схемы измерений; таблицы измеренных данных; графики характеристик исследуемых объектов; рассчитанные значения параметров исследуемых объектов; краткие выводы. Отчет выполняется на белой бумаге формата 297 х 210 кв. мм.

Требования к оформлению отчета о лабораторной работе

Образец оформления титульного листа приведен на сайте: https://guap.ru/standart/ Графики строятся на отдельных листах формата отчета. Иллюстрации малых размеров размещаются на одном листе. Все графики и рисунки должны иметь нумерацию и поясняющие подписи с указанием типа исследуемого объекта. Принципиальные схемы вычерчиваются в соответствии с требованиями ЕСКД.

- 1. Абрамов, А. П. Электроника. Методические указания к выполнению лабораторных работ по исследованию полевых транзисторов / А. П. Абрамов, В. В. Опарин. СПб: ГУАП, 2009. 42 с.: ил.
- 2. Абрамов, А. П. Электроника. Методические указания к выполнению лабораторных работ по исследованию полупроводниковых диодов/ А. П. Абрамов, В. В. Опарин. СПб: ГУАП, 2008. 41 с.: ил.
- 3. Абрамов, А. П. Основы полупроводниковой электроники. Методические указания к выполнению лабораторных работ./ А. П. Абрамов. СПб: ГУАП, 2020. 54 с.: ил.
- 4. Абрамов, А. П. Биполярные и полевые транзисторы. Методические указания к выполнению лабораторных работ./ А. П. Абрамов, В. Г. Нефедов, А. С. Параскун. СПб: ГУАП, 2020. 30 с.: ил.
- 11.3. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихсяявляются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ (для обучающихся по заочной форме обучения).
- 11.4. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

— экзамен — форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Система оценок при проведении промежуточной аттестации осуществляется в соответствии с требованиями Положений «О текущем контроле успеваемости и промежуточной аттестации студентов ГУАП, обучающихся по программам высшего образования» и «О модульно-рейтинговой системе оценки качества учебной работы студентов в ГУАП».

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой