МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 31

УТВЕРЖДАЮ

Руководитель направления

д.т.н.,проф.

(должность, уч. степень, звание)

В.Ф. Шишлаков

(инициалы, фамилия)

(подпись)

«24» _марта_ 2022 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Неразрушающий контроль» (Наименование дисциплины)

Код направления подготовки/ специальности	16.03.01	
Наименование направления подготовки/ специальности	Техническая физика	
Наименование направленности	Физические методы контроля качества и диагностики	
Форма обучения	очная	

Лист согласования рабочей программы дисциплины

Программу составил (а)	11	
Доцент, к.т.н.	(Fu)	П.С. Шичёв
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Программа одобрена на заседан	ии кафедры № 31	
«16» _марта 2022 г, протоко.	л № 5_	
Заведующий кафедрой № 31		
д.т.н.,проф.		В.Ф. Шишлаков
(уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
OH DO 1602	01/01)	
Ответственный за ОП ВО 16.03.	01(01)	
Ст. преп.		Н.В. Решетникова
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Заместитель директора институ	ra No3 no maranna araŭ na	бото
	та №3 по мотодической ра	
Ст. преп.		Н.В. Решетникова
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)

Аннотация

Дисциплина «Неразрушающий контроль» входит в образовательную программу высшего образования — программу бакалавриата по направлению подготовки/ специальности 16.03.01 «Техническая физика» направленности «Физические методы контроля качества и диагностики». Дисциплина реализуется кафедрой «№31».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ПК-1 «Способность применять эффективные методы исследования физикотехнических объектов, процессов и материалов, проводить стандартные и сертификационные испытания технологических процессов и изделий с использованием современных аналитических средств технической физики»

ПК-4 «Способность использовать технические средства для определения основных параметров технологического процесса, изучения свойств физико-технических объектов, изделий и материалов»

Содержание дисциплины охватывает круг вопросов, связанных с теоретическими основами и практической реализацией методов и методик неразрушающего контроля для оценки технических показателей качества изделий, в том числе, характеризующих надежность, посредством акустического, магнитного, вихретокового, теплового и электрического видов контроля.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, самостоятельная работа обучающегося.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме дифференцированного зачета.

Общая трудоемкость освоения дисциплины составляет 5 зачетных единиц, 180 часов.

Язык обучения по дисциплине «русский »

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

При изучении дисциплины у обучающихся формируется понимание основных теоретических положений и практических аспектов применения таких видов неразрушающего контроля как акустический, магнитный, вихретоковый, тепловой и электрический для оценки показателей, характеризующих техническое состояние изделий.

Неразрушающий контроль, направленный на оценку показателей качества и обеспечение надежности изделий, имеет высокую значимость в практике изготовления и эксплуатации различного оборудования и его узлов.

- 1.2. Дисциплина входит в состав части, формируемой участниками образовательных отношений, образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа) компетенции	Код и наименование компетенции	Код и наименование индикатора достижения компетенции
Профессиональные компетенции	ПК-1 Способность применять эффективные методы исследования физико-технических объектов, процессов и материалов, проводить стандартные и сертификационные испытания технологических процессов и изделий с использованием современных аналитических средств технической физики	ПК-1.3.1 знать методы исследования физикотехнических объектов, процессов и материалов ПК-1.У.1 уметь проводить стандартные и сертификационные испытания технологических процессов и изделий с использованием современных аналитических средств технической физики ПК-1.В.1 владеть навыками исследования физико-технических объектов и работы с ними
Профессиональные компетенции	ПК-4 Способность использовать технические средства для определения основных параметров технологического	ПК-4.3.1 знать основные свойства физикотехнических объектов, изделий и материалов ПК-4.У.1 уметь пользоваться техническими средствами для проведения эксперимента в рамках профессиональной деятельности ПК-4.В.1 владеть навыками использования оборудования для проведения экспериментов с физико-техническими объектами

процесса, изу свойств физи	
технических	
объектов, изд	целий и
материалов	

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- «Схемотехника средств контроля»;
- «Физические методы получения информации».

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и могут использоваться при изучении других дисциплин:

- «Производственная преддипломная практика».

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

Вид учебной работы	Всего	Трудоемкость по семестрам
		№8
1	2	3
Общая трудоемкость дисциплины, 3E/ (час)	5/ 180	5/ 180
Из них часов практической подготовки	20	20
Аудиторные занятия, всего час.	40	40
в том числе:		
лекции (Л), (час)	20	20
практические/семинарские занятия (ПЗ),		
(час)		
лабораторные работы (ЛР), (час)	20	20
курсовой проект (работа) (КП, КР), (час)		
экзамен, (час)		
Самостоятельная работа, всего (час)	140	140
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Дифф. Зач.	Дифф. Зач.

Примечание: **кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

тиолици 3 тизделы, темы диециплины, их трудоемкоеть					
Разделы, темы дисциплины	Лекции (час)	ПЗ (СЗ) (час)	ЛР (час)	КП (час)	СРС (час)
Семестр 8					
Раздел 1. Понятия о качестве и организации неразрушающего контроля промышленных изделий	2				24

Раздел 2. Физические основы методов неразрушающего контроля изделий	10		20		64
Раздел 3. Алгоритмы и аппаратурное обеспечение методов неразрушающего контроля изделий	8				52
Итого в семестре:	20		20		140
Итого	20	0	20	0	140

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

	а 4 – Содержание разделов и тем лекционного цикла		
Номер раздела	Название и содержание разделов и тем лекционных занятий		
1	Понятия о качестве и организации неразрушающего		
	контроля (НК) промышленных изделий.		
	Понятие о качестве промышленной продукции. Показатели		
	качества, их характеристики. Надежность изделий.		
	Основные понятия и определения НК. Классы состояний		
	изделия. Классификация методов НК. Основные положения		
	организации НК на этапах производства и эксплуатации		
	изделий.		
2	Физические основы методов неразрушающего контроля		
	изделий.		
	Закономерности во взаимосвязях физических параметров		
	при внешних воздействиях для материалов изделий:		
	проводников, диэлектриков, ферромагнетиков.		
	Методы магнитного НК. Понятия о намагниченности		
	материала. Взаимосвязь магнитной индукции,		
	напряженности и намагниченности. Коэрцитивная сила.		
	Индикаторы полей рассеяния: ферромагнитная лента,		
	магнитный порошок, индукционный преобразователь,		
	феррозонд, датчик Холла. Диагностические признаки		
	дефектов изделий по магнитным методам НК.		
	Методы акустического НК. Понятия о распространении и		
	затухании упругих волн. Продольные, поперечные и		
	поверхностные волны. Взаимосвязь параметров упругих		
	волн при распространении в материале. Коэффициент		
	затухания. Ультразвуковые колебания. Затухание и		
	трансформация ультразвуковых волн. Источники и виды		
	сигналов акустической эмиссии. Диагностические признаки		
	дефектов изделий по акустическим методам НК.		
	Методы вихретокового НК. Понятие о вихревых токах и их		
	связь с параметрами источника внешнего магнитного поля.		
	Глубина проникновения вихревых токов. Обобщенный		
	параметр вихретокового контроля. Диагностические		
	признаки дефектов изделий по вихретоковым методам НК.		
	Методы теплового НК. Способы теплопередачи внутри		
	нагретых тел и с их поверхностей. Основы теории нагрева		

	проводников, контактных частей и ферромагнитных
	элементов электрооборудования. Взаимосвязь
	температурного поля объекта и внутренних физических
	процессов. Инфракрасное излучение объекта.
	Диагностические признаки дефектов изделий по тепловым
	методам НК.
	Методы электрического НК. Закономерности в реакциях
	параметров удельного сопротивления, емкости,
	электрической прочности материалов изделий на нарушения
	целостности, сопряжений, изменения структуры. Физическая
	сущность коэффициентов абсорбции и поляризации,
	тангенса угла диэлектрических потерь при
	электропараметрическом контроле состояния
	электрооборудования. Природа возникновения частичных
	разрядов в изоляции электрооборудования. Представление
	сигнала тока амплитудным спектром и диагностические
	параметры дефектов асинхронных двигателей.
3	Алгоритмы и аппаратурное обеспечение методов
	неразрушающего контроля изделий.
	Основные этапы организации и выполнения процедур НК
	изделий. Примеры алгоритмов проведения контролей
	изделий, конструкции и принципы действия первичных
	измерительных преобразователей, структуры измерительных
	систем для методов акустического, магнитного,
	вихретокового, теплового и электрического НК, в том числе:
	магнитопорошкового и индукционного,
	электропараметрического и электроискрового, контактного и
	бесконтактного теплового, акустико-эмиссионного и
	акустико-ультразвукового, трансформаторного и
	параметрического вихретокового.
	1 1 1

4.3. Практические (семинарские) занятия Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

					Из них	$N_{\underline{0}}$
N	<u>o</u>	Темы практических	Формы практических	Трудоемкость,	практической	раздела
п/:	П	занятий	занятий	(час)	подготовки,	дисцип
					(час)	лины
			Учебным планом не про	едусмотрено		
		Bcer	0			

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

№ п/п	Наименование лабораторных работ	Трудоемкость, (час)	Из них практической подготовки, (час)	№ раздела дисцип лины
	Семестр	8		
1	Определение статистических показателей надежности невосстанавливаемых электротехнических изделий	8	8	2
2	Исследование диагностических признаков изменения свойств нелинейных электротехнических элементов	2	2	2
3	Исследование отклонения параметров моделей участков изоляции при изменениях характеристик дефектов	4	4	2
4	Моделирование диагностических признаков механических дефектов асинхронного электродвигателя в амплитудном спектре тока	6	6	2
	Всего	20	20	

4.5. Курсовое проектирование/ выполнение курсовой работы

Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся

Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего, час	Семестр 8, час
1	2	3
Изучение теоретического материала дисциплины (ТО)	78	78
Выполнение реферата (Р)	28	28
Подготовка к текущему контролю успеваемости (ТКУ)	12	12
Подготовка к промежуточной аттестации (ПА)	22	22
Всего:	140	140

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8. Таблица 8– Перечень печатных и электронных учебных изданий

Шифр/ URL адрес	Библиографическая ссылка	Количество экземпляров в библиотеке (кроме электронных экземпляров)
https://znanium.com/	Токарев, А. О. Отказы деталей	
catalog/product/1168520	машин. Анализ причин, техническая	

	диагностика и профилактика:	
	учебник / А. О. Токарев, И. Г.	
	Мироненко. – Москва; Вологда:	
	Инфра-Инженерия, 2020 220 с.	
https://znanium.com/	Сидоров, В. А. Техническая	
catalog/product/1833108	диагностика механического	
	оборудования : учебник / В. А.	
	Сидоров Москва ; Вологда :	
	Инфра-Инженерия, 2021 256 с.	
620 C 89	Сударикова, Е. В. Неразрушающий	69
	контроль в производстве : учебное	
	пособие. Ч. 1 / Е. В. Сударикова; С	
	Петерб. гос. ун-т аэрокосм.	
	приборостроения СПб. : Изд-во	
	ГУАП, 2007 138 с.	
620 C 89	Сударикова, Е. В. Неразрушающий	69
	контроль в производстве : учебное	
	пособие. Ч. 2 / Е. В. Сударикова; С	
	Петерб. гос. ун-т аэрокосм.	
	приборостроения СПб. : Изд-во	
	ГУАП, 2007 112 с.	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 — Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет»

URL адрес	Наименование
	Не предусмотрено

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

№ п/п	Наименование
	Matlab

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11– Перечень информационно-справочных систем

№ п/п		Наименование	

Не предусмотрено

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Мультимедийная лекционная аудитория	
2	Компьютерный класс	

- 10. Оценочные средства для проведения промежуточной аттестации
- 10.1. Состав оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Дифференцированный зачёт	Список вопросов;
	Тесты

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

таолица 14 – критерии оценки уровня сформированности компетенции		
Оценка компетенции	Характеристика сформированных компетенций	
5-балльная шкала		
	 обучающийся глубоко и всесторонне усвоил программный материал; 	
«отлично» «зачтено»	 уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; 	
	умело обосновывает и аргументирует выдвигаемые им идеи;делает выводы и обобщения;свободно владеет системой специализированных понятий.	
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 	
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; 	

Оценка компетенции	Vanagramuerura adapagramananun iv raagramanun		
5-балльная шкала	Характеристика сформированных компетенций		
	- испытывает затруднения в практическом применении знаний		
	направления;		
	– слабо аргументирует научные положения;		
	– затрудняется в формулировании выводов и обобщений;		
	 частично владеет системой специализированных понятий. 		
	– обучающийся не усвоил значительной части программного		
	материала;		
WIS THORIGE DODIET AND THE	– допускает существенные ошибки и неточности при		
«неудовлетворительно» «не зачтено»	рассмотрении проблем в конкретном направлении;		
«не зачтено»	– испытывает трудности в практическом применении знаний;		
	– не может аргументировать научные положения;		
– не формулирует выводов и обобщений.			

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	Код индикатора
	Учебным планом не предусмотрено	

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16.

Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код индикатора
1.	Определение неразрушающего контроля (НК) изделий.	ПК-1.3.1
2.	Классификация методов НК.	-
3.	Показатели качества и надежности изделий.	=
4.	Основные статистические показатели надежности невосстанавливаемых и восстанавливаемых изделий.	
5.	Структуры служб НК на предприятии.	
6.	Основные требования к лабораториям НК.	-
7.	Основные этапы организации технической диагностики изделий.	=
8.	Влияние внешних факторов и структурных изменений в материале на удельное сопротивление проводников.	-
9.	Зависимость емкости и электрической прочности изоляции от температуры, увлажненности, нарушений структуры.	
10.	Связь магнитных свойств ферромагнетиков со структурными изменениями в материале изделия.	
11.	Явление магнитострикции.	
12.	Понятия о характеристиках поля и свойствах ферромагнетиков.	ПК-1.У.1
13.	Магнитная индукция, напряженность поля, намагниченность.	-
14.	Коэрцитивная сила, остаточная индукция, циклическое перемагничивание.	-
15.	Распространение, затухание упругих волн.	
16.	Понятие о продольных и поперечных упругих волнах.	=

$N\!$	Перечень вопросов (задач) для зачета / дифф. зачета			
17.	Ультразвуковые волны, их затухание и трансформация.	индикатора		
18.	Сигналы акустической эмиссии.	-		
19.	Природа возникновения вихревых токов.	-		
20.	Глубина проникновения вихревых токов.	_		
21.	Теплопроводность, конвекция, тепловое излучение.	-		
22.	Инфракрасное излучение, диапазон, практическая значимость.	_		
23.	Понятия о коэффициенте абсорбции и поляризации.	_		
		_		
24.	Тангенс угла диэлектрических потерь изоляции.			
25.	Технические средства и методы намагничивания и	ПК-1.В.1		
26.	размагничивания объектов контроля. Индикаторы полей рассеяния магнитных методов контроля.	\dashv		
		_		
27.	Магнитный порошок. Свойства, применение.			
28.	Ферромагнитная лента. Назначение, использование.			
29.	Феррозонд. Принцип действия.	1		
30.	Понятие об обобщенном параметре контроля вихревых токов.			
31.	Факторы, определяющие чувствительность преобразователя при			
	вихретоковом контроле.			
32.	Способы воздействия на объект при тестовом температурном			
33.	контроле. Обоснование реакции температурного поля в области контактного	-		
33.	соединения электрооборудования на дефект.			
34.	Способы измерения электрического сопротивления проводников,	1		
	контактных соединений электрооборудования.			
35.	Подходы к оценке тангенса угла диэлектрических потерь.			
36.	Суть испытаний электрической прочности изоляции.			
37.	Формирование амплитудного спектра сигналов. Параметры			
	спектра. Использование в диагностике электрооборудования.			
38.	Основные этапы и операции контроля состояния оборудования по ГОСТ Р ИСО 17359-2015.	ПК-4.3.1		
39.	Магнитопорошковый и индукционный методы магнитного контроля. Диагностические параметры.			
40.	Электропараметрические методы контроля состояния изоляции	1		
	электрооборудования. Диагностические параметры.			
41.	Акустико-эмиссионный и ультразвуковой методы контролей.			
	Диагностические параметры.	4		
42.	Трансформаторный и параметрический методы вихретокового			
43.	контроля. Диагностические параметры. Контактный и тепловизионный методы теплового контроля.	-		
₩3.	Диагностические параметры.			
44.	Индукционный преобразователь и датчик Холла для магнитного	ПК-4.У.1		
	контроля изделий.	1111-7.7.1		
45.	Проходные, накладные и экранные преобразователи для	-		
	вихретокового контроля.			

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код индикатора
46.	Варианты включения катушек в проходных преобразователях.	-
47.	Принцип работы трансформаторного и параметрического преобразователей для вихретокового контроля.	
48.	Резонансные датчики акустической эмиссии. Предварительные усилители.	
49.	Ультразвуковые пьезоэлектрические преобразователи. Классификация, принцип действия, применение.	
50.	Мегаомметры и микроомметры. Принцип действия, использование.	
51.	Измерительные мосты постоянного тока. Конструкция, применение.	
52.	Тепловизоры и пирометры. Назначение, принцип действия.	
53.	Термопреобразователи сопротивления и термопары.	
54.	Порядок действий при реализации магнитопорошкового метода контроля, их описание.	ПК-4.В.1
55.	Примеры методик акустико-эмиссионного контроля.	
56.	Организация и проведение вихретокового контроля лабораторией HK.	
57.	Периодический и непрерывный тепловой контроль оборудования. Подключение датчиков к измерительным системам.	
58.	Проведение тепловизионного контроля. Основные требования к учету помех и измерительной аппаратуре.	
59.	Основные нормативные документы и их содержание по организации испытаний и контролей технического состояния электрооборудования.	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

№ п/п	Примерный перечень вопросов для тестов	Код
		индикатора
1.	Свойства безотказности, сохраняемости, ремонтопригодности,	ПК-1.3.1
	долговечности относятся к показателям:	
	а) надежности;	
	б) эргономичности;	
	в) производительности;	
	г) эстетичности	
2.	Состояние объекта, при котором он способен выполнять требуемые	ПК-1.3.1
	функции но не соответствует хотя бы одному из требований,	
	установленных в документации на него (один или несколько	

	aamuaumaa):			
	вариантов):			
	а) исправное;			
	б) неисправное;			
	в) работоспособное;			
	г) неработоспособное	ПК-1.3.1		
3.	3. Каждое отдельное несоответствие объекта требованиям,			
	установленным документацией (не событие), является:			
	а) отказом;			
	б) дефектом;			
	в) повреждением			
4.	Вид контроля, основанный на анализе параметров упругих волн в	ПК-1.У.1		
	контролируемом объекте:			
	а) магнитный;			
	б) вихретоковый;			
	в) акустический;			
	г) тепловой			
5.	К магнитным методам неразрушающего контроля относят (один или	ПК-1.У.1		
	несколько вариантов):			
	а) магнитопорошковый;			
	б) электропараметрический;			
	в) акустико-эмиссионный;			
	г) индукционный;			
	д) ультразвуковой			
6.	Пирометрический метод относят к виду контроля:	ПК-1.У.1		
0.	а) магнитному;	1110 1.3.1		
	б) акустическому;			
	в) вихретоковому;			
	г) тепловому			
7.	Величина, характеризующая магнитное состояние объекта,	ПК-1.В.1		
/.	определяемая магнитным моментом единицы объема:	11IX-1.D.1		
	<u>-</u>			
	а) магнитная индукция;			
	б) напряженность поля;			
	в) намагниченность;			
0	г) магнитодвижущая сила	FIG 1 D 1		
8.	Значение напряженности, требуемое для полного размагничивания	ПК-1.В.1		
	ферромагнитного объекта, определяет величину:			
	а) коэрцитивной силы;			
	б) остаточной индукции;			
	в) индукции насыщения			
9.	Длина акустической волны λ определяется через скорость звука υ и	ПК-1.В.1		
	частоту f следующим выражением:			
	a) $\lambda = v \cdot f$;			
	$\delta) \lambda = \upsilon \cdot (f)^{-1};$			
	$) \lambda = v^2 / f;$			
	$\Gamma = v^2 \cdot f$			
10.	Нижним порогом частоты колебаний для ультразвуковых волн	ПК-4.3.1		
	является:			
	а) 20 кГц;			
	δ) 40 κΓι;			
	в) 100 кГц;			
	г) 200 кГц			
11.	Параметр, характеризующий расстояние на котором амплитуда	ПК-4.3.1		
11.	ттарамотр, характоризующий расстояние на котором амплитуда	1117-4.3.1		

		I		
	электромагнитной волны при вихретоковом контроле уменьшается			
	в e раз, является:			
	а) обобщенным параметром контроля;			
	б) параметром рассеяния;			
	в) коэффициентом искажения;			
	г) глубиной проникновения токов			
12.	12. Вид теплопередачи, предполагающий перетоки тепловой энергии			
	внутри твердых тел:			
	а) теплопроводность;б) конвекция;			
	в) тепловое излучение			
13.	Изменение удельного сопротивления материала электрических	ПК-4.3.1		
	проводников при отклонениях температуры учитывается			
	выражением:			
	a) $\rho = \rho_0 \left[1 + \alpha(\Theta - \Theta_0) \right]^{-1}$;			
	$6) \rho = \rho_0 \left[1 - \alpha(\Theta - \Theta_0) \right];$			
	B) $\rho = \rho_0 \left[1 + \alpha(\Theta - \Theta_0) \right]$			
14.	Первичный преобразователь, принцип действия которого основан	ПК-4.У.1		
	для явлении термо-ЭДС:			
	а) термопреобразователь сопротивления;			
	б) пирометр;			
	в) термоэлектрический преобразователь – термопара;			
	г) тепловизор			
15.	Измерительный прибор, регистрирующий «картину» распределения	ПК-4.У.1		
	температурного поля объекта:			
	а) термопреобразователь сопротивления;			
	б) пирометр;			
	в) термоэлектрический преобразователь – термопара;			
	г) тепловизор			
16.	Оптимальный спектральный диапазон тепловизоров для	ПК-4.У.1		
	исключения помех при контроле электрооборудования:			
	а) 8-14 мкм;			
	б) 16-18 мкм;			
	в) 24-38 мкм;			
	г) 2-5 мкм			
17.	При повышении увлажненности изоляции электрооборудования	ПК-4.У.1		
	параметры тока абсорбции (1) и сопротивления постоянному току			
	при одноминутном измерении R_{60} (2) изменяются соответственно:			
	а) 1 – спадает интенсивнее; 2 – повышается;			
	б) 1 – спадает медленнее; 2 – повышается;			
	в) 1 – спадает интенсивнее; 2 – снижается;			
	г) 1 – спадает медленнее; 2 – снижается			
18.	Коэффициент абсорбции для изоляции определяется	ПК-4.В.1		
	сопротивлениями при разных моментах времени испытания ($R_n - n$			
	в сек) следующим образом:			
	a) R_{600}/R_{60}			
	$6) R_{60}/R_{15}$			
	B) R_{60}/R_{600}			
	Γ) R_{15}/R_{60}			
19.	Тангенс угла диэлектрических потерь в изоляции выражает:	ПК-4.В.1		
		1		

	а) рассеяние активной мощности в объеме изоляции; б) падение напряжения на длине участка токоведущей части; в) соотношение активного и индуктивного сопротивлений участка изоляции; г) рост тока в проводниках цепи	
20.	Укажите параметр частичного разряда, часто измеряемый в пК (мВ) и используемый при диагностике изоляции оборудования: а) средний ток частичных разрядов; б) мощность частичных разрядов; в) частота следования частичного разряда; г) кажущийся заряд	ПК-4.В.1
21.	Датчики частичных разрядов типа бесконтактных антенн (UHF) работают в частотном диапазоне: а) 20-700 кГц; б) 1-10 МГц; в) 0,5-80 МГц; г) 0,1-3 ГГц	ПК-4.В.1

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п		Пе	еречень контрольных работ
	Не предусмотрено		

10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

11. Методические указания для обучающихся по освоению дисциплины

11.1. Методические указания для обучающихся по освоению лекционного материала

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;

- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- Общие вопросы назначения и организации неразрушающего контроля.
 Терминология;
- Теоретические обоснования применимости методов магнитного, акустического, вихретокового, теплового и электропараметрического видов неразрушающего контроля;
- Прикладные аспекты формирования методик, применения аппаратурных средств по рассматриваемым методам неразрушающего контроля.
- 11.2. Методические указания для обучающихся по выполнению лабораторных работ
- В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задание и требования к проведению лабораторных работ

Лабораторные работы реализуются посредством выполнения аналитических расчетов статистических показателей надежности невосстанавливаемых электротехнических изделий, а также моделирования электрофизических процессов применительно к контролю состояния электротехнического оборудования использованием инструментария MatLab.

Задания и указания к выполнению работ выдаются преподавателем в течение учебного курса. Сформулированные постановка задачи с индивидуальными исходными данными (при необходимости) и методика выполнения размещаются в личном кабинете с указанием сроков выполнения.

Структура и форма отчета о лабораторной работе

При выполнении работ, связанных с аналитическими расчетами, отчет включает в себя титульный лист, заголовок (название работы), задание, исходные данные, ход выполнения с описанием вычислений и пояснением применяемых выражений, наглядно представленные итоговые результаты расчета.

При выполнении работ по моделированию в MatLab отчет включает в себя титульный лист, заголовок (название работы), цель работы, ход выполнения с исходной моделью (формулы, данные), программным кодом и результатами расчета, структурой

визуальной блочной модели и краткими комментариями по используемым блокам, выведенными зависимостями, характеристиками, величинами, выводами.

Требования к оформлению отчета о лабораторной работе

Нормативная документация, необходимая для оформления, приведена на электронном ресурсе ГУАП: https://guap.ru/standart/doc.

11.3. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихсяявляются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ (для обучающихся по заочной форме обучения).
- 11.4. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

Обязательно для заполнения преподавателем: указываются требования и методы проведения текущего контроля успеваемости, а также как результаты текущего контроля успеваемости будут учитываться при проведении промежуточной аттестации.

11.5. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

– дифференцированный зачет – это форма оценки знаний, полученных обучающимся при изучении дисциплины, при выполнении курсовых проектов, курсовых работ, научно-исследовательских работ и прохождении практик с аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Система оценок при проведении промежуточной аттестации осуществляется в соответствии с требованиями Положений «О текущем контроле успеваемости и промежуточной аттестации студентов ГУАП, обучающихся по программы высшего образования» и «О модульно-рейтинговой системе оценки качества учебной работы студентов в ГУАП».

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой