МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 22

УТВЕРЖДАЮ

Руководитель направления

к.т.н.,доц.

(должность, уч. степень, звание)

Н.В. Поваренкин

iki

(подпись)

(инициалы, фамилия)

«23» июня 2022 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Траекторная обработка радиолокационной информации» (Наименование дисциплины)

Код направления подготовки/ специальности	11.04.01
Наименование направления подготовки/ специальности	Радиотехника
Наименование направленно-	Системы и устройства передачи, приема и обработки сигналов
Форма обучения	очная

Лист согласования рабочей программы дисциплины

Программу составил (а)	π I	
профессор, д.т.н., профессор	- 21.06.2022	А.А. Филиппов
	(подпись, дата)	(инициалы, фамилия)
Программа одобрена на заседа	ании кафедры № 22	
«21» июня 2022 г, протокол І	№ 6	
Заведующий кафедрой № 22		

Аннотация

Дисциплина «Траекторная обработка радиолокационной информации» входит в образовательную программу высшего образования — программу магистратуры по направлению подготовки/ специальности 11.04.01 «Радиотехника» направленности «Системы и устройства передачи, приема и обработки сигналов». Дисциплина реализуется кафедрой «№22».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

УК-1 «Способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий»

ПК-2 «Способен выполнять моделирование объектов и процессов с целью анализа и совершенствования характеристик радиотехнических систем с использованием имеющихся средств исследований, включая стандартные пакеты прикладных программ»

Содержание дисциплины охватывает круг вопросов, связанных с принципами построения и функционирования радиотехнических систем для траекторных измерений и их использования для решения задач сопровождения воздушных и космических объектов наблюдения (ОН), измерения их текущих координат, прогнозирование траекторий для различных прикладных задач..

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практические занятия, самостоятельная работа студента, консультации.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме зачета.

Общая трудоемкость освоения дисциплины составляет 3 зачетных единицы, 108 часов.

Язык обучения по дисциплине «русский»

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Целью преподавания дисциплины «Траекторная обработка радиолокационной информации» является получение студентами знаний в области принципов построения и функционирования современных РЛС траекторной обработки радиолокационной информации и их использования для решения различных прикладных задач, формирование навыков обоснования технических характеристик и разработки отдельных подсистем и радиолокационных комплексов управления воздушным движением (УВД), ПВО и ВКС.

- 1.2. Дисциплина входит в состав части, формируемой участниками образовательных отношений, образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

1 аолица 1 — Перечень компетенции и индикаторов их достижения				
Категория (группа)	Код и наименова-	Код и наименование индикатора достижения		
компетенции	ние компетенции	компетенции		
	УК-1 Способен			
	осуществлять кри-			
	тический анализ	УК-1.В.2 владеть навыками использования		
Универсальные	проблемных ситуа-	алгоритмов и цифровых средств, предназна-		
компетенции	ций на основе сис-	ченных для анализа информации и данных		
	темного подхода,	теппых для иншизи ттформиции и диппых		
	вырабатывать стра-			
	тегию действий			
	ПК-2 Способен вы-			
	полнять моделиро-			
	вание объектов и	ПК-2.3.1 знать физические и математические		
	процессов с целью	модели и методы моделирования сигналов,		
	анализа и совер-	процессов и явлений, лежащих в основе прин-		
	шенствования ха-	ципов действия радиотехнических устройств и		
Профессиональные	рактеристик радио-	систем		
компетенции	технических систем	ПК-2.В.1 владеть математическим аппаратом		
	с использованием	для решения задач теоретической и приклад-		
	имеющихся средств	ной радиотехники, методами исследования и		
	исследований,	моделирования объектов радиотехники		
	включая стандарт-	модентрования оовектов раднотелники		
	ные пакеты при-			
	кладных программ			

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- «Проектирование сложных технических систем»;
- «Теория и техника РТС»;
- «Особенности приема и обработки сигналов в РТС различного назначения»;

– «Теория сигналов».

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и могут использоваться при изучении других дисциплин:

- «Многофункциональные РЛС»;
- «Перспективные методы обработки информации в РТС»;
- «Помехоустойчивость радиотехнических систем»;
- «Системы связи с подвижными объектами»;
- «Адаптивные радиотехнические системы»;
- «Спутниковые радионавигационные системы»;
- «Пространственно-временная обработка радиосигналов»;
- «Радиотехнические системы передачи информации».

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

Вид учебной работы	Всего	Трудоемкость по се- местрам	
,,,,,		<u>№</u> 3	
1	2	3	
Общая трудоемкость дисциплины, 3E/ (час)	3/ 108	3/ 108	
Из них часов практической подготовки	8	8	
Аудиторные занятия, всего час.	34	34	
в том числе:			
лекции (Л), (час)	17	17	
практические/семинарские занятия (ПЗ), (час)	17	17	
лабораторные работы (ЛР), (час)			
курсовой проект (работа) (КП, КР), (час)			
экзамен, (час)			
Самостоятельная работа, всего (час)	74	74	
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Зачет	Зачет	

Примечание: ** кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Разделы, темы дисциплины	Лекции (час)	П3 (С3) (час)	ЛР (час)	КП (час)	СРС (час)
	Семестр 3				
Раздел 1. Введение. Основы обработки РЛИ	2	1			

m 11 0 c c					
Тема 1.1. Этапы обработки					
радиолокационной информации (РЛИ).					
Тема 1.2. Роль и место вторичной					
обработки РЛИ. Сопровождение целей в					
режиме обзора.					
Раздел 2. Основные операции вторичной	3	4			
обработки информации	_	-			
Тема 2.1. Задача вторичной обработки при					
наблюдении случайного потока траекто-					
рий целей в зоне ответственности РЛС.					
*					
Показатели качества вторичной (траектор-					
ной) обработки.					
Тема 2.2. Многоцелевая задача обнаруже-					
ния появляющихся и исчезающих объек-					
тов. Раздельное обнаружение и оценива-					
ние. Типовая структура алгоритмов вто-					
ричной (траекторной) обработки					
Раздел 3. Обнаружение траекторий	4	4			
Тема 3.1. Анализ типовых требований к					
радиолокационным станциям по					
характеристикам обнаружения траекторий					
в зоне ответственности.					
Тема 3.2. Алгоритмы обнаружения и ха-					
рактеристики обнаружения траекторий.					
	1	4			
Раздел 4. Фильтрация параметров при со-	4	4			
провождении траекторий					
Тема 4.1. Линейные и нелинейные методы					
траекторной фильтрации.					
Тема 4.2. Рекуррентная траекторная					
фильтрация					
Раздел 5. Методы траекторной обработки	4	4			
маневрирующих целей					
Тема 5.1. Адаптивная фильтрация при					
многоканальном сопровождении.					
Тема 5.2. Использование измерений доп-					
леровской частоты и других производных.					
Управление темпом обновления информа-					
ции.	17	1.7			7.4
Итого в семестре:	17	17			74
**					
Итого:	17	17	0	0	74
					~~~
Разделы, темы дисциплины	Лек-	П3	ЛР	КΠ	CPC
	ции	(C3	( )	( )	( )
	Ì		(час)	(час)	(час)
	(час)	,			
		(ча			
		,			
		c)			
	Семестр 3				
Pearan 1 Prayayya Oayany agnagaryy	2	1			
Раздел 1. Введение. Основы обработки	2	1			
РЛИ					
Тема 1.1. Этапы обработки					
радиолокационной информации (РЛИ).					
Тема 1.2. Роль и место вторичной					
обработки РЛИ. Сопровождение целей в					

режиме обзора.					
Раздел 2. Основные операции вторичной	3	4			
обработки информации	3	•			
Тема 2.1. Задача вторичной обработки при					
наблюдении случайного потока траекто-					
рий целей в зоне ответственности РЛС.					
Показатели качества вторичной (траектор-					
ной) обработки.					
Тема 2.2. Многоцелевая задача обнаруже-					
ния появляющихся и исчезающих объек-					
тов. Раздельное обнаружение и оценива-					
ние. Типовая структура алгоритмов вто-					
ричной (траекторной) обработки					
Раздел 3. Обнаружение траекторий	4	4			
Тема 3.1. Анализ типовых требований к					
радиолокационным станциям по					
характеристикам обнаружения траекторий					
в зоне ответственности.					
Тема 3.2. Алгоритмы обнаружения и ха-					
рактеристики обнаружения траекторий.					
Раздел 4. Фильтрация параметров при со-	4	4			
провождении траекторий					
Тема 4.1. Линейные и нелинейные методы					
траекторной фильтрации.					
Тема 4.2. Рекуррентная траекторная					
фильтрация	4	4			
Раздел 5. Методы траекторной обработки	4	4			
маневрирующих целей Тема 5.1. Адаптивная фильтрация при					
Тема 5.1. Адаптивная фильтрация при многоканальном сопровождении.					
Тема 5.2. Использование измерений доп-					
леровской частоты и других производных.					
Управление темпом обновления информа-					
ции.					
Итого в семестре:	17	17			74
Titoto B concerpe.	1 /	1 /			/ -
Итого:	17	17	0	0	74

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

таолица + Содержание разделов и тем лекционного цикла				
Номер раздела	Название и содержание разделов и тем лекционных занятий			
1	Введение. Основы обработки РЛИ			
	Этапы обработки радиолокационной информации (РЛИ).			
	Роль и место вторичной обработки РЛИ. Сопровождение целей в режиме			
	обзора.			
2	Основные операции вторичной обработки информации			
	Задача вторичной обработки при наблюдении случайного потока траекто-			
	рий целей в зоне ответственности РЛС. Показатели качества вторичной			

	(траекторной) обработки.
	Многоцелевая задача обнаружения появляющихся и исчезающих объек-
	тов. Раздельное обнаружение и оценивание. Типовая структура алгорит-
	мов вторичной (траекторной) обработки
3	Обнаружение траекторий
	Анализ типовых требований к радиолокационным станциям по
	характеристикам обнаружения траекторий в зоне ответственности.
	Алгоритмы обнаружения и характеристики обнаружения траекторий.
4	Фильтрация параметров при сопровождении траекторий
	Линейные и нелинейные методы траекторной фильтрации.
	Рекуррентная траекторная фильтрация
5	Методы траекторной обработки маневрирующих целей
	Адаптивная фильтрация при многоканальном сопровождении.
	Использование измерений доплеровской частоты и других производных.
	Управление темпом обновления информации.

4.3. Практические (семинарские) занятия Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

<b>№</b> π/π	Темы практических занятий	Формы практических занятий Семестр 3	Трудоемкость, (час)	№ раз- дела дисцип- лины
		-	_	
	Обоснование темпа обновле-	-	1	3
	ния информации (размеров	_		
	стробов) на этапе завязки и	рии		
	подтверждения траектории			
	маневрирующей цели			
	Выбор - алгоритмов автоза-	Расчет количества эле-	3	3
	хвата и сопровождения тра-	ментов разрешения и		
	екторий для обеспечения за-	количества ложных от-		
	данного уровня обнаружения	меток,		
	ложных траекторий			
	Фильтрация измерений на	Решение задачи методом	4	4
	основе метода наименьших	математического моде-		
	квадратов	лирования в среде		
		MATHCAD		
	Фильтрация траекторных из-	Решение задачи методом	9	4
	мерений на основе фильтра	математического моде-		5
	Калмана	лирования в среде		3
		MATLAB		
		Всего:	17	

### 4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

			Из них	№ раз-
$N_{\underline{0}}$	Наименование лабораторных работ	Трудоемкость,	практической	дела
п/п	панменование лаоораторных раоот	(час)	подготовки,	дисцип
			(час)	лины
	Учебным планом не п	редусмотрено		
	Всего			

### 4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

### 4.6. Самостоятельная работа обучающихся Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего,	Семестр 3,
Вид самостоятельной работы	час	час
1	2	3
Изучение теоретического материала		
дисциплины (ТО)	24	24
Курсовое проектирование (КП, КР)		
Расчетно-графические задания (РГЗ)		
Выполнение реферата (Р)	20	20
Подготовка к текущему контролю успеваемости (ТКУ)	30	30
Домашнее задание (ДЗ)		
Контрольные работы заочников (КРЗ)		
Подготовка к промежуточной аттеста-		
ции (ПА)		
Всего:	74	74

# 5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8.

Таблица 8- Перечень печатных и электронных учебных изданий

Шифр	Библиографическая ссылка / URL адрес	Количество экземпляров в библиотеке (кроме электронных экземпляров)
	Информационные технологии в радиотехнических системах: Учеб. пособие. 2-е изд., перераб. и доп. /В.А.Васин, И.Б. Власов, Ю.М. Егоров [и др.]; Под ред. И.Б. Федорова. М.: Изд-во МГТУ им. Н.Э. Баумана, 2004. 768 с. // http://www.studmed.ru/fedorova-ib-red-informacionnye-tehnologii-v-radiotehnicheskihsistemah_703547228f8.html	
6Ф2.01.391.4 С66	Сосулин Ю.Г. Теория обнаружения и оценивания стохастических сигналов. – М.: Сов. Радио, 1978.	4
621.396.9 B74	Вопросы статистической теории радиолокации [Текст]: монография М.: Сов. радио, 1963Т. 1,2 / П. А. Бакут, И. А. Большаков, Б. М. Герасимов и др М.: Сов. радио, 1963 424 с.: черт., граф., табл Библиогр.: с. 417 - 421 (77 назв.).	7
	Фарбер В.Е. Основы траекторной обработки радиолокационной информации в многоканальных РЛС: Учебное пособиеМ.:МФТИ, 2005160с.	
	Кондрашин В.А. Радиотехнические системы: Учебник. – СПб.: МВАА, 2017 527с.	Электронный

### 7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет»

URL адрес	Наименование
http://www.studmed.ru/fedorova-	Информационные технологии в радиотехнических сис-
<u>ib-red-informacionnye-</u>	темах: Учеб. пособие. 2-е изд., перераб. и доп.
tehnologii-v-radiotehnicheskih-	/В.А.Васин, И.Б. Власов, Ю.М. Егоров [и др.]; Под ред.
sistemah_703547228f8.html	И.Б. Федорова. М.: Изд-во МГТУ им. Н.Э. Баумана,
	2004. 768 c.

### 8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

№ п/г		Наименование	
	Не предусмотрено		

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11– Перечень информационно-справочных систем

№ п/п	Наименование	
	Не предусмотрено	

### 9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

<b>№</b> п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Лекционная аудитория	22-03
2	Мультимедийная лекционная аудитория	22-08
3	Класс с ЭВМ для практических занятий	22-06

- 10. Оценочные средства для проведения промежуточной аттестации
- 10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Зачет	Список вопросов;
	Тесты;
	Задачи.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП

Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции	оценки уровня сформированности компетенции	
5-балльная шкала	Характеристика сформированных компетенций	
«отлично» «зачтено»	<ul> <li>обучающийся глубоко и всесторонне усвоил программный материал;</li> <li>уверенно, логично, последовательно и грамотно его излагает;</li> <li>опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления;</li> <li>умело обосновывает и аргументирует выдвигаемые им идеи;</li> <li>делает выводы и обобщения;</li> <li>свободно владеет системой специализированных понятий.</li> </ul>	
«хорошо» «зачтено»	<ul> <li>обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы;</li> <li>не допускает существенных неточностей;</li> <li>увязывает усвоенные знания с практической деятельностью направления;</li> <li>аргументирует научные положения;</li> <li>делает выводы и обобщения;</li> <li>владеет системой специализированных понятий.</li> </ul>	
«удовлетворительно» «зачтено»	<ul> <li>обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы;</li> <li>допускает несущественные ошибки и неточности;</li> <li>испытывает затруднения в практическом применении знаний направления;</li> <li>слабо аргументирует научные положения;</li> <li>затрудняется в формулировании выводов и обобщений;</li> <li>частично владеет системой специализированных понятий.</li> </ul>	
«неудовлетворительно» «не зачтено»	<ul> <li>обучающийся не усвоил значительной части программного материала;</li> <li>допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении;</li> <li>испытывает трудности в практическом применении знаний;</li> <li>не может аргументировать научные положения;</li> <li>не формулирует выводов и обобщений.</li> </ul>	

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	Код индикатора
	Учебным планом не предусмотрено	

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16. Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

 № п/п
 Перечень вопросов (задач) для зачета / дифф. зачета
 Код индикатора

 1. Технические характеристики и классификация траекторных РЛК. Обобщенная структурная схема
 УК-1.В.2

 2. Этапы обработки радиолокационной информации (РЛИ).
 3. Первичная обработка радиолокационной информации траек

	торных РЛК.	
4.	Роль и место вторичной обработки РЛИ, решаемые задачи.	
5.	Показатели качества вторичной (траекторной) обработки.	
6.	Обнаружение траекторий в зоне ответственности РЛК, этапы	
0.	обнаружения.	
7.	Завязка траекторий в различных системах координат.	
8.	Форма и размеры стробов завязки траекторий на примере объ-	
	екта наблюдения – самолета со скоростью 250 м/с для РЛК С-	
	300 с размерами ДНА 0.5 град и импульсом зондирования 1	
0	мкс, темпе обзора $T=1$ сек	
9.	Подтверждение траектории . Форма и размеры строба под-	
	тверждения траектории на примере объекта наблюдения – ра-	
	кеты со скоростью 700 м/с для РЛК С-300 с размерами ДНА	
	0.5 град и импульсом зондирования 1 мкс, темпе обзора $T=1$	
10	CCK	
10.	Характеристика алгоритма $(2/m+l/n)$ » при обнаружении траекторий.	
11.	Алгоритм захвата траекторий и селекции отметок в стробе.	
12.	Сопровождение траекторий целей в режиме обзора и в режиме	
	слежения. Циклограмма этапов вторичной обработки при тра-	
	екторных измерениях.	
13.	Характеристика алгоритма сопровождения траектории	
1.	Структура алгоритмов траекторной обработки при сопровож-	ПК-2.3.1
1.	Структура алгоритмов траекторной обработки при сопровождении. Критерии сброса сопровождения: точностной и серий-	ПК-2.3.1
1.		ПК-2.3.1
1.	дении. Критерии сброса сопровождения: точностной и серий-	ПК-2.3.1
	дении. Критерии сброса сопровождения: точностной и серийный. « $2/m+l/n+k_T$ »	ПК-2.3.1
2.	дении. Критерии сброса сопровождения: точностной и серийный. « $2/m+l/n+k_T$ » Фильтрующая способность алгоритма обнаружения траекторий Фильтрация траекторных параметров баллистических целей на этапе сопровождения.	ПК-2.3.1
2.	дении. Критерии сброса сопровождения: точностной и серийный. $\langle 2/m+l/n+k_T \rangle$ Фильтрующая способность алгоритма обнаружения траекторий Фильтрация траекторных параметров баллистических целей на	ПК-2.3.1
2. 3. 4.	дении. Критерии сброса сопровождения: точностной и серийный. « $2/m+l/n+k_T$ » Фильтрующая способность алгоритма обнаружения траекторий Фильтрация траекторных параметров баллистических целей на этапе сопровождения. Фильтрация траекторных измерений методом наименьших квадратов	ПК-2.3.1
2. 3.	дении. Критерии сброса сопровождения: точностной и серийный. « $2/m+l/n+k_T$ » Фильтрующая способность алгоритма обнаружения траекторий Фильтрация траекторных параметров баллистических целей на этапе сопровождения. Фильтрация траекторных измерений методом наименьших квадратов Модели движения баллистических объектов наблюдения (ак-	ПК-2.3.1
2. 3. 4.	дении. Критерии сброса сопровождения: точностной и серийный. $\langle 2/m+l/n+k_T \rangle$ Фильтрующая способность алгоритма обнаружения траекторий Фильтрация траекторных параметров баллистических целей на этапе сопровождения. Фильтрация траекторных измерений методом наименьших квадратов Модели движения баллистических объектов наблюдения (активный участок траектории, пассивный участок траектории) и	ПК-2.3.1
2. 3. 4. 5.	дении. Критерии сброса сопровождения: точностной и серийный. « $2/m+l/n+k_T$ » Фильтрующая способность алгоритма обнаружения траекторий Фильтрация траекторных параметров баллистических целей на этапе сопровождения. Фильтрация траекторных измерений методом наименьших квадратов Модели движения баллистических объектов наблюдения (активный участок траектории, пассивный участок траектории) и летательных аппаратов.	ПК-2.3.1
2. 3. 4.	дении. Критерии сброса сопровождения: точностной и серийный. « $2/m+l/n+k_T$ » Фильтрующая способность алгоритма обнаружения траекторий Фильтрация траекторных параметров баллистических целей на этапе сопровождения. Фильтрация траекторных измерений методом наименьших квадратов Модели движения баллистических объектов наблюдения (активный участок траектории, пассивный участок траектории) и летательных аппаратов. Анализ динамических и флюктуационных ошибок сглаживания	ПК-2.3.1
<ul><li>2.</li><li>3.</li><li>4.</li><li>5.</li><li>6.</li></ul>	дении. Критерии сброса сопровождения: точностной и серийный. « $2/m+l/n+k_T$ » Фильтрующая способность алгоритма обнаружения траекторий Фильтрация траекторных параметров баллистических целей на этапе сопровождения. Фильтрация траекторных измерений методом наименьших квадратов Модели движения баллистических объектов наблюдения (активный участок траектории, пассивный участок траектории) и летательных аппаратов. Анализ динамических и флюктуационных ошибок сглаживания при решении задачи экстраполяции траектории.	
2. 3. 4. 5.	дении. Критерии сброса сопровождения: точностной и серийный. « $2/m+l/n+k_T$ » Фильтрующая способность алгоритма обнаружения траекторий Фильтрация траекторных параметров баллистических целей на этапе сопровождения. Фильтрация траекторных измерений методом наименьших квадратов Модели движения баллистических объектов наблюдения (активный участок траектории, пассивный участок траектории) и летательных аппаратов. Анализ динамических и флюктуационных ошибок сглаживания при решении задачи экстраполяции траектории. Алгоритмы оценки параметров линейной и квадратичной тра-	ПК-2.3.1
<ul><li>2.</li><li>3.</li><li>4.</li><li>5.</li><li>6.</li></ul>	дении. Критерии сброса сопровождения: точностной и серийный. « $2/m+l/n+k_T$ » Фильтрующая способность алгоритма обнаружения траекторий Фильтрация траекторных параметров баллистических целей на этапе сопровождения. Фильтрация траекторных измерений методом наименьших квадратов Модели движения баллистических объектов наблюдения (активный участок траектории, пассивный участок траектории) и летательных аппаратов. Анализ динамических и флюктуационных ошибок сглаживания при решении задачи экстраполяции траектории. Алгоритмы оценки параметров линейной и квадратичной траекторий по фиксированной выборке измеряемых координат и	
2. 3. 4. 5.	дении. Критерии сброса сопровождения: точностной и серийный. « $2/m+l/n+k_T$ » Фильтрующая способность алгоритма обнаружения траекторий Фильтрация траекторных параметров баллистических целей на этапе сопровождения. Фильтрация траекторных измерений методом наименьших квадратов Модели движения баллистических объектов наблюдения (активный участок траектории, пассивный участок траектории) и летательных аппаратов. Анализ динамических и флюктуационных ошибок сглаживания при решении задачи экстраполяции траектории. Алгоритмы оценки параметров линейной и квадратичной траекторий по фиксированной выборке измеряемых координат и скорости.	
<ul><li>2.</li><li>3.</li><li>4.</li><li>5.</li><li>6.</li></ul>	дении. Критерии сброса сопровождения: точностной и серийный. « $2/m+l/n+k_T$ » Фильтрующая способность алгоритма обнаружения траекторий Фильтрация траекторных параметров баллистических целей на этапе сопровождения. Фильтрация траекторных измерений методом наименьших квадратов Модели движения баллистических объектов наблюдения (активный участок траектории, пассивный участок траектории) и летательных аппаратов. Анализ динамических и флюктуационных ошибок сглаживания при решении задачи экстраполяции траектории. Алгоритмы оценки параметров линейной и квадратичной траекторий по фиксированной выборке измеряемых координат и	
2. 3. 4. 5.	дении. Критерии сброса сопровождения: точностной и серийный. $\langle 2/m+l/n+k_T\rangle$ Фильтрующая способность алгоритма обнаружения траекторий Фильтрация траекторных параметров баллистических целей на этапе сопровождения. Фильтрация траекторных измерений методом наименьших квадратов Модели движения баллистических объектов наблюдения (активный участок траектории, пассивный участок траектории) и летательных аппаратов. Анализ динамических и флюктуационных ошибок сглаживания при решении задачи экстраполяции траектории. Алгоритмы оценки параметров линейной и квадратичной траекторий по фиксированной выборке измеряемых координат и скорости. Анализ типовых требований к траекторным РЛК по характеристикам обнаружения.	
2. 3. 4. 5. 6. 2.	дении. Критерии сброса сопровождения: точностной и серийный. «2/m+l/n+k _T »  Фильтрующая способность алгоритма обнаружения траекторий Фильтрация траекторных параметров баллистических целей на этапе сопровождения.  Фильтрация траекторных измерений методом наименьших квадратов  Модели движения баллистических объектов наблюдения (активный участок траектории, пассивный участок траектории) и летательных аппаратов.  Анализ динамических и флюктуационных ошибок сглаживания при решении задачи экстраполяции траектории.  Алгоритмы оценки параметров линейной и квадратичной траекторий по фиксированной выборке измеряемых координат и скорости.  Анализ типовых требований к траекторным РЛК по характери-	
2. 3. 4. 5. 6. 2.	дении. Критерии сброса сопровождения: точностной и серийный. « $2/m+l/n+k_T$ » Фильтрующая способность алгоритма обнаружения траекторий Фильтрация траекторных параметров баллистических целей на этапе сопровождения. Фильтрация траекторных измерений методом наименьших квадратов Модели движения баллистических объектов наблюдения (активный участок траектории, пассивный участок траектории) и летательных аппаратов. Анализ динамических и флюктуационных ошибок сглаживания при решении задачи экстраполяции траектории. Алгоритмы оценки параметров линейной и квадратичной траекторий по фиксированной выборке измеряемых координат и скорости. Анализ типовых требований к траекторным РЛК по характеристикам обнаружения. Техническая реализация траекторных РЛС ПРО в режимах по-	
2. 3. 4. 5. 6. 3.	дении. Критерии сброса сопровождения: точностной и серийный. « $2/m+l/n+k_T$ » Фильтрующая способность алгоритма обнаружения траекторий Фильтрация траекторных параметров баллистических целей на этапе сопровождения. Фильтрация траекторных измерений методом наименьших квадратов Модели движения баллистических объектов наблюдения (активный участок траектории, пассивный участок траектории) и летательных аппаратов. Анализ динамических и флюктуационных ошибок сглаживания при решении задачи экстраполяции траектории. Алгоритмы оценки параметров линейной и квадратичной траекторий по фиксированной выборке измеряемых координат и скорости. Анализ типовых требований к траекторным РЛК по характеристикам обнаружения. Техническая реализация траекторных РЛС ПРО в режимах поиск, захват, сопровождение.	

5.	Принцип действия калмановского фильтра при траекторных	
	измерениях.	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

Таблица	Таблица 18 – Примерный перечень вопросов для тестов				
№ п/п	Примерный перечень вопросов для тестов	Код индика- тора			
	1. Классификация траекторных РЛК.	УК-1.В.2			
	2Этапы обработки радиолокационной информации (РЛИ). Первич-				
	ная, вторичная (траекторная), третичная обработка РЛИ.				
	3. Первичная обработка радиолокационной информации траекторных				
	РЛК.				
	6. Решаемые задачи вторичной обработки РЛИ.				
	5. Показатели качества вторичной (траекторной) обработки.				
	6. Обнаружение траекторий в зоне ответственности РЛК, этапы обна-				
	ружения.				
	7. Алгоритм захвата траекторий и селекции отметок в стробе.				
	8. Сопровождение траекторий целей в режиме обзора и в режиме				
	слежения.				
	9. Характеристика алгоритма сопровождения траектории				
	10. Структура алгоритмов траекторной обработки при сопровожде-	ПК-2.3.1			
	нии. Критерии сброса сопровождения: точностной и серийный.				
	«2/m+l/n+kT»				
	11. Фильтрующая способность алгоритма обнаружения траекторий				
	12. Фильтрация траекторных параметров баллистических целей на				
	этапе сопровождения.				
	Фильтрация траекторных измерений методом наименьших квадратов				
	13. Модели движения баллистических объектов наблюдения (актив-	ПК-2.В.1			
	ный участок траектории, пассивный участок траектории) и летательных аппаратов				
	15. Циклограмма этапов вторичной обработки при траекторных измерениях.				

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п	Перечень контрольных работ	
	Не предусмотрено	

- 10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.
  - 11. Методические указания для обучающихся по освоению дисциплины (Ниже приводятся рекомендации по составлению данного раздела)
- 11.1. Методические указания для обучающихся по освоению лекционного материала.

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
  - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
  - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
  - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- чтение лекции;
- учебное пособие (Информационные технологии в радиотехнических системах: Учеб. пособие. 2-е изд., перераб. и доп. /В.А.Васин, И.Б. Власов, Ю.М. Егоров [и др.]; Под ред. И.Б. Федорова. М.: Изд-во МГТУ им. Н.Э. Баумана, 2004. 768 с. // <a href="http://www.studmed.ru/fedorova-ib-red-informacionnye-tehnologii-v-radiotehnicheskih-sistemah">http://www.studmed.ru/fedorova-ib-red-informacionnye-tehnologii-v-radiotehnicheskih-sistemah</a> 703547228f8.html)

.

### 11.2. Методические указания для обучающихся по участию в семинарах

Основной целью для обучающегося является систематизация и обобщение знаний по изучаемой теме, разделу, формирование умения работать с дополнительными источниками информации, сопоставлять и сравнивать точки зрения, конспектировать прочитанное, высказывать свою точку зрения и т.п. В соответствии с ведущей дидактической целью содержанием семинарских занятий являются узловые, наиболее трудные для понимания и усвоения темы, разделы дисциплины. Спецификой данной формы занятий является совместная работа преподавателя и обучающегося над решением поставленной проблемы, а поиск верного ответа строится на основе чередования индивидуальной и коллективной деятельности.

При подготовке к семинарскому занятию по теме прослушанной лекции необходимо ознакомиться с планом его проведения, с литературой и научными публикациями по теме семинара.

### Требования к проведению семинаров

Семинарские занятия посвящены решению задач, иллюстрирующих основные методы теории адаптации информационных систем применительно к траекторной обработке радиолокационных информации.

11.3. Методические указания для обучающихся по прохождению практических занятий

Практическое занятие является одной из основных форм организации учебного процесса, заключающаяся в выполнении обучающимися под руководством преподавателя комплекса учебных заданий с целью усвоения научно-теоретических основ учебной дисциплины, приобретения умений и навыков, опыта творческой деятельности.

Целью практического занятия для обучающегося является привитие обучающимся умений и навыков практической деятельности по изучаемой дисциплине.

Планируемые результаты при освоении обучающимся практических занятий:

- закрепление, углубление, расширение и детализация знаний при решении конкретных задач алгоритмов траекторной обработки;
- развитие познавательных способностей, самостоятельности мышления, творческой активности;
- овладение новыми методами и методиками изучения конкретной учебной дисциплины;
- выработка способности логического осмысления полученных знаний для выполнения заданий;
- обеспечение рационального сочетания коллективной и индивидуальной форм обучения.

#### Требования к проведению практических занятий

Практические занятия посвящены решению задач, иллюстрирующих основные методы теории адаптации информационных систем применительно к траекторной обработке радиолокационных информации.

- закрепление, углубление, расширение и детализация знаний при решении конкретных задач;
- развитие познавательных способностей, самостоятельности мышления, творческой активности;
- овладение новыми методами и методиками изучения конкретной учебной дисциплины;
- выработка способности логического осмысления полученных знаний для выполнения заданий;
- обеспечение рационального сочетания коллективной и индивидуальной форм обучения.

11.4. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихся являются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных заданий на самостоятельную работу
- 11.5. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения учебного материала дисциплины и выработки практических навыков решения прикладных задач.

11.6. Методические указания для обучающихся по прохождению промежуточной аттестации

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

- экзамен форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».
- зачет это форма оценки знаний, полученных обучающимся в ходе изучения учебной дисциплины в целом или промежуточная (по окончании семестра) оценка знаний обучающимся по отдельным разделам дисциплины с аттестационной оценкой «зачтено» или «не зачтено».
- дифференцированный зачет это форма оценки знаний, полученных обучающимся при изучении дисциплины, при выполнении курсовых проектов, курсовых работ, научно-исследовательских работ и прохождении практик с аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

### Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № про- токола засе- дания кафед- ры	Подпись зав. кафед- рой