МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Ивангородский гуманитарно-технический институт (филиал) федерального государственного автономного образовательного учреждения высшего образования

"Санкт-Петербургский государственный университет аэрокосмического приборостроения"

Кафедра № 2

УТВЕРЖДАЮ Руководитель направления

д.ю.н.,проф.

(должность, уч. степень, звание)

В.В. Цмай

(инициалы фамилия)

(подпись) «24» марта 2022 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Математика» (Наименование дисциплины)

Код направления подготовки/ специальности	38.05.02	
Наименование направления подготовки/ специальности	Таможенное дело	
Наименование направленности	Правоохранительная деятельность (ИФ)	
Форма обучения	заочная	

Лист согласования рабочей программы дисциплины

<u>старший преподаватель</u> должность, уч. степень, звание	flypry _	<u>24.03.2022</u> подпись, дата	<u>О.Н. Кучер</u> инициалы, фамилия
Программа одобрена на за «24» марта 2022 г, проток	-	дры № 2	
Заведующий кафедрой № <u>зав.каф., к.ф-м.н., доцент</u> должность, уч. степень, звание	2 EG	24.03.2022 подпись, дата	Е.А. Яковлева инициалы, фамилия
Ответственный за ОП 38.0 доц., к.п.н. должность, уч. степень, звание			<u>П.М. Алексеева</u> инициалы, фамилия
Заместитель директора ин должность, уч. степень, звание		на факультета) № 24.03.2022	1И по методической работе <u>Н.В. Жданова</u> инициалы, фамилия

Аннотация

Дисциплина «Математика» входит в образовательную программу высшего образования — программу специалитета по направлению подготовки/ специальности 38.05.02 «Таможенное дело» направленности «Правоохранительная деятельность (ИФ)». Дисциплина реализуется кафедрой «№2».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

УК-1 «Способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий»

Содержание дисциплины охватывает круг вопросов, связанных с матричной алгеброй, теорией определителей, линейными пространствами, системами линейных уравнений, векторным анализом, аналитической геометрией прямых на плоскости, плоскостей и прямых в пространстве, кривых и поверхностей 2-го порядка.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практические занятия, самостоятельная работа обучающегося.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 4 зачетных единицы, 144 часа.

Язык обучения по дисциплине «русский»

- 1. Перечень планируемых результатов обучения по дисциплине
- 1.1. Цели преподавания дисциплины

Целью изучения дисциплины «Математика» является:

- изучение теории алгебраических и геометрических структур, их приложения в областях профессиональной деятельности;
- формирование культуры мышления, умения демонстрировать базовые знания по дисциплине;
- формирование навыков анализа фундаментальных и прикладных теорий, концепций, фактов, а также построения математических моделей изучаемых процессов с помощью методов аналитической геометрии и линейной алгебры.
- 1.2. Дисциплина входит в состав обязательной части образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

таолица т ттер	о топы комптотонщий и и	підикаторов их достижених
Категория	Код и	Код и наименование индикатора достижения
(группа)	наименование	1 1
компетенции	компетенции	компетенции
	УК-1 Способен	
	осуществлять	
	критический анализ	УК-1.3.1 знать методы критического анализа и
Универсальные компетенции	проблемных	системного подхода
	ситуаций на основе	УК-1.В.1 владеть навыками системного и
	системного	критического мышления; методиками постановки
	подхода,	цели, определения способов ее достижения
	вырабатывать	_
	стратегию действий	

2. Место дисциплины в структуре ОП

Дисциплина базируется на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

Предшествующих дисциплин нет.

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и используются при изучении других дисциплин:

- информатика,
- информационные технологии,
- Статистика,
- а также используются при прохождении практик и подготовке выпускной квалификационной работы бакалавра.

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

Вид учебной работы	Всего	Трудоемкость по семестрам №1
1	2	3

Общая трудоемкость дисциплины, 3E/ (час)	4/ 144	4/ 144
Из них часов практической подготовки		
Аудиторные занятия, всего час.	16	16
в том числе:		
лекции (Л), (час)	8	8
практические/семинарские занятия (ПЗ), (час)	8	8
лабораторные работы (ЛР), (час)		
курсовой проект (работа) (КП, КР), (час)		
экзамен, (час)	9	9
Самостоятельная работа, всего (час)	119	119
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Экз.	Экз.

Примечание: **кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Разделы, темы дисциплины	Лекции (час)	П3 (С3) (час)	ЛР (час)	КП (час)	СРС (час)
(Семестр 1				
Тема 1. Комплексные числа					8
Тема 2. Элементы матричной алгебры. Системы линейных уравнений	2	2			14
Тема 3. Элементы векторной алгебры					14
Тема 4. Прямая на плоскости.					13
Тема 5. Прямая и плоскость в пространстве					13
Тема 6. Введение в анализ. Теория пределов	2	2			17
Тема 7. Дифференциальное исчисление функций одного переменного	2	2			20
Тема 8. Интегральное исчисление функции одной переменной.	2	2			20
Итого в семестре:	8	8			119
Итого:	8	8	0	0	119

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Номер раздела	Название и содержание разделов и тем лекционных занятий
1.	Тема 1.Комплексные числа Комплексные числа. Геометрическое изображение комплексных чисел. Алгебраическая, тригонометрическая и показательная форма записи комплексных чисел. Правила выполнения алгебраических операций над комплексными числами. Формула Муавра.
2	Тема 2. Элементы матричной алгебры .Системы линейных уравнений Матрицы, их виды, основные определения. Операции над матрицами. Определители квадратных матриц. Миноры и алгебраические дополнения. Обратная матрица. Ранг матрицы. Простейшие матричные уравнения. Системы линейных уравнений, основные определения. Матричная запись системы линейных уравнений. Расширенная матрица системы. Теорема Кроникера-Капелли. Методы решений систем линейных уравнений: метод Гаусса, метод обратной матрицы, метод Крамера.
3	Тема 3. Элементы векторной алгебры Геометрические векторы, основные определения. Линейные операции над векторами. Проекция вектора на ось и ее свойства. Линейная зависимость и независимость векторов. Базис. Вычисления в координатах. Направляющие косинусы. Скалярное, векторное и смешенное произведение векторов, их свойства. Декартова система координат. Основные определения. Преобразование прямоугольных систем координат. Простейшие задачи аналитической геометрии: выражение координат вектора через координаты его начала и конца, деление отрезка в заданном соотношении, вычисление длины отрезка, вычисление площадей и объемов.
4	Тема 4. Прямая на плоскости Прямая как алгебраическая кривая первого порядка. Различные виды уравнений прямой на плоскости. Взаимное расположение двух прямых на плоскости. Расстояние от точки до прямой.
5	Тема 5. Прямая и плоскость в пространстве Плоскость как поверхность первого порядка. Различные виды уравнений плоскости. Расстояние от точки до плоскости. Взаимное расположение плоскостей. Прямая в пространстве. Взаимное расположение прямой и плоскости. Взаимное расположение прямых в пространстве. Расстояние от точки до прямой в пространстве. Расстояние между прямыми.

6.	Тема 6. Введение в анализ. Теория пределов
	Понятие функции, способы задания. Основные свойства функций:
	область определения и множество значений, четность, периодичность,
	ограниченность, монотонность. Обратная функция. Сложная
	функция. Основные элементарные функции, их свойства и графики.
	Преобразование графиков функций
	Числовая последовательность, способы задания. Последовательности
	ограниченные и монотонные. Предел последовательности. Теоремы о
	пределах. Необходимое и достаточное условия сходимости
	последовательности. Предел функции. Бесконечно большие и
	бесконечно малые величины, теоремы о них. Односторонние
	пределы. Теоремы о пределах функции. Правила раскрытия
	неопределенностей. Признаки существования пределов.
	Замечательные пределы. Непрерывность функций, основные теоремы
	о непрерывных функциях.
7.	Тема 7. Дифференциальное исчисление функций одного переменного
	Производная функции, ее геометрический и физический смысл.
	Основные теоремы дифференциального исчисления. Производные
	элементарных функций. Производная неявно заданной функции,
	сложной показательной функции, обратной функции и функции,
	заданной параметрически. Дифференциал. Оценки погрешности при
	замене приращения функции ее дифференциалом. Производные и
	дифференциалы высших порядков. Исследование функций и
	построение их графиков с помощью производной.
8.	Тема 8. Интегральное исчисление функции одной переменной.
	Неопределенный интеграл и его свойства. Основные методы
	интегрирования. Определенный интеграл. Приложения
	определённого интеграла к задачам геометрии и физики.
	Приближённые методы вычисления определенного интеграла.
	Понятие о несобственных интегралах.

4.3. Практические (семинарские) занятия Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

№ п/п	Темы практических занятий	Формы практически х занятий	Трудоемкос ть, (час)	Из них практической подготовки, (час)	№ раздела дисциплины
		Ce	еместр 1		
1	Действия с матрицами. Определители.	Решение типовых задач	1		2
2	Методы решений систем линейных уравнений:	Решение типовых задач	1		2

3	Линейные операции над	Решение	1	3
	векторами. Скалярное,	типовых		
	векторное и смешенное	задач		
	произведение векторов.			
4	Простейшие задачи	Решение	1	4
	аналитической	типовых		
	геометрии	задач		
5	Вычисление пределов	Решение	1	6
		типовых		
		задач		
6	Производная функции, ее	Решение	1	7
	геометрический и	типовых		
	физический смысл.	задач		
7	Неопределенный интеграл	Решение	2	8
	и его свойства. Основные	типовых		
	методы интегрирования.	задач		
		Всего:	8	

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

			Из них	№
№	Наиманаранна пабаратарину работ	Трудоемкость,	практической	раздела
Π/Π	п/п Наименование лабораторных работ	(час)	подготовки,	дисцип
			(час)	лины
	Учебным планом не п	редусмотрено		
	Всего			

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

таолица / – виды самостоятельной работ	удосмкость	
Вид самостоятельной работы	Всего,	Семестр 1,
Вид самостоятельной раооты	час	час
1	2	3
Изучение теоретического материала дисциплины (TO)	39	39

Курсовое проектирование (КП, КР)		
Расчетно-графические задания (РГЗ)		
Выполнение реферата (Р)		
Подготовка к текущему контролю		
успеваемости (ТКУ)		
Домашнее задание (ДЗ)		
Контрольные работы заочников (КРЗ)	40	40
Подготовка к промежуточной	40	40
аттестации (ПА)	40	40
Всего:	119	119

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8.

Таблица 8– Перечень печатных и электронных учебных изданий

	— перечень печатных и электронных учесных изда	
Шифр	Библиографическая ссылка/ URL адрес	Количество экземпляров в библиотеке (кроме электронных экземпляров)
	Ячменев Л.Т. Высшая математика: Учебник /	
	Л.Т. Ячменёв М.: ИЦ РИОР: НИЦ Инфра-М,	
	2013 752 c.	
	http://znanium.com/bookread2.php?book=344777	
	Кудрявцев Л.Д. Краткий курс математического	
	анализа. Т. 1. Дифференциальное и	
	интегральное исчисления функций одной	
	переменной. Ряды: Учебник / Кудрявцев Л.Д., -	
	4-е изд М.:ФИЗМАТЛИТ, 2015 444 с.	
	http://znanium.com/catalog.php?bookinfo=854332	
	Шипачев В.С. Математический анализ. Теория	
	и практика: Учебное пособие / Шипачев В.С., -	
	3-е изд М.:НИЦ ИНФРА-М, 2015 351 с.	
	http://znanium.com/catalog.php?bookinfo=469727	
	Бортаковский А.С. Аналитическая геометрия в	
	примерах и задачах: Учебное пособие / А.С.	
	Бортаковский, А.В. Пантелеев 2-е изд., стер.	
	- М.: НИЦ ИНФРА-М, 2016 496 с.	
	http://znanium.com/bookread2.php?book=515990	
	Шершнев В.Г. Основы линейной алгебры и	
	аналитической геометрии: Учебное пособие /	
	В.Г. Шершнев М.:НИЦ ИНФРА-М, 2017	
	168 c.	
	http://znanium.com/catalog.php?bookinfo=558491	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационно-

телекоммуникационной сети «Интернет»

URL адрес	Наименование
	Не предусмотрено

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

№ п/п	Наименование
	Не предусмотрено

8.2. Перечень информационно-справочных систем, при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п	Наименование
	Не предусмотрено

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Лекционная аудитория	208

10. Оценочные средства для проведения промежуточной аттестации

10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Экзамен	Список вопросов к экзамену;
	Задачи;
	Тесты.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться

100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции	оценки уровня сформированности компетенции	
5-балльная шкала	Характеристика сформированных компетенций	
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий. 	
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 	
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий. 	
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 	

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	Код индикатора
1	Комплексные числа. Основные определения. Геометрическое изображение комплексных чисел. Алгебраическая форма записи комплексных чисел. Правила выполнения операций с комплексными числами в алгебраической форме.	УК-1.В.1
2	Комплексные числа. Основные определения. Тригонометрическая форма записикомплексных чисел. Правила выполнения операций с комплексными числами в тригонометрической форме. Формула Муавра.	УК-1.В.1
3	Комплексные числа. Основные определения. Показательная	УК-1.В.1

	форма записи комплексных чисел. Правила выполнения операций с комплексными числами впоказательной форме. Формулы Эйлера.	
4	Матрицы, основные определения. Виды матриц. Правила выполнения операций над матрицами: умножение матрицы на число, сложение, вычитание, умножение, возведение в степень и транспонирование матриц. Основные свойства операций над матрицами.	УК-1.В.1
5	Определители квадратных матриц. Правила вычисления определителей первого, второго и третьего порядка. Основные свойства определителей.	УК-1.В.1
6	Миноры и алгебраические дополнения. Вычисление определителей высокихпорядков. Теорема Лапласа.	УК-1.В.1
7	Обратная матрица.	УК-1.3.1
8		УК-1.3.1
9	Ранг матрицы.	УК-1.3.1
10	Простейшие матричные уравнения. Системы линейных уравнений. Основные определения. Матричная запись системы линейных уравнений. Расширенная матрица системы. Теорема Кроникера-Капелли. Понятие совместных, несовместных, определенных и неопределенных систем линейных уравнений.	УК-1.3.1
11	Решение систем линейных уравнений методом Гаусса.	УК-1.В.1
12		УК-1.В.1
13	Решение систем линейных уравнений методом обратной матрицы.	УК-1.В.1
	Решение систем линейных уравнений методом Крамера.	
14	Геометрические векторы. Основные определения. Линейные операции надвекторами. Проекция вектора на ось и ее свойства.	УК-1.3.1
15	Пинейная зависимость и независимость векторов. Базис. Ортонормированный базис. Вычисления в координатах. Направляющие косинусы вектора. Необходимое и достаточное условие коллинеарности векторов.	УК-1.В.1
16	Скалярное произведение векторов и его свойства. Необходимое и достаточноеусловие ортогональности векторов.	УК-1.В.1
17	Векторное произведение векторов, его свойства.	УК-1.3.1
18	Вычисление площадей параллелограмма и треугольника.	УК-1.В.1
19	Смешанное произведение векторов, его свойства. Необходимое и достаточноеусловие компланарности векторов. Вычисление объёма параллелепипеда.	УК-1.3.1
20	Простейшие задачи аналитической геометрии: выражение координат вектора через координаты его начала и конца, деление отрезка в заданном соотношении, вычисление длины отрезка, вычисление площадей и объемов.	УК-1.В.1
21	Понятие функции, способы задания. Основные свойства функций: область определения и множество значений, четность, периодичность, ограниченность, монотонность.	УК-1.3.1
22	Основные элементарные функции, их свойства и графики.	УК-1.3.1
23	Преобразование графиков функций.	УК-1.3.1
24	Числовая последовательность, способы задания. Последовательности ограниченные и монотонные. Предел	УК-1.В.1

	последовательности.	
25	Предел последовательности. Теоремы о пределах. Необходимое	УК-1.3.1
	и достаточное условия сходимости последовательности.	
26	Предел функции. Теоремы о пределах функции.	УК-1.3.1
27	Бесконечно большие и бесконечно малые величины, теоремы о	УК-1.3.1
	них.	
28	Односторонние пределы.	УК-1.3.1
29	Правила раскрытия неопределенностей. Признаки	УК-1.В.1
	существования пределов.	
30	Замечательные пределы.	УК-1.В.1
31	Непрерывность функций, основные теоремы о непрерывных	УК-1.3.1
	функциях.	
32	Производная функции, ее геометрический и физический смысл.	УК-1.В.1
33	Основные теоремы дифференциального исчисления.	УК-1.В.1
34	Производные элементарных функций (таблица производных).	УК-1.3.1
35	Производная неявно заданной функции.	УК-1.3.1
36	Производная сложной показательной функции	УК-1.3.1
	(логарифмическая производная).	
37	Производная обратной функции.	УК-1.3.1
38	Производная функции, заданной параметрически.	УК-1.3.1
39	Дифференциал. Оценки погрешности при замене приращения	УК-1.В.1
	функции ее дифференциалом.	
40	Производные и дифференциалы высших порядков.	УК-1.3.1
41	Исследование функций и построение их графиков с помощью	УК-1.В.1
	производной.	
42	Неопределенный интеграл и его свойства.	УК-1.3.1
43	Таблица неопределенных интегралов.	УК-1.3.1
44	Основные методы интегрирования. Метод замены переменной.	УК-1.В.1
45	Основные методы интегрирования. Метод интегрирования по	УК-1.В.1
	частям.	
46	Интегрирование рациональных функций.	УК-1.В.1
47	Интегрирование тригонометрических функций.	УК-1.В.1
48	Определенный интеграл. Формула Ньютона-Лейбница.	УК-1.3.1
	Основные свойства определенного интеграла.	
49	Приложения определённого интеграла к задачам геометрии и	УК-1.В.1
	физики.	
50	Приближённые методы вычисления определенного интеграла.	УК-1.В.1
51	Несобственные интегралы.	УК-1.3.1

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16.

Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код индикатора
	Учебным планом не предусмотрено	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

тистици т	pe temb tem gim kypeebete inpeektingebammi bbinetinenim kypeeben paeetisi
№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

Tao	лица 18 – Примерныи перечень вопросов для тестов	
№ п/ п	Примерный перечень вопросов для тестов	Код индикатор а
1	Указать в каком из приведенных ниже примеров существует произведение матриц:	УК-1.В.1
	$ \begin{bmatrix} a \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 4 & 2 \end{bmatrix} \begin{bmatrix} 3 & 1 & 1 \\ 4 & 0 & 2 \\ 5 & 1 & 3 \end{bmatrix} \delta) \begin{bmatrix} 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 \end{bmatrix}, \theta) \begin{bmatrix} 1 \\ 3 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \theta) \begin{bmatrix} 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 4 \end{bmatrix}, \theta $	$\partial \begin{bmatrix} 1 & 2 \\ -1 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix}$
2	Какая из однородных систем имеет только нулевое решение:	УК-1.3.1
	$a)\begin{cases} 2x_1 - 6x_2 = 0, \\ x_1 - 3x_2 = 0. \end{cases} \begin{cases} x_1 + x_2 = 0, \\ x_1 - x_2 + x_3 = 0. \end{cases} e) \begin{cases} 7x_1 + 8x_2 - x_3 = 0, \\ x_1 - 5x_2 + x_3 = 0, \\ 4x_1 - 20x_2 + 4x_3 = 0. \end{cases} e) \begin{cases} 5x_1 - 10x_2 - 1, \\ x_1 - 2x_2 - 3x_3 = 0, \end{cases} e$	$5x_3 = 0,$ = 0.
	$\begin{cases} x_1 - x_2 + x_3 = 0, \\ x_1 - x_2 - x_3 = 0, \\ 3x_1 + x_2 + 4x_3 = 0. \end{cases}$	
3	Если главный определитель системы не равен нулю, то:	УК-1.3.1
	а)система несовместна б)система имеет единственное решение	
	в)система имеет бесконечно много решений	
	г) система имеет ровно 2 различных решения	
4	Найти AB. $A = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}$ $B = \begin{pmatrix} 3 & 2 \\ -1 & 0 \end{pmatrix}$	УК-1.В.1
	a) $\begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}$ 6) $\begin{pmatrix} 3 & 4 \\ -1 & -2 \end{pmatrix}$ B) $\begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}$ Γ) $\begin{pmatrix} 4 & 4 \\ -1 & -1 \end{pmatrix}$	
5	Если главный определитель системы равен нулю, то:	УК-1.3.1
	а) система является несовместной или неопределенной	
	б) система имеет единственное решение	
	в) система имеет ровно 2 различных решения	
	г) система имеет ровно 3 различных решени	
		1

6	Найти AB. $A = \begin{pmatrix} 2 & 0 \\ 3 & 1 \end{pmatrix}$ $B = \begin{pmatrix} -1 & 0 \\ 1 & 2 \end{pmatrix}$	УК-1.В.1
	a) $\begin{pmatrix} -2 & 0 \\ 3 & 2 \end{pmatrix}$ 6) $\begin{pmatrix} -2 & 0 \\ -2 & 2 \end{pmatrix}$ B) $\begin{pmatrix} -2 & 0 \\ 8 & 2 \end{pmatrix}$ C) $\begin{pmatrix} 1 & 0 \\ 4 & 3 \end{pmatrix}$	
7	Вычислить скалярное произведение векторов xy , если $x = (1,2,-1)$ $y = (7,-3,-2)$	УК-1.В.1
	а) 0 б) 3 в) (7,-6,2) г) 7	
8	При каком значении параметра t данная система векторов из пространства линейно зависима: $a=(1,2,0), b=(5,t,2), c=(t,1,3)$.	УК-1.В.1
	а) 7/32; б)5/7; в) 32/7; г) 1/7; д) 0.	
9	Найти среди отображений линейное:	УК-1.3.1
	a) $Ax = (4x_1 - x_2; x_2)$, 6) $Ax = (x_1 - 1; 2x_2)$, B) $Ax = (3x_1 - x_2 + 4; 2x_2 - 1)$, $Ax = (x_1 + x_2; x_1 + x_2 - 3)$, A) $Ax = (x_1 + x_2; x_2 + 5)$.	
10	Найти, при каком значении параметра α векторы а и b ортогональны, если a=(1,-5, α), b=(3,4 α ,19).	УК-1.В.1
	а) -6, б) 6, в) 3, г) -12, д)12.	
11	Вычислить скалярное произведение векторов xy , если $x = (2, 1,3)$ $y=(1,2,-1)$	УК-1.В.1
	а) 1 б) 0 в) (2,2,-3) г) 7	
12	Среди прямых, заданных уравнениями, указать прямую, проходящую через точку $A(1,2)$ параллельно вектору $I=(-3;1)$:	УК-1.В.1
	a) $2x_1 - x_2 = 0$, 6) $-x_1 + x_2 - 1 = 0$, B) $x_1 + 3x_2 - 7 = 0$, $x_1 + 4x_2 - 2 = 0$, $x_1 + 3x_2 - 7 = 0$, $x_2 + 4x_2 - 2 = 0$, $x_3 + 4x_2 - 2 = 0$, $x_4 + 4x_2 - 2 = 0$,	
13	Выбрать из предложенных уравнений уравнение прямой линии:	УК-1.3.1
13	а) $x^2 + y^2 = R^2$ б) $y = 2$ $x^2 + 3$ в) $y = 3/x$ г) $2y + 3$ $x = 0$	J K-1.5.1
14	Выбрать из предложенных уравнений уравнение плоскости:	УК-1.3.1
	a) $x^2 + y^2 + z^2 = R$ 6) $Ax + By + Cz + D = 0$ B) $x/m = y/n = z/p$ Γ) $\sin x + \sin y + \sin z = 0$	
15	Функция $y = -x^2 + 6x + 7$ отображает множество (-2; 6] на множество 1) [-9;7) 2) (-9;7]	УК-1.В.1

	3) (-9;16)	
	4) [-9;16)	
	5) (-9;16]	
1.5		777.4 5 4
16	$\lim_{\text{Предел}} \frac{2x - 3x^2 - 12}{4x^2 + 5x - 14}$ равен	УК-1.В.1
	Предел $x \to \infty 4x^2 + 5x - 14$ равен	
	1) 2/4 2) 1/2 2) 2 4) 2/5 5) 2/5	
	1) -3/4 2) 1/2 3) -3 4) -3/5 5) 2/5	
17	Уравнение касательной к графику функции $y = \frac{1}{x^3} - 3x$ в точке (1;-2) имеет вид 1) $y = 8 - 6x$ 2) $y = x - 2$ 3) $y = 4x + 2$ 4) $y = 2x - 4$ 5) $y = -4x - 1$	УК-1.В.1
18	$E_{\text{СЛИ}}\ U = arctg(2x^2 - xy + z^3),$ то значение U_z' в точке $M(0;1;1)$ равно	УК-1.В.1
	1) arctg 3 2) 1.5 3) -1.5 4) 0 5) 1,8	
19	Издержки z полиграфического предприятия на выпуск одной газеты определяются формулой z = 70-ху+5х, где x – расходы на оплату труда рабочей силы, тыс. руб., (x>0), у – затраты на материалы, тыс. руб., (y>0). При каких значениях x и у издержки производства будут минимальными, если затраты на один журнал составляют 10 тыс. руб. 1) x=2,5; y=7,5 2) x=2; y=8 3) x=3; y=7	УК-1.В.1
	4) x=1; y=9 5) x=3,5; y=6,5	
20	Интеграл $\int \frac{-e^x dx}{(e^x + 1)^2}$ равен 1) -(ex+1)-3+C 2) (ex+1)-3+C 3) (ex+1)-1+C 4) -(ex+1)-1+C 5) e-3x+C	УК-1.3.1
21	Частное решение дифференциального уравнения	УК-1.3.1
	xy' = 3 + y, npu $y(1) = 1$ имеет вид	
	1) 4x-3 2) -2x-3 3) 4x+3 4) -2x+3	

	5) -3+3x	
22	Из рядов	УК-1.В.1
	a) $\sum_{n=1}^{\infty} \frac{\sqrt[3]{5+2n^2}}{n^2}$ b) $\sum_{n=1}^{\infty} \frac{3^n}{4^n+100}$ c) $\sum_{n=1}^{\infty} \frac{n!}{9^n}$ }.	
	Сходится только 1) с 2) а и b 3) b 4) с и b 5) ни один не сходится	

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п	Перечень контрольных работ	
1	Линейная алгебра	
2	Аналитическая геометрия	
3	Дифференциальное исчисление (пределы, непрерывность и разрывы функций,	
	производные функций, Приложения производной)	
4	Интегральное исчисление (неопределенные интегралы, несобственные	
	интегралы, применение определенных интегралов)	

10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

11. Методические указания для обучающихся по освоению дисциплины

Целью дисциплины является — познакомить студентов с кругом задач, рассматриваемых в линейной алгебре и аналитической геометрии и дать необходимый математический аппарат для изучения дальнейших математических курсов. Основными задачами изучения курса являются:

- изучение базовых понятий линейной алгебры и аналитической геометрии;
- освоение основных приемов решения практических задач по темам дисциплины;
- приобретение опыта работы с математической и связанной с математикой научной и учебной литературой;
- развитие четкого логического мышления;
- применение важнейших понятий и операций к решению естественно-научных задач,
- подготовка студентов к изучению других естественно-научных и технических дисциплин.

Методические указания для обучающихся по освоению лекционного материала (если предусмотрено учебным планом по данной дисциплине)

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат

конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимся лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально—деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научится методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Методические указания для обучающихся по прохождению практических занятий (если предусмотрено учебным планом по данной дисциплине)

Практическое занятие является одной из основных форм организации учебного процесса, заключающейся в выполнении обучающимися под руководством преподавателя комплекса учебных заданий с целью усвоения научно-теоретических основ учебной дисциплины, приобретения умений и навыков, опыта творческой деятельности.

Целью практического занятия для обучающегося является привитие обучающемся умений и навыков практической деятельности по изучаемой дисциплине.

Планируемые результаты при освоении обучающемся практических занятий:

- закрепление, углубление, расширение и детализация знаний при решении конкретных задач;
- развитие познавательных способностей, самостоятельности мышления, творческой активности;
- овладение новыми методами и методиками изучения конкретной учебной дисциплины;
- выработка способности логического осмысления полученных знаний для выполнения заданий;
- обеспечение рационального сочетания коллективной и индивидуальной форм обучения.

Функции практических занятий:

- познавательная;
- развивающая;
- воспитательная.

По характеру выполняемых обучающимся заданий по практическим занятиям подразделяются на:

- ознакомительные, проводимые с целью закрепления и конкретизации изученного теоретического материала;
- аналитические, ставящие своей целью получение новой информации на основе формализованных методов;
- творческие, связанные с получением новой информации путем самостоятельно выбранных подходов к решению задач.

Формы организации практических занятий определяются в соответствии со специфическими особенностями учебной дисциплины и целями обучения. Они могут проводиться:

- в интерактивной форме (решение ситуационных задач, занятия по моделированию реальных условий, деловые игры, игровое проектирование, имитационные занятия, выездные занятия в организации (предприятия), деловая учебная игра, ролевая игра, психологический тренинг, кейс, мозговой штурм, групповые дискуссии);
- в не интерактивной форме (выполнение упражнений, решение типовых задач, решение ситуационных задач и другое).

Методика проведения практического занятия может быть различной, при этом важно достижение общей цели дисциплины.

Требования к проведению практических занятий

- практические работы выполняются на практических занятиях по дисциплине, которые проводятся в соответствии с учебным расписанием в отведённой для этой цели аудитории;
- тема текущего практического занятия оглашается преподавателем на предыдущем занятии;
- студент обязан явиться на практическое занятие ознакомившимся с лекционным материалом по теме практического занятия, а также усвоенными базовыми понятиями по данной теме;
- в процессе практического занятия преподаватель с целью закрепления и конкретизации изученного теоретического материала ведёт устный опрос студентов на знание лекционного материала, а также базовых понятий и определений по теме практического занятия, демонстрирует методики решения практических задач, проводит проверочные и контрольные работы.

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой