федеральное государственное автономное образовательное учреждение высшего образования "САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ гаМИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 24

УТВЕРЖДАЮ

Руководитель направления

(должность, уч. степень, звание)

О.В. Тихоненкова

Theet!

«21»__06__2022 r

«Цифровые устройства и микропроцессоры» (Наименование дисциплины)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

очная	Форма обучения
Радиоэлектронные системы передачи информации	Наименование направленности
Радиоэлектронные системы и комплексы	Наименование направления подготовки/ специальности
11.05.01	Код направления подготовки/ специальности

Санкт-Петербург- 2022

Лист согласования рабочей программы дисциплины

d
2
7
22
3
7
Z
0
Ö
C
100
ав
72
=
(a)
_

(должность, уч. степень, звание)

С.А. Цурков (инициалы, фамил

Заведующий кафедрой № 24

Программа одобрена на заседании кафедры № 24

«21» 06 2022 г, протокол № 8/22

(уч. степень, звание)

Obucca -(подпись, дата)

О.В. Тихоненкова

(инициалы, фами

Ответственный за ОП ВО 11.05.01(02)

к.т.н.,доц. (должность, уч. степень, звание)

К.Н. Тимофеев

Заместитель директора института №2 по методической работе

(должность, уч. степень, звание)

О.Л. Балышева (инициалы, фа

Аннотация

Дисциплина «Цифровые устройства и микропроцессоры» входит в образовательную программу высшего образования — программу специалитета по направлению подготовки/ специальности 11.05.01 «Радиоэлектронные системы и комплексы» направленности «Радиоэлектронные системы передачи информации». Дисциплина реализуется кафедрой «№24».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

- УК-1 «Способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий»
- ОПК-3 «Способен к логическому мышлению, обобщению, прогнозированию, постановке исследовательских задач и выбору путей их достижения, освоению работы на современном измерительном, диагностическом и технологическом оборудовании, используемом для решения различных научно-технических задач в области радиоэлектронной техники и информационно-коммуникационных технологий»
- ОПК-5 «Способен выполнять опытно-конструкторские работы с учетом требований нормативных документов в области радиоэлектронной техники и информационно-коммуникационных технологий»
- ОПК-7 «Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности»

Содержание дисциплины охватывает круг вопросов, связанных с микропроцессорной техникой, программированием микроконтроллеров семейства STM32, методами отладки проектов микроконтроллеров STM32, цифровой схемотехникой в части сопряжения с микроконтроллерами STM32.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, практические занятия, самостоятельная работа обучающегося.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 4 зачетных единицы, 144 часа. Язык обучения по дисциплине «русский »

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Целью преподавания дисциплины является формирование у студентов базовых знаний в области цифровой схемотехники: теории и практики цифровых устройств, принципов построения и характеристик современных цифровых устройств, вопросов анализа и синтеза цифровых систем, а также назначения, методов, решаемых задач, принципов действия и построения микропроцессорных устройств с точки зрения использования их в различных отраслях науки и техники.

- 1.2. Дисциплина входит в состав обязательной части образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа)	петенции и индикатор Код и наименование	Код и наименование индикатора достижения
компетенции	компетенции	компетенции
	УК-1 Способен	,
	осуществлять	
Универсальные компетенции	критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий	УК-1.В.2 владеть навыками использования алгоритмов и цифровых средств, предназначенных для анализа информации и данных
Общепрофессиональные компетенции	ОПК-3 Способен к логическому мышлению, обобщению, прогнозированию, постановке исследовательских задач и выбору путей их достижения, освоению работы на современном измерительном, диагностическом и технологическом оборудовании, используемом для решения различных научно-технических задач в области радиоэлектронной техники и информационно-коммуникационных технологий	ОПК-3.3.1 знать методы решения задач анализа и расчета характеристик радиоэлектронных систем и устройств с применением современных средств измерения и проектирования
Общепрофессиональные компетенции	ОПК-5 Способен выполнять опытно- конструкторские работы с учетом	ОПК-5.3.1 знать основные методы проектирования, исследования и эксплуатации специальных радиотехнических систем

	требований	ОПК-5.У.1 уметь применять информационные
	нормативных	технологии и информационно-
	документов в	вычислительные системы для решения
	области	научно-исследовательских и проектных задач
	радиоэлектронной	радиоэлектроники
	техники и	
	информационно-	
	коммуникационных	
	технологий	
	ОПК-7 Способен	
	понимать принципы	
	работы	ОПК-7.У.1 уметь применять современные
	современных	информационные технологии и
Общепрофессиональные	информационных	перспективные методы искусственного
компетенции	технологий и	интеллекта для решения задач
	использовать их для	профессиональной деятельности
	решения задач	профессиональной деятельности
	профессиональной	
	деятельности	

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимисяпри изучении следующих дисциплин:

- «Информатика»,
- «Электроника»,
- «Радиотехнические цепи и сигналы»,
- «Схемотехника аналоговых электронных устройств»,
- «Дискретная математика»

Знания, полученные при изучении материала данной дисциплины, имеют каксамостоятельное значение, так и могут использоваться при изучении других дисциплин:

- «Цифровая обработка сигналов»,
- «Радиоэлектронные системы передачи информации»,
- «Узлы и элементы радиоэлектронных биотехнических систем»
- «Радиоэлектронные системы в медицине и биологии»
- «Технические средства телемедицины», а также при выполнении выпускной квалификационной работы.

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

		Трудоемкость по
Вид учебной работы	Всего	семестрам
		№6
1	2	3
Общая трудоемкость дисциплины, ЗЕ/ (час)	4/ 144	4/ 144
Из них часов практической подготовки		
Аудиторные занятия, всего час.	68	68
в том числе:		
лекции (Л), (час)	34	34
практические/семинарские занятия (ПЗ),	17	17

(час)		
лабораторные работы (ЛР), (час)	17	17
курсовой проект (работа) (КП, КР), (час)		
экзамен, (час)	27	27
Самостоятельная работа, всего (час)	49	49
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Экз.	Экз.

Примечание: **кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Разделы, темы дисциплины	Лекции	П3 (С3)	ЛР	КП	CPC
т издельн, темы днецинанны	(час)	(час)	(час)	(час)	(час)
Сем	естр 6				
Раздел 1. Обзор и архитектура современных	2				9
микроконтроллеров семейства ARM32	2				,
Раздел 2. Интегрированные средства разработки					
программного обеспечения микроконтроллеров	4	3	3		10
семейства Cortex-STM32					
Раздел 3. Базовые периферийные узлы	12	9	9		10
микроконтроллеров семейства Cortex-STM32	12	9	9		10
Раздел 4. Технологии программных проектов с					
применением микроконтроллеров семейства	16	5	5		10
Cortex-STM32					
Итого в семестре:	34	17	17		49
Итого	34	17	17	0	49

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Номер раздела	Название и содержание разделов и тем лекционных занятий	
	Лекция 1.	
Раздел 1.	История развития микропроцессорной техники в направлении INTEL4004 -> INTEL8051 -> ARM32	
	Базовые принципы и механизмы ядер архитектуры RISC	
	Обзор рынка микроконтроллеров семейства ARM32	
	Примеры применения микроконтроллеров ARM32 современной технике и промышленности	В

Лекшия 2. Раздел 2. Обзор и сравнительный анализ средств интегрированной разработки программного обеспечения (IDE) для STM32: - среда IAR - среда KEIL - среда ECLIPSE Полезные ПО при работе с STM32: - утилита ST-LINK - утилита STM32CubeProgrammer - утилита DfuSeDemo - утилита DfuFilemgr Работа в интегрированной среде графического генератора кода CubeIDE, примеры создания проектов Лекция 3. Состав файлов проекта STM32: - Библиотеки CMSIS - Библиотеки HAL - Другие нужные разработчику файлы Работа в среде STM32CubeIDE (ECLIPSE): - настройки проекта - компиляция проекта - отладка проекта Лекция 4. Раздел 3. Порты ввода-вывода STM32: - Работа с портом в входном режиме - Работа с входным портом в режиме прерывания - Работа с портом в выходном режиме Внешние драйверы для работы с портами: Схемы согласования логики порта «+3.3V / +5V» Драйверы на биполярном транзисторе - Драйверы на MOSFT транзисторе - Драйверы ПУШ-ПУЛ схемы - Драйверы на ОПТО парах (входные/выходные) Драйверы на твердотельных реле Драйверы управления коллекторным двигателем Драйверы управления шаговым двигателем Лекция 5. Работа с таймером Работа с таймером RTC Таймер в режиме ЭНКОДЕРА Таймер в режиме захвата ШИМ Таймер в режиме формирования ШИМ Работа с СЕРВО ПРИВОДОМ

Сторожевой таймер

Лекция 6. Последовательные интерфейсы UART, SPI, I2C Работа с UART в блокирующем режиме Работа с UART в неблокирующем режиме: - Работа с UART в режиме прерывания - Работа с UART в режиме DMA Взаимодействие микроконтроллера с ПК через UART, Работа с терминалом «TeraTerm», выдача отладочных сообщений STM32 Драйверы информационного канала UART: - Драйверы RS232 - Драйверы RS422 - Драйверы RS485 Лекция 7. Работа с USB в режиме OTG Реализация программного FIFO ДЛЯ работы c последовательными каналами UART/USB/SPI/I2C. Работа с АЦП: - пример измерения напряжения; - пример измерение тока; - пример измерение температуры; - пример измерение пульса; Алгоритм фильтра, скользящего среднего для работы с АЦП пример: передачи 8-ми каналов АЦП микроконтроллера на ПК, через USB, в задаче электрокардиографии Лекция 8. Раздел 4. Операционная система «FreeRTOS» для микроконтроллеров STM32 **POSIX** взаимодействия механизмы процессов операционной системе «FreeRTOS» Лекция 9. Реализация командного интерпретатора SHELL ДЛЯ встраиваемых систем на микроконтроллерах STM32. Лекция 10. Работа с ММС картой памяти Подключение файловой системы FAT-FS

Реализация SHELL для работы с MMC Лекция 11. Передача файлов по протоколу X-MODEM Алгоритмы расчета контрольной суммы (CRC8-CRC32) Реализация SHELL для работы с X-MODEM Лекция 12. Работа со встроенной FLASH памятью STM32 Реализация собственного загрузчика (USB-DFU) Лекция 13. Работа с сетью ETHERNET История создания сети Основные принципы работы сети Сетевые протоколы: - Протокол ARP - Протокол ІСМР - Протокол UDP - Протокол ТСРІР Программа сетевого анализа (сниффер Wire Shark) Особенности сетевого обмена Полезные консольные утилиты для работы с сетью Лекция 14. Работа с Ethernet в микроконтроллерах STM32 Библиотека стек-протокола LWIP Реализация обмена с ПК по LWIP – UDP для STM32 Реализация обмена с ПК по LWIP – TCP для STM32 Лекция 15. Сырая обработка Ethernet пакетов на STM32: - Собственная реализация протокола ARP - Собственная реализация протокола ІСМР - Собственная реализация протокола UDP Лекция 16.

Параллельная шина FMS микроконтроллеров STM32

Настройки FMS шины Подключение SDRAM памяти через FMS шину Сопряжение микроконтроллера с FPGA через FMS шину

Лекция 17.			
Микроконтроллеры радиоканалами	STM32	c	интегрированными

4.3. Практические (семинарские) занятия Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

	_			Из них	$N_{\underline{0}}$
No	Темы практических	Формы практических	Трудоемкость,	практической	раздела
Π/Π	занятий	занятий	(час)	подготовки,	дисцип
				(час)	лины
		Семестр 6			
1	Работа с IDE	Разработка ПО	2		2
2	Работа с портами	Разработка ПО	2		2
3	Работа с таймерами	Разработка ПО	3		2
4	Работа с SPI	Разработка ПО	2		2
5	Работа с І2С	Разработка ПО	2		2
6	Работа с UART	Разработка ПО	3		2
7	Работа с USB/ADC	Разработка ПО	3		2
	Bcer	0	17		

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

			Из них	No
$N_{\underline{0}}$	Наименование лабораторных работ Трудоемкость,		практической	раздела
Π/Π	паименование паоораторных расот	таименование лаобраторных работ (час) подготовки	подготовки,	дисцип
			(час)	лины
	Семестр 6	Ó		
1	Работа с FreeRTOS	3		
2	Работа с SHELL	2		
3	Работа с MMC-FATFS	2		
4	Работа с X-MODEM	2		
5	Работа с USB-DFU	2		
6	Работа с Ethernet	6		
	Всего	17		

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

	1 7 1	
Вид самостоятельной работы	Всего,	Семестр 6,
Вид самостоятельной расоты	час	час
1	2	3
Изучение теоретического материала	20	20
дисциплины (ТО)	20	20
Курсовое проектирование (КП, КР)		
Расчетно-графические задания (РГЗ)		
Выполнение реферата (Р)		
Подготовка к текущему контролю	20	20
успеваемости (ТКУ)	20	20
Домашнее задание (ДЗ)		
Контрольные работы заочников (КРЗ)		
Подготовка к промежуточной аттестации	9	9
(ΠA)	9	9
Всего:	49	49

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8.

Таблица 8- Перечень печатных и электронных учебных изданий

таолица о-перечень печатных и электронных учесных издании			
Шифр/ URL адрес	Библиографическая ссылка	Количество экземпляров в библиотеке (кроме электронных экземпляров)	
	Carmine Noviello		
	Пошаговое руководство по самой полной		
	платформе ARM Cortex-M, использующей		
	бесплатную и мощную среду разработки на		
	основе Eclipse и GCC		
	Бугаев, Мусиенко, Крайнык. Лабораторный		
	практикум для STM32F3, 2014		
	Джозеф Ю. Ядро Cortex - МЗ компании		
	ARM. Полное руководство		

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 — Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет»

URL адрес Наименование
Не предусмотрено

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

№ п/п	Наименование
	Не предусмотрено

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

	·
№ п/п	Наименование
	Не предусмотрено

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)	
1	Лекционная аудитория		
2	Мультимедийная лекционная аудитория 14-33		

10. Оценочные средства для проведения промежуточной аттестации

10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

-	,	. ' ' 1	- 1		,	
	Вид промежуточной аттес	Перечень оценочных средств				
	Экзамен		Список во	просов	к экзамену;	

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

	· J1 1 1		
Оценка компетенции	Vomeyerenvertying of one gran apartity we see grantery		
5-балльная шкала	Характеристика сформированных компетенций		
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, теспривязывает усвоенные научные положения с практическо деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; 		
	 свободно владеет системой специализированных понятий. 		

Оценка компетенции	V		
5-балльная шкала	Характеристика сформированных компетенций		
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 		
- обучающийся усвоил только основной программный материал, существу излагает его, опираясь на знания только основ литературы; - допускает несущественные ошибки и неточности; - испытывает затруднения в практическом применении зна направления; - слабо аргументирует научные положения; - затрудняется в формулировании выводов и обобщений; - частично владеет системой специализированных понятий.			
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 		

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	Код индикатора
1	Опишите основные принципы RISC архитектуры, Назовите базовые блоки ядра RISC, поясните их предназначение. В чем преимущество применения RISC микроконтроллеров во встраиваемых системах?	УК-1.В.2
2	Назовите основных производителей микроконтроллеров ARM32. Приведите сравнительную оценку, укажите достоинство и недостатки различных моделей микроконтроллеров. Приведите примеры применения микроконтроллеров в технике и промышленности.	ОПК-3.3.1
3	Дайте определение понятиям стек, куча, кэш память. В чем смысл стека? Где происходит инициализация стека? Как пользоваться кучей? Приведите случаи, когда кэширование может мешать корректному выполнению программы.	ОПК-5.3.1
4	Приведите и поясните состав проекта STM32. Какой смысл «тар» файла? Как он может быть полезен программисту? Какой смысл файла скрипта линкера? Чем и когда он может быть полезен программисту?	ОПК-5.У.1
5	Дайте определения и поясните базовые принципы работы библиотек CMSIS и HAL. Объясните положительные и отрицательные стороны работы с библиотеками.	ОПК-7.У.1
6	Приведите основные элементы настройки проекта в среде STM32CubeMx. Каким образом осуществляется настройка и генерация кода проекта.	ОПК-3.3.1

	Поясните настойки тактирования для STM32 в STM32CubeMx.	
7	Каким образом осуществляются настройки проекта в среде Eclipse? как выполнять компиляцию проекта? Как импортировать проект, созданный на другом компьютере? Как создавать и переключать сессии WORKSPACE?	УК-1.В.2
8	Опишите основные механизмы поиска ошибок в программе с применением Debug отладчика. Нарисуйте схему подключения STLINK-V2 программатора к микроконтроллеру, поясните назначение сигналов программатора. Как реализовать отладочный TRACE вывод в консоль SWV?	
9	Поясните базовые принципы работы с портом вводавывода микроконтроллера STM32. Приведите и объясните схемы драйверов порта для подключения к микроконтроллеру различных исполнительных нагрузок.	ОПК-3.3.1
10	Как работает система прерываний микроконтроллера STM32. В каком файле проекта можно найти обработчик прерывания? В чем удобство работы с прерываниями. Приведите пример проекта с прерыванием. Что такое таблица векторов прерываний? Где расположена таблица векторов прерываний? Что необходимо выполнить для переноса таблицы векторов прерываний в другую область памяти?	УК-1.В.2
11	Опишите порядок действий в настройке таймера на интервал 1000мс для микроконтроллера STM32. Как реализовать задержку произвольного процесса на основе таймера RTC? Как измерить время выполнения произвольной функции на основе таймера RTC?	ОПК-3.3.1
12	Поясните как реализовать режим энкодера в таймере STM32? Поясните работу таймера в режиме ШИМ. Поясните как работать со сторожевым таймером в STM32?	УК-1.В.2
13	Поясните принципы функционирования интерфейсов I2C, SPI, UART. В чем различие работы в блокирующем и неблокирующем режиме? Опишите функциональные характеристики драйверов RS232, RS422, RS485.	УК-1.В.2
14	Опишите порядок действий в настройке STM32CubeMx и программировании IDE для работы STM32 в режиме USB OTG? Поясните принцип работы программного FIFO для работы с последовательными каналами STM32.	ОПК-3.3.1
15	В чем удобство работы с ОС «FreeRTOS». Приведите POSIX механизмы взаимодействия процессов в операционной системе «FreeRTOS».	УК-1.В.2
16	Поясните работу АЦП в STM32. Приведите алгоритм усреднения измерений АЦП. Поясните как выполнить измерение напряжение на STM32? Поясните как выполнить измерение тока на STM32? Поясните как выполнить измерение температуры на STM32?	ОПК-5.У.1

17	Опишите порядок действий в программной реализации командного интерпретатора SHELL.	ОПК-3.3.1
18	Опишите порядок действий в настройке STM32CubeMx и программировании IDE для настройки MMC карты в режиме FATFS	ОПК-5.У.1
19	Поясните алгоритм передачи файлов по протоколу X-MODEM Поясните алгоритм расчета контрольной суммы CRC8 Поясните алгоритм расчета контрольной суммы CRC16 Поясните алгоритм расчета контрольной суммы CRC32	ОПК-3.3.1
20	Опишите порядок действий в программировании функций взаимодействия с FLASH памятью STM32. Опишите порядок действий в реализации загрузчика USB-DFU	ОПК-3.3.1
21	Опишите основные принципы работы сети Ethernet Поясните работу протокола ARP Поясните работу протокола ICMP Поясните работу протокола UDP Поясните работу протокола TCPIP	УК-1.В.2
22	Опишите порядок действий в настройке STM32CubeMx и программировании IDE для настройки LWIP–UDP микроконтроллера STM32	ОПК-5.У.1
23	Поясните функционирование шины FMS для STM32 Дайте определение основным настройкам шины Опишите сигналы FMS шины для взаимодействия с SDRAM памятью. Опишите порядок действий в настройке проекта STM32CubeMx и программировании IDE для FMS шины взаимодействующей с SDRAM памятью.	ОПК-3.3.1
24	Поясните функционирование шины FMS для STM32 Дайте определение основным настройкам шины Опишите сигналы FMS шины взаимодействия с FPGA для STM32 Опишите порядок действий в настройке проекта STM32CubeMx и программировании IDE для FMS шины взаимодействующей с FPGA.	УК-1.В.2
25	Приведите основные характеристики и возможности микроконтроллеров STM32 с интегрированными радиоканалом	ОПК-3.3.1

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16. Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код индикатора
	Учебным планом не предусмотрено	

аблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы	
	Учебным планом не предусмотрено	

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

№ п/п	Примерный перечень вопросов для тестов	Код индикатора
	Учебным планом не предусмотрено	

Перечень тем контрольных работ по дисциплине обучающихся заочной формыобучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п	Перечень контрольных работ	
	Не предусмотрено	

10.1. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

1. Методические указания для обучающихся по освоению дисциплины

11.1. Методические указания для обучающихся по освоению лекционного материала

Основное назначение лекционного материала – логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по лиспиплине.

11.2. Методические указания для обучающихся по прохождению практических занятий

Практическое занятие является одной из основных форм организации учебного процесса, заключающаяся в выполнении обучающимися под руководством преподавателя комплекса учебных заданий с целью усвоения научно-теоретических основ учебной дисциплины, приобретения умений и навыков, опыта творческой деятельности.

Целью практического занятия для обучающегося является привитие обучающимся умений и навыков практической деятельности по изучаемой дисциплине.

Планируемые результаты при освоении обучающимся практических занятий:

- закрепление, углубление, расширение и детализация знаний при решении конкретных задач;
- развитие познавательных способностей, самостоятельности мышления, творческой активности;
- овладение новыми методами и методиками изучения конкретной учебной дисциплины;
- выработка способности логического осмысления полученных знаний для выполнения заданий;
- обеспечение рационального сочетания коллективной и индивидуальной форм обучения.

Требования к проведению практических занятий

Практические занятия проводятся в форме решения задач на заданную тему исостоят из трех этапов: а) преподаватель разбирает и объясняет типовую задачу; б) студентам раздаются аналогичные задачи (индивидуально или по-командно – на 2-3 человека); в) преподаватель проверяет решение задач с оценкой.

Качество работы студента на практическом занятии и полученные оценки являются составной частью текущего контроля успеваемости и влияют на итоговую оценку в семестре.

11.3. Методические указания для обучающихся по выполнению лабораторных работ.

В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно- аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач обучающегося:

- приобретение навыков исследования процессов, явлений и объектов,
 изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задание и требования к проведению лабораторных работ

Перед выполнением лабораторных работ студент должен изучить соответствующий теоретический материал, а также получить у преподавателя индивидуальное задание, которое он будет выполнять в процессе проведения лабораторной работы.

Структура и форма отчета о лабораторной работе

Бланк титульного листа отчета о лабораторной работе расположен на сайте ГУАП http://guap.ru/guap/standart/titl_main.shtml. Отчет должен быть оформлен по правилам оформления текстовых документов в соответствии с ГОСТ 7.32-2017.

Требования к оформлению отчета о лабораторной работе

Отчет о лабораторной работе должен содержать сведения, иллюстрирующие выполнение студентом лабораторной работы: цель работы, описание лабораторной установки, индивидуальное задание, процесс выполнения работы, результаты измерений, необходимые расчеты, выводы.

11.4. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышенияпрофессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихсяявляются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ (для обучающихся по заочной форме обучения).
- 11.5. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

Текущий контроль успеваемости осуществляется в течение всего семестра (семестров) на лабораторных и практических занятиях по нескольким критериям:

- 1. оценки, полученные студентом за решение задач на практических занятиях.
- 2. количество лабораторных работ, которое студент успел выполнить и защитить как в отведенные для этого календарные сроки, так и в течение семестра в целом.
- 3. темп и качество выполнения лабораторных работ, т.к. успешное выполнение лабораторных работ студентом возможно при соответствующем освоении текущего лекционного и предыдущего лабораторного материала.
- 4. оценки, полученные студентом по результату защиты каждой лабораторной работы.

Используемая в ГУАП модульно-рейтинговая система (см. Положение «О текущем контроле успеваемости и промежуточной аттестации студентов ГУАП, обучающихся по программы высшего образования» и Положение «О модульно-рейтинговой системе

оценки качества учебной работы студентов в ГУАП») предусматривает формирование итоговой оценки на основе прохождения текущего контроля успеваемости (в семестре) и прохождения промежуточной аттестации (сессия). Баллы, отведенные на работу в семестре, начисляются за посещение лекционных занятий, и выполнение и защиту лабораторных работ и решение задач на практических занятиях, причем количество баллов зависит от оценок, полученных за защиту каждой лабораторной работы. И зарешение каждой задачи. Поэтому итоговая оценка может быть ниже полученной на промежуточной аттестации при слабых и/или неполных выполнении и защите лабораторных работ в течение семестра.

11.6. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

– экзамен – форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично»,

«хорошо», «удовлетворительно», «неудовлетворительно».

Экзамен проводится по билетам на основе вопросов из табл.15 и предусматривает проверку сформированности всех заданных индикаторов компетенций («Знать», «Уметь», «Владеть»). Билет состоит из трех вопросов — теоретического («Знать»), практического («Уметь») и прикладного («Владеть»).

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой