МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 32

УТВЕРЖДАЮ Руководитель направления

доц., к.т.н., доц.

(должность, уч. степень, звание)

С.В. Солёный

(инициалы, фамилия)

(подпись) «23» июня 2022 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Проектирование и эксплуатация полупроводниковых преобразователей для электромеханотронных систем» (Наимсиование дисциплина)

Код направления подготовки	15.04.06
Наименование направления подготовки	Мехатроника и робототехника
Наименование направленности	Компьютерные технологии управления в мехатронике и робототехнике
Форма обучения	канью

Лист согласования рабочей программы дисциплины

Программу составил (а)	1	
доцент, к.т.н., доцент (должность, уч. степень, звание)	<u>Меры</u>	А.А. Мартынов (инициалы, фамилия)
Программа одобрена на заседа	нии кафедры № 32	
«26» апреля 2022 г., протокол .	№ 9	
Заведующий кафедрой № 32	COR	
к.т.н., доц.		С.В. Солёный
(уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Ответственный за ОП ВО 15.0	4.06(01)	
доц., к.т.н., доц.	(Clean	О.Я. Соленая
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
	· · · · · · · · · · · · · · · · · · ·	A CONTRACTOR AND A CONT
Заместитель директора инстит	, , ,	

Аннотация

Дисциплина «Проектирование и эксплуатация полупроводниковых преобразователей для электромеханотронных систем» входит в образовательную программу высшего образования — программу магистратуры по направлению подготовки 15.04.06 «Мехатроника и робототехника» направленности «Компьютерные технологии управления в мехатронике и робототехнике». Дисциплина реализуется кафедрой «№32».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ОПК-3 «Способен осуществлять профессиональную деятельность с учетом экономических, экологических, социальных и других ограничений на всех этапах жизненного уровня»

ОПК-4 «Способен использовать современные информационные технологии и программные средства при моделировании технологических процессов»

ОПК-12 «Способен организовывать монтаж, наладку, настройку и сдачу в эксплуатацию опытных образцов мехатронных и робототехнических систем, их подсистем и отдельных модулей»

ОПК-13 «Способен использовать основные положения, законы и методы естественных наук и математики при формировании моделей и методов исследования мехатронных и робототехнических систем»

Содержание дисциплины охватывает круг вопросов, связанных с

изучением и освоением инженерных методик расчета и проектирования полупроводниковых преобразователей для ЭМТС;

- с освоением основных этапов проектирования, изготовления и наладки полупроводниковых преобразователей для ЭМТС;
- с формированием понимания современных тенденций в развитии полупроводниковых преобразователей и совершенствовании методик расчета их.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, практические занятия, самостоятельная работа обучающегося, курсовое проектирование.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 10 зачетных единиц, 360 часов.

Язык обучения по дисциплине «русский».

- 1. Перечень планируемых результатов обучения по дисциплине
- 1.1. Цели преподавания дисциплины

Целью преподавания дисциплины является формирование у студентов необходимых знаний и умений по современным полупроводниковым преобразователям электрической энергии для электромехатронных систем, что позволит им успешно решать теоретические и практические задачи в их профессиональной деятельности.

- 1.2. Дисциплина входит в состав обязательной части образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа) компетенции	Код и наименование компетенции	Код и наименование индикатора достижения компетенции
Общепрофессиональные компетенции	ОПК-3 Способен осуществлять профессиональную деятельность с учетом экономических, экологических, социальных и других ограничений на всех этапах жизненного уровня	ОПК-3.3.1 знает основы экономических, экологических, социальных и других ограничений при осуществлении профессиональной деятельности для проектируемых мехатронных и робототехнических систем ОПК-3.У.1 умеет разрабатывать проекты мехатронных и робототехнических систем с учетом экономических, экологических, социальных и других ограничений
Общепрофессиональные компетенции	ОПК-4 Способен использовать современные информационные технологии и программные средства при моделировании технологических процессов	ОПК-4.3.1 знает современные информационные технологии, применяющиеся при моделировании технологических процессов, современные системы автоматизированного проектирования в машиностроении ОПК-4.У.1 умеет выполнять и читать чертежи и конструкторскую документацию, проводить обоснованный выбор, использовать для решения типовых задач методы и средства геометрического моделирования, пользоваться инструментальными программными средствами интерактивных графических систем, актуальных для современного производства при решении задач профессиональной деятельности ОПК-4.В.1 владеет методами использования современных информационных технологий и программных средств, в том числе

		OTAHAATRAHHATA HAAHARAHATRA HAY
		отечественного производства, при
		решении задач профессиональной
		деятельности
	ОПК-12 Способен	
	организовывать	
	монтаж, наладку,	
	настройку и сдачу в	
Opmanagasananan	эксплуатацию	ОПК-12.В.1 владеет навыками
Общепрофессиональные	опытных образцов	проведения испытаний и сдачи в
компетенции	мехатронных и	эксплуатацию опытных образцов
	робототехнических	-
	систем, их	
	подсистем и	
	отдельных модулей	
	ОПК-13 Способен	
	использовать	
	основные	
	положения, законы	
	и методы	OTH: 12 V 1
05 1	естественных наук	ОПК-13.У.1 умеет применять
Общепрофессиональные	и математики при	современные средства
компетенции	формировании	автоматизированного проектирования и
	моделей и методов	машинной графики
	исследования	
	мехатронных и	
	робототехнических	
	систем	
	CHCICINI	

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

-«Компьютерные технологии моделирования и проектирования электромехатронных систем».

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и используются при изучении других дисциплин:

- «Электропривод прецизионных РТС»
- «Научно-исследовательская работа»;
- «Научно-технический семинар»;
- «Электромагнитная совместимость устройств и систем»;
- «Производственная преддипломная практика»
 - и при работе над магистерской диссертацией.

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

Programa professor	Всего	Трудоемкость по семестрам		
Вид учебной работы	Beero	№ 1	№ 2	
1	2	3	4	
Общая трудоемкость дисциплины	10/360	5/ 180	5/ 180	

ЗЕ/ (час)			
Из них часов практической подготовки			
Аудиторные занятия, всего час.	102	51	51
в том числе:			
лекции (Л), (час)	34	17	17
практические/семинарские занятия (ПЗ),	34	34	
(час)	34	34	
лабораторные работы (ЛР), (час)	17		17
курсовой проект (работа) (КП, КР), (час)	17		17
экзамен, (час)	90	54	36
Самостоятельная работа, всего (час)	168	75	93
Вид промежуточной аттестации: зачет,	Экз.,		Экз.
дифф. зачет, экзамен (Зачет, Дифф. зач,	Экз., Экз.	Экз.	
Экз.**)	OKS.		

Примечание: **кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Разделы, темы дисциплины	Лекции	П3 (С3)	ЛР	КΠ	CPC
	(час)	(час)	(час)	(час)	(час)
Семестр 1					
Раздел 1. Элементная база ППП	2,0	2,0			5,0
Раздел 2. Основы проектирования	7,0	14,0			30,0
реверсивных схем управляемых					
выпрямителей					
Тема 2.1. Устройство, принцип работы,					
вывод основных расчетных					
соотношений однофазных, трехфазных					
и шестифазных реверсивных схем					
выпрямителей					
Тема 2.2. Способы управления					
реверсивных схем управляемых					
выпрямителей					
Тема 2.3. Расчет параметров сетевого					
выпрямителя для реверсивного					
выпрямителя и загрузки вентилей по					
току и напряжению					
Тема 2.4. Расчет параметров					
сглаживающего и уравнительного					
реакторов					
Тема 2.5. Внешние и регулировочные					
характеристики реверсивных					
выпрямителей Тема 2.6.Энергетические показатели					
Тема 2.6.Энергетические показатели реверсивных выпрямителей					
Тема 2.7. Схемы управления реверсивных выпрямителей.					
Передаточная функция					
ттередаточная функция					

Тема 2.8. Активные выпрямители. Схемы, характеристики, методики				
Схемы, характеристики, методики расчета				
Раздел 3. Широтно-импульсные	4,0	10,0		20,0
преобразователи электропривода	4,0	10,0		20,0
постоянного тока				
Тема 3.1.Силовые схемы и способы				
управления. Расчет индуктивности				
сглаживающего дросселя				
Тема 3.2.Регулировочные и внешние				
характеристики реверсивных ШИП,				
Тема 3.3. Расчет загрузки				
полупроводниковых вентилей по току и				
напряжению				
Раздел 4.Замкнутые ЭМТС	4,0	8,0		20,0
Тема 4.1.Замкнутая по току ЭМТС	1,0			
Тема 4.2. Замкнутая по току и скорости				
ЭМТС				
Тема 4.3. Оценка динамических				
характеристик замкнутых ЭМТС				
Adpartepherial Samning Isla Sivire				
Итого в семестре 1	17	34		75
There is concerned.	1,			13
Семестр 2				
Раздел 5. Инверторы	4,0		6,0	20,0
Тема 5.1. Устройство, принцип работы,				
вывод основных расчетных				
соотношений инверторов напряжения				
соотношении инверторов напряжения				
Тема 5.2. Методика расчета				
трехфазных транзисторных инверторов				
напряжения с ШИМ				
напряжения с шину				
Тема 5.3. Зависимые инверторы			3,0	
Tenia etet subitetimble imbep repai				
Раздел 6. Преобразователи частоты	4,0		4.0	20,0
Tuoden of TipecopuseButenin luctures	1,0			20,0
Тема 6.1. Преобразователи частоты с				
управляемым тиристорным				
1 1				
выпрямителем				
Тема 6.2. Преобразователь частоты с				
активным выпрямителем				
активным выпрамителем				
Раздел 7. Вторичные источники питания				20,0
(ВИП) для систем управления ЭМТС				20,0
Till) All one tem ynpublenin Sivii C				
Тема 7.1. Бестрансформаторные ВИП	6,0		4,0	
L	1	1	1	L

Тема 7.2. ВИП с трансформаторной связью цепи питания и цепи нагрузки					
Тема 7.3.Оценка динамических					
характеристик стабилизаторов					
напряжения	2.0				12.0
Раздел 8. Зарядно-разрядные устройства (ЗРУ) источников бесперебойного	3,0				13,0
питания					
Тема 8.1. Тиристорные ЗРУ					
Тема 8.2. Транзисторные ЗРУ с					
трансформаторной связью входной и					
выходной цепей					
Выполнение курсовой работы				17	20,0
Zamomie kypeodon puoota				1 /	20,0
Итого в семестре:	17		17	17	93
Итого:	34	34	17	17	168

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий.

Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Номер раздела	Название и содержание разделов и тем лекционных занятий
Раздел 1.	Элементная база ППП
Раздел 2.	Основы проектирования реверсивных схем управляемых выпрямителей
Тема 2.1.	Устройство, принцип работы, вывод основных расчетных соотношений однофазных, трехфазных и шестифазных реверсивных схем выпрямителей
Тема 2.2	. Способы управления реверсивных схем управляемых выпрямителей
Тема 2.3.	Расчет параметров сетевого выпрямителя для реверсивного выпрямителя и загрузки вентилей по току и напряжению
Тема 2.4.	Расчет параметров сглаживающего и уравнительного реакторов
Тема 2.5.	Внешние и регулировочные характеристики реверсивных выпрямителей
Тема 2.6.	Энергетические показатели реверсивных выпрямителей

Тема 2.7	. Схемы управления реверсивных выпрямителей.
Tewa 2.7	Передаточная функция
Тема 2.8	. Активные выпрямители. Схемы, характеристики, методики
1 CMa 2.0	расчета
Раздел 3.	Основы проектирования широтно-импульсных
т аздел 5.	преобразователей электропривода постоянного тока
Тема 3.1	.Силовые схемы и способы управления. Расчет
TCMa 3.1	индуктивности сглаживающего дросселя
Тема 3.2.	Регулировочные и внешние характеристики реверсивных ШИП,
	Расчет загрузки полупроводниковых вентилей по току и
Тема 3.3.	напряжению
Раздел 4	.Замкнутые ЭМТС
Тема 4.1	.Замкнутая по току ЭМТС
Тема 4.2.	Замкнутая по току и скорости ЭМТС
Тема 4.3	Оценка динамических характеристик замкнутых ЭМТС
Раздел 5	Инверторы
Тема 5.1.	Устройство, принцип работы, вывод основных расчетных
	соотношений инверторов напряжения
Тема 5.2.	Методика расчета трехфазных транзисторных инверторов
1 cma 3.2.	напряжения с ШИМ
Тема 5.3.	Зависимые инверторы
Раздел 6	. Преобразователи частоты
Тема 6.1.	Преобразователи частоты с управляемым тиристорным выпрямителем
Тема 6.2.	Преобразователь частоты с активным выпрямителем
P 7	Вторичные источники питания (ВИП) для систем
Раздел 7	управления ЭМТС
Тема 7.1	Бестрансформаторные ВИП
T 7.2	ВИП с трансформаторной связью цепи питания и цепи
Тема 7.2.	нагрузки
T 72	Оценка динамических характеристик стабилизаторов
Тема 7.3.	напряжения
D 0	Зарядно-разрядные устройства (ЗРУ) источников
Раздел 8.	бесперебойного питания
Тема 8.1.	Тиристорные ЗРУ
T 0.2	Транзисторные ЗРУ с трансформаторной связью входной и
Тема 8.2.	выходной цепей
	l

4.3. Практические (семинарские) занятия Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

№ п/п	Темы практических занятий		рактических нятий	Трудоемкость, (час)	Из них практической подготовки,	№ раздела дисцип
			Семестр 1		(час)	лины
1	Расчет па тиристорного преобра для реверсивного электропривода посто тока		Решение задач	4.0	4,0	Раздел 2
2	импульсного преобра для реве	широтно- азователя рсивного тоянного	Решение задач	4,0	4,0	Раздел 3
3	Расчет параметров акт		Решение задач	4,0	4,0	Раздел 2
4	Расчет параметров трехфазного инвертор напряжения	oa	Решение задач	4,0	4,0	Раздел 5
5	Расчет параметров преобразователя част асинхронного частотн управляемого электро	10-	Решение задач	4,0	4,0	Раздел 6
6	Расчет параметров преобразователя для аккумуляторной батар		Решение задач	4,0	4,0	Раздел 8
7	Расчет параметров бестрансформаторных импульсных стабилиз последовательным кламентом	аторов с	Решение задач	4,0	4,0	Раздел 7
8	стабилизаторов трансформаторной входной и выходной и	-	Решение задач	4,0	4,0	Раздел 7
	Заключительное за	нятие		2,0		
	Bce	го		34	32	

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

			Из них	No
$N_{\underline{0}}$	Наименование лабораторных работ	Трудоемкость,	практической	раздела
Π/Π	паименование лаоораторных раоот	(час)	подготовки,	дисцип
			(час)	лины
	Семестр	2		
1	Трехфазный управляемый выпрямитель	2	1	2
2	Реверсивная тиристорный выпрямитель	2	1	2
3	Широтно-импульсный преобразователь	4	2	3
	при симметричном и несимметричном			
	способе управления			
4	Зависимый инвертор	2	1	5
5	Инвертор напряжения	2	1	5
6	Преобразователь частоты	2	1	6
7	Стабилизатор напряжения постоянного	3	1	7
	тока			
	Всего	17	8	

4.5. Курсовое проектирование/ выполнение курсовой работы

Цель курсовой работы: формирование у обучающихся опыта комплексного решения конкретных задач проектирования полупроводниковых преобразователей для электромехатронных систем.

Примерные темы заданий на курсовую работу приведены в разделе 10 РПД.

4.6. Самостоятельная работа обучающихся

Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего, час	Семестр 1, час	Семестр 2, час
1	2	3	4
Изучение теоретического материала дисциплины (TO)	105	60	45
Курсовое проектирование (КП, КР)	33		33
Расчетно-графические задания (РГЗ)			
Выполнение реферата (Р)			
Подготовка к текущему контролю успеваемости (ТКУ)	12	6	6
Домашнее задание (ДЗ)			
Контрольные работы заочников (КРЗ)			
Подготовка к промежуточной аттестации (ПА)	18	9	9
Всего:	168	75	93

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий

Перечень печатных и электронных учебных изданий приведен в таблице 8. Таблица 8— Перечень печатных и электронных учебных изданий

Шифр	 Перечень печатных и электронных учебных издани Библиографическая ссылка / URL адрес 	Количество экземпляров в
шифр	Биолиографическая севілка / СКЕ адрес	библиотеке (кроме электронных
		экземпляров)
62-83	1. Мартынов А.А. Проектирование и	7
M29	эксплуатация полупроводниковых	
	преобразователей для электромехатронных	
	систем: учебно-методическое пособие к	
	проведению практических занятий. / А.А.	
	Мартынов. СПб.: ГУАП, 2017. 121 с.:	
62-83	2.Мартынов А.А Электрический привод: учеб.	85
M29	пособие.–СПб.: ГУАП, 2015. – 524 с.	
621.311	3. Мартынов А.А. Силовая электроника. Часть I.	80
1.620	Выпрямители и регуляторы переменного	
M29	напряжения. ГУАП. СПб. 2011. 186с.	
621.31	4. Мартынов А.А. Силовая электроника. Часть II.	80
	Инверторы и преобразователи частоты. ГУАП.	
M29	СПб.2012. 146с.	
621.311	5.Мартынов А.А. Проектирование импульсных	45
M29	полупроводниковых преобразователей	
W129	постоянного напряжения в постоянное	
	напряжение. ГУАП. СПб.2012. 208с.	
621.3(075)	6.МартыновА.А. Основы проектирования	45
M29	электрических приводов.: Учеб. пособие/.	
	СПб.:СПбГУАП, 2013. 141с.: ил.	
621.226+621.314	7. Мартынов А.А. Электрические и	5
M29	гидравлические приводы мехатронных и	
	робототехнических устройств. Часть 1. Электр.	
	привод. СПб.: ГУАП. 2019109 с.	
621.314	8. Мартынов А.А. Основы преобразовательной	20
M29	техники.: Учебно-методическое пособие. Часть I / А.А. Мартынов. СПб.: ГУАП, 2016. 177 с	
621.314	9. Мартынов А.А. Основы преобразовательной	20
M29	техники.: Учебно-методическое пособие. Часть I I/ А.А. Мартынов. СПб.: ГУАП, 2017. 157 с	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационно-

телекоммуникационной сети «Интернет»

URL адрес	Наименование
URL:http://194.226.30/32/book.htm	Библиотека Администрации Президента РФ
	[Электронный ресурс]
URL:http://imin.urc.ac.ru	Виртуальные библиотеки [Электронный ресурс].
URL:http://www.rsl.ru	Российская национальная библиотека [Электронный
	pecypc].
URL:http://web.ido.ru	Электронная библиотека [Электронный ресурс].
URL:http://gpntb.ru	Государственная публичная научно-техническая
	библиотека России [Электронный ресурс].
http://window.edu.ru/	Информационный портал «Единое окно доступа к
	образовательным ресурсам» [Электронный ресурс]

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

	·· · · · · · · · · · · · · · · · · · ·
№ п/п	Наименование
	Не предусмотрено

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п		Наименование
	Не предусмотрено	

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

$N_{\underline{0}}$	Наименование составной части	Номер аудитории
Π/Π	материально-технической базы	(при необходимости)

1	Лекционная аудитория	21-21
2	Специализированная лаборатория «Электропривод»	31-01
3	Специализированная лаборатория «Силовая электроника»	51-06-01

10. Оценочные средства для проведения промежуточной аттестации

10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств		
Экзамен	Список вопросов к экзамену.		
Выполнение курсовой работы	Экспертная оценка на основе требований к		
	содержанию курсовой работы по		
	дисциплине.		

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции	Vonestanustina odonamonamu iv romazavimi	
5-балльная шкала	Характеристика сформированных компетенций	
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; 	
	 умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий. 	
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 	
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний 	

Оценка компетенции	Vanatetanuarium adam grandatuu ni tea grandatuu vi	
5-балльная шкала	Характеристика сформированных компетенций	
	направления;	
	 слабо аргументирует научные положения; 	
	– затрудняется в формулировании выводов и обобщений;	
	 частично владеет системой специализированных понятий. 	
	- обучающийся не усвоил значительной части программного	
	материала;	
«неудовлетворительно»	– допускает существенные ошибки и неточности при	
«не зачтено»	рассмотрении проблем в конкретном направлении;	
(die sa freno//	 испытывает трудности в практическом применении знаний; 	
	– не может аргументировать научные положения;	
	 не формулирует выводов и обобщений. 	

10.3. Типовые контрольные задания или иные материалы. Вопросы для экзамена представлены в таблице 15.

Таблица 15 – Вопросы для экзамена

№ п/п	Перечень вопросов для экзамена 1 семестра	Код индикатора
1	Элементная база ППП	ОПК-3.3.1
2	Устройство, принцип работы, вывод основных расчетных соотношений однофазных реверсивных схем выпрямителей	ОПК-3.У.1
3	Устройство, принцип работы, вывод основных расчетных соотношений трехфазных реверсивных схем выпрямителей	ОПК-4.3.1
4	Устройство, принцип работы, вывод основных расчетных соотношений шестифазных реверсивных схем выпрямителей	ОПК-4.У.1
5	Совместный способ управления реверсивных схем управляемых выпрямителей	ОПК-4.В.1
6	Раздельный способ управления реверсивных схем управляемых выпрямителей-по знаку сигнала управления, знаку тока якоря, по знаку сигнала управления и знаку тока якоря	ОПК- 12.В.1
7	Расчет параметров сетевого выпрямителя для реверсивного выпрямителя и загрузки вентилей по току и напряжению	ОПК- 13.У.1
8	Расчет параметров сглаживающего и уравнительного реакторов	ОПК-3.3.1
9	Внешние и регулировочные характеристики реверсивных выпрямителей	ОПК-3.У.1
10	Энергетические показатели реверсивных выпрямителей	ОПК-4.3.1
11	Схемы управления реверсивных выпрямителей. Передаточная функция	ОПК-4.У.1
12	Активные выпрямители напряжения. Схемы, принцип работы, характеристики	ОПК-4.В.1
13	Активные выпрямители напряжения. Основы методики расчета	ОПК- 12.В.1
14	Широтно-импульсный преобразователь для реверсивного электропривода постоянного тока. Устройство, принцип работы. Несимметричный способ управления	ОПК- 13.У.1

1		T
	Широтно-импульсный преобразователь для реверсивного	ОПК-3.3.1
15	электропривода постоянного тока. Симметричный способ	
	управления	
	Широтно-импульсный преобразователь для реверсивного	ОПК-3.У.1
16	электропривода постоянного тока. Поочередный способ	
	управления	
	Основы проектирования широтно-импульсного	ОПК-4.3.1
17	преобразователь для реверсивного электропривода	
1 /	постоянного тока. Расчет загрузки вентилей по току и	
	напряжению	
10	Расчет потерь мощности транзисторов ШИП, расчет	ОПК-4.У.1
18	площади радиаторов	
19	Расчет индуктивности сглаживающего дросселя ШИП	ОПК-4.В.1
20	Регулировочные и внешние характеристики реверсивных	ОПК-
20	ШИП	12.B.1
21	Расчет параметров регуляторов при подчиненном способе	ОПК-
	управления	13.У.1
22	Расчет параметров регулятора токового контура	ОПК-3.3.1
	замкнутой по току ЭМТС	
23	Расчет параметров регулятора скоростного контура	ОПК-3.У.1
23	замкнутой по скорости ЭМТС	
24	Оценка динамических характеристик замкнутых ЭМТС	ОПК-4.3.1

Вопросы для экзамена 2 семестра представлены в таблице 16. Таблица 16 — Вопросы для экзамена 2 семестра

№ п/п	Перечень вопросов для экзамена 2 семестра	Код
1	Трехфазный инвертор напряжения: устройство, принцип работы, вывод основных расчетных соотношений	индикатора ОПК-3.3.1
2	Методика расчета трехфазных транзисторных инверторов напряжения с ШИМ	ОПК-3.У.1
3	Зависимые инверторы: устройство, принцип работы	ОПК-4.3.1
4	Условия перевода управляемого выпрямителя в режим инвертирования. Внешние характеристики	ОПК-4.У.1
5	Структурные схемы преобразователей частоты со звеном постоянного тока: сравнительная оценка, достоинства, недостатки	ОПК-4.В.1
6	Преобразователи частоты с управляемым тиристорным выпрямителем: устройство, принцип работы, достоинства, недостатки	ОПК- 12.В.1
7	Преобразователь частоты с активным выпрямителем: устройство, принцип работы, достоинства, недостатки	ОПК- 13.У.1
8	Преобразователь частоты со звеном постоянного тока с неуправляемым выпрямителем и инвертором с ШИМ	ОПК-3.3.1
9	Основы методики расчета активных выпрямителей	ОПК-3.У.1
10	Преобразователи частоты без звена постоянного тока: устройство, принцип работы, вывод основных расчетных соотношений	ОПК-4.3.1
11	Тиристорные регуляторы напряжения для пуска асинхронного двигателя в ход: устройство, принцип работы, основные расчетные	ОПК-4.У.1

соотношения	
Соотношения	
12 Стабилизатор напряжения постоянного тока, выполненный по	ОПК-4.В.1
схеме ОППН-1: устройство, принцип работы, основные расчетные	e
соотношения	
13 Стабилизатор напряжения постоянного тока, выполненный по	ОПК-
схеме ОППН-11: устройство, принцип работы, основные расчетнь	ые 12.В.1
соотношения	
14 Стабилизатор напряжения постоянного тока, выполненный по	ОПК-
схеме однотактного обратноходового преобразователя: устройство	о, 13.У.1
принцип работы, основные расчетные соотношения	
15 Стабилизатор напряжения постоянного тока, выполненный по	ОПК-3.3.1
схеме однотактного прямоходового преобразователя: устройство,	
принцип работы, основные расчетные соотношения	
16 Оценка динамических характеристик стабилизаторов напряжения	ОПК-3.У.1
17 Тиристорные ЗРУ: устройство, принцип работы, основные	ОПК-4.3.1
расчетные соотношения	
18 Транзисторные ЗРУ с трансформаторной связью входной и	ОПК-4.У.1
выходной цепей: устройство, принцип работы, основные расчетнь	ые
соотношения	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой
745 11/11	работы
1	Замкнутая по току ЭМТС тиристорного электропривода постоянного тока
2	Замкнутая по току и скорости ЭМТС транзисторного электропривода
	постоянного тока с ШИП
3	ЭМТС асинхронного частотно-управляемого электропривода
4	Вторичный источник питания для системы управления ЭМТС
5	Зарядно-разрядное устройство источника бесперебойного питания

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

No	• • • • • • • • • • • • • • • • • • • •	Код
π/	Примерный перечень вопросов для тестов	индика
П		тора
	Тест №1: Перечислите схемы полупроводниковых преобразователей,	ОПК-
	которые применяются в электроприводах постоянного тока для	3.3.1
	регулирования напряжения обмотки якоря.	
	Тест №2: Перечислите способы управления реверсивных тиристорных	ОПК-
	преобразователей электропривода постоянного тока.	
	Тест №3: Поясните как реализуется совместный способ управления	ОПК-
	тиристорного преобразователя реверсивного электропривода постоянного	
	тока.	
	Тест №4: Поясните как реализуется раздельный способ управления	ОПК-
	тиристорного преобразователя реверсивного электропривода постоянного	4.У.1
	тока.	

Тест №5: Перечислите достоинства и недостатки совместного способа управления тиристорного электропривода постоянного тока.	ОПК- 4.В.1
Тест №6: Перечислите достоинства и недостатки раздельного способа управления тиристорного электропривода постоянного тока.	ОПК- 12.В.
Тест №7: Перечислите способы управления реверсивного широтно- им пульсного преобразователя электропривода постоянного тока.	ОПК 13.У.
Тест №8: Поясните с помощью временных диаграмм принцип реализации симметричного способа управления широтно- импульсного преобразователя электропривода постоянного тока.	ОПК- 3.3.1
Тест №9: Поясните с помощью временных диаграмм принцип реализации несимметричного способа управления широтно- импульсного преобразователя электропривода постоянного тока.	ОПК 3.У.1
Тест №10: Поясните с помощью временных диаграмм принцип реализации поочередного способа управления широтно- импульсного преобразователя электропривода постоянного тока.	ОПК 4.3.1
Тест №11: Поясните с помощью временных диаграмм работу тиристорного регулятора напряжения на активную и активно-индуктивную нагрузку.	ОПК 4.У.1
Тест №12: Поясните почему при изменении величины выходного напряжения тиристорного регулятора напряжения регулируется скорость вращения асинхронного двигателя.	ОПК 4.В.1
Тест №13: Поясните на величину каких потерь и почему оказывает влияние изменение скольжения асинхронного двигателя при регулировании скорости вращения с помощью тиристорного регулятора напряжения.	ОПК 12.В.
Тест №14: Сформулируйте основной закон частотного управления и приведите схему подключения АД для реализации этого закона.	ОПК- 13.У.
Тест №15: Приведите схему подключения АД к преобразователю частоты со звеном постоянного тока, выполненном на основе управляемого выпрямителя. Поясните работу этого ЭМТП.	ОПК 3.3.1
Тест №16: Приведите схему подключения АД к преобразователю частоты со звеном постоянного тока, выполненном на основе активного выпрямителя. Поясните работу этого ЭМТП.	ОПК 3.У.1
Тест №17: Приведите схему подключения АД к преобразователю частоты со звеном постоянного тока, выполненном на основе неуправляемого выпрямителя. Поясните работу этого ЭМТП.	ОПК 4.3.1
Тест 18: Укажите номер формулы регулировочной характеристики ЭП постоянного тока с управляемым выпрямителем в цепи обмотки якоря.	ОПК 3.3.1

$$U_{s} = k_{cx} U_{2\phi} \cos \alpha; \tag{1}$$

$$U_{\mathfrak{g}} = U_{\mathfrak{g}}D; \tag{2}$$

$$U_{g} = U_{d}(1 - 2D); (3)$$

$$U_{s} = U_{d} - I_{s}(R_{s} + R_{s,p}), \tag{4}$$

где $U_{\rm g}$ –напряжение, подаваемое на обмотку якоря;

 $U_{\rm d}$ – напряжение источника постоянного тока;

 $U_{2\phi}$ — напряжение фазы вторичной обмотки трансформатора, питающего управляемый выпрямитель;

D — коэффициент заполнения импульса напряжения, подаваемого на обмотку якоря;

 $R_{\rm s}$ – сопротивление обмотки якоря;

 $R_{\rm {s,p}}$ — регулировочное сопротивление, включенное в цепь обмотки якоря;

 $I_{\rm s}$ – ток обмотки якоря;

 α – угол регулирования;

 $k_{\rm cx}$ – коэффициент преобразования схемы.

Номер ответа	Номер формулы
1	1
2	2
3	3
4	4

Тест 19: Укажите номер формулы регулировочной характеристики ЭП постоянного тока с широтно – импульсным преобразователем напряжения в цепи обмотки якоря при несимметричном способе управления.

ОПК-3.У.1

$$U_{\rm g} = k_{\rm cx} U_{\rm 2d} \cos \alpha; \tag{1}$$

$$U_{_{\mathrm{fl}}} = U_{_{d}}D; \tag{2}$$

$$U_{s} = U_{d}(1-2D);$$
 (3)

$$U_{_{\rm fl}} = U_{_{d}} - I_{_{\rm fl}}(R_{_{\rm fl}} + R_{_{\rm fl,p}}), \tag{4}$$

где $U_{\rm \tiny M}$ –напряжение, подаваемое на обмотку якоря;

 $U_{
m d}$ — напряжение источника постоянного тока;

 $U_{2\phi}$ — напряжение фазы вторичной обмотки трансформатора, питающего управляемый выпрямитель;

D — коэффициент заполнения импульса напряжения, подаваемого на обмотку якоря;

 $R_{\rm g}$ — сопротивление обмотки якоря;

 $R_{\rm {s.p}}$ — регулировочное сопротивление, включенное в цепь обмотки якоря;

 $I_{\rm s}$ – ток обмотки якоря;

 α – угол регулирования;

 $k_{\rm cx}$ – коэффициент преобразования схемы.

Номер ответа	Номер формулы
1	1
2	2
3	3
4	4

Тест 20: Укажите номер формулы регулировочной характеристики ЭП постоянного тока с широтно — импульсным преобразователем напряжения в цепи обмотки якоря при симметричном способе управления.

ОПК-4.3.1

$$U_{s} = k_{cx} U_{2\phi} \cos \alpha; \tag{1}$$

$$U_{\mathfrak{q}} = U_{\mathfrak{d}}D; \tag{2}$$

$$U_{g} = U_{d}(1-2D); (3)$$

$$U_{g} = U_{d} - I_{g}(R_{g} + R_{g,p}), \tag{4}$$

где $U_{\rm g}$ –напряжение, подаваемое на обмотку якоря;

 $U_{
m d}$ — напряжение источника постоянного тока;

 $U_{2\phi}$ — напряжение фазы вторичной обмотки трансформатора, питающего управляемый выпрямитель;

D- коэффициент заполнения импульса напряжения, подаваемого на обмотку якоря;

 $R_{\rm s}$ – сопротивление обмотки якоря;

 $R_{\rm g,p}$ — регулировочное сопротивление, включенное в цепь обмотки якоря;

 $I_{\rm s}$ – ток обмотки якоря;

 α – угол регулирования;

 $k_{\rm cx}$ – коэффициент преобразования схемы.

Номер ответа	Номер формулы
1	1
2	2
3	3
4	4

 Тест
 21:
 Укажите номер мормулы регулировочной характеристики
 ЭП постоянного тока при регулировании сопротивления цепи обмотки якоря

ОПК-4.У.1

$$U_{\rm g} = k_{\rm ex} U_{2\phi} \cos \alpha;$$

$$U_{\mathfrak{q}} = U_{\mathfrak{d}}D;$$

$$U_{a} = U_{d}(1-2D);$$

$$U_{_{\rm ff}} = U_{_{d}} - I_{_{\rm ff}}(R_{_{\rm ff}} + R_{_{\rm ff,p}}),$$

где $U_{\rm g}$ –напряжение, подаваемое на обмотку якоря;

 $U_{\rm d}$ – напряжение источника постоянного тока;

 $U_{2\phi}$ — напряжение фазы вторичной обмотки трансформатора, питающего управляемый выпрямитель;

D — коэффициент заполнения импульса напряжения, подаваемого на обмотку якоря;

 $R_{\rm s}$ – сопротивление обмотки якоря;

 $R_{\rm {s,p}}$ — регулировочное сопротивление, включенное в цепь обмотки якоря;

 $I_{\rm s}$ – ток обмотки якоря;

 α – угол регулирования;

 $k_{\rm ex}$ – коэффициент преобразования схемы.

Номер ответа	Номер формулы
1	1
2	2
3	3
4	4

Тест 22: Укажите номер формулы (1, 2, 3 или 4), передаточной функции скоростного ЭП постоянного тока по управляющему воздействие с учетом электромагнитых переходных процессов при условии, что выходной координатой является угловая скорость вращения двигателя.

ОПК-4.В.1

$$W_{\Omega}^{y}(p) = \frac{\Omega(p)}{U_{g}(p)} = \frac{k_{U}}{T_{M}T_{g}p^{2} + T_{M}p + 1}.$$
 (1)

$$W_{\Omega}^{\mathrm{B}}(\mathbf{p}) = \frac{\Omega(\mathbf{p})}{M_{\mathrm{H}\Gamma}(\mathbf{p})} = \frac{K_{\mathrm{M}}(T_{\mathrm{p}}\mathbf{p}+1)}{T_{\mathrm{M}}T_{\mathrm{p}}\mathbf{p}^{2}+T_{\mathrm{M}}\mathbf{p}+1},$$
 (2)

ОПК-12.В.1

$$W_{\Omega}^{y}(p) = \frac{\Omega(p)}{U_{s}(p)} = \frac{k_{U}}{T_{M}p+1}.$$
 (3)

$$W_{\Omega}^{\rm B}(p) = \frac{\Omega(p)}{M_{--}(p)} = \frac{K_{\rm M}}{T_{-}p+1}.$$
 (4)

где:

 $K_{\rm M} = R_{\rm H}/({\rm C_e}\Phi)^2$ - коэффициент передачи двигателя по возмущению;

 $k_{\rm U} = 1/k_{\rm e} = 1/({\rm C_e}\Phi)$ — коэффициент передачи двигателя по управляющему воздействию;

 $T_{\rm M} = J_{\rm g} R_{\rm g} / ({\rm C_e \Phi})^2$ –электромеханическая постоянная времени ЭП; $T_{\rm h} = L_{\rm g} / R_{\rm g}$ – электромагнитная постоянная времени ЭП.

Номер ответа	Номер формулы
1	1
2	2
3	3
4	4

Тест 23: Укажите номер формулы (1, 2, 3 или 4), передаточной функции ЭП постоянного тока по возмущению (по моменту двигателя) без учета электромагнитых переходных процессов при условии, что выходной координатой является угловая скорость вращения двигателя.

$$W_{\Omega}^{y}(p) = \frac{\Omega(p)}{U_{\sigma}(p)} = \frac{k_{U}}{T_{U}T_{\rho}p^{2} + T_{U}p + 1}.$$
 (1)

$$W_{\Omega}^{\mathrm{B}}(\mathbf{p}) = \frac{\Omega(\mathbf{p})}{M_{--}(\mathbf{p})} = \frac{K_{\mathrm{M}}(T_{\mathrm{s}}\mathbf{p}+1)}{T_{-}T_{-}\mathbf{p}^{2}+T_{-}\mathbf{p}+1},$$
 (2)

$$W_{\Omega}^{y}(p) = \frac{\Omega(p)}{U_{g}(p)} = \frac{k_{U}}{T_{M}p+1}.$$
 (3)

$$W_{\Omega}^{\rm B}(p) = \frac{\Omega(p)}{M_{\rm tot}(p)} = \frac{K_{\rm M}}{T_{\rm tot}p+1}.$$
 (4)

где:

 $K_{\rm M} \!\!=\!\! R_{\rm N} \!/\! \left({\rm C_e} \Phi \right)^2$ - коэффициент передачи двигателя по возмущению;

 $k_{\rm U} = 1/k_{\rm e} = 1/(C_{\rm e} \Phi)$ — коэффициент передачи двигателя по управляющему воздействию;

 $T_{\rm M} = J_{\rm g} R_{\rm g} / ({\rm C_e \Phi})^2$ —электромеханическая постоянная времени ЭП; $T_{\rm 3} = L_{\rm g} / R_{\rm g}$ — электромагнитная постоянная времени ЭП.

Номер ответа	Номер формулы
1	1
2	2
3	3
4	4

Текст 24: Укажите номер формулы (1, 2, 3 или 4), передаточной функции ЭП постоянного тока по возмущению (по моменту двигателя) с учетом электромагнитых переходных процессов при условии, что выходной координатой является угловая скорость вращения двигателя.

ОПК-13.У.1

$$W_{\Omega}^{y}(\mathbf{p}) = \frac{\Omega(\mathbf{p})}{U_{x}(\mathbf{p})} = \frac{k_{U}}{T_{M}T_{y}p^{2} + T_{M}p + 1}.$$
 (1)

$$W_{\Omega}^{\mathrm{B}}(\mathbf{p}) = \frac{\Omega(\mathbf{p})}{M_{\mathrm{HF}}(\mathbf{p})} = \frac{K_{\mathrm{M}}(T_{\mathrm{p}}\mathbf{p}+1)}{T_{\mathrm{M}}T_{\mathrm{p}}\mathbf{p}^{2} + T_{\mathrm{M}}\mathbf{p}+1},$$
 (2)

$$W_{\Omega}^{y}(p) = \frac{\Omega(p)}{U_{g}(p)} = \frac{k_{U}}{T_{M}p+1}.$$
 (3)

$$W_{\Omega}^{\rm B}(p) = \frac{\Omega(p)}{M_{\rm HT}(p)} = \frac{K_{\rm M}}{T_{\rm M}p+1}.$$
 (4)

где:

 $K_{\rm M} = R_{\rm g}/({\rm C_e}\Phi)^2$ - коэффициент передачи двигателя по возмущению;

 $k_{\rm U} = 1/k_{\rm e} = 1/(C_{\rm e} \Phi)$ — коэффициент передачи двигателя по управляющему воздействию;

 $T_{\rm M} = J_{\rm R} R_{\rm R}/({\rm C_e}\Phi)^2$ —электромеханическая постоянная времени ЭП; $T_{\rm S} = L_{\rm R}/R_{\rm R}$ — электромагнитная постоянная времени ЭП.

Номер ответа	Номер формулы
1	1
2	2
3	3
4	4

Тест 25: Укажите номер формулы (1, 2, 3 или 4), передаточной ОПК

3.3.1

функции ЭП постоянного тока по управляющему воздействию без учета электромагнитых переходных процессов при условии, что выходной координатой является угловая скорость вращения двигателя.

$$W_{\Omega}^{y}(p) = \frac{\Omega(p)}{U_{g}(p)} = \frac{k_{U}}{T_{M}T_{g}p^{2} + T_{M}p + 1}.$$
 (1)

$$W_{\Omega}^{\mathrm{B}}(\mathbf{p}) = \frac{\Omega(\mathbf{p})}{M_{\mathrm{HF}}(\mathbf{p})} = \frac{K_{\mathrm{M}}(T_{\mathrm{p}}\mathbf{p}+1)}{T_{\mathrm{M}}T_{\mathrm{p}}\mathbf{p}^{2} + T_{\mathrm{M}}\mathbf{p}+1},$$
 (2)

$$W_{\Omega}^{y}(p) = \frac{\Omega(p)}{U_{g}(p)} = \frac{k_{U}}{T_{M}p+1}.$$
 (3)

$$W_{\Omega}^{\rm B}(p) = \frac{\Omega(p)}{M_{\rm HF}(p)} = \frac{K_{\rm M}}{T_{\rm M}p+1}.$$
 (4)

где: Н

 $K_{\rm M} \! = \! R_{\rm N} \! / \! \left({\rm C_e} \Phi \right)^2$ - коэффициент передачи двигателя по возмущению;

 $k_{\rm U} = 1/k_{\rm e} = 1/({\rm C_e}\Phi)$ — коэффициент передачи двигателя по управляющему воздействию;

 $T_{\rm M} = J_{\rm g} R_{\rm g}/({\rm C_e} \Phi)^2$ –электромеханическая постоянная времени ЭП; $T_{\rm 9} = L_{\rm g}/R_{\rm g}$ – электромагнитная постоянная времени ЭП.

Номер ответа	Номер формулы
1	1
2	2
3	3
4	4

Тест 26: Укажите номер формулы (1, 2, 3 или 4), передаточной функции ЭП постоянного тока по возмущению с учетом электромагнитых переходных процессов при условии, что выходной координатой является угол поворота вала двигателя Укажите номер формулы (1, 2, 3 или 4), передаточной функции позиционного ЭП постоянного тока по возмущению с учетом электромагнитых переходных процессов.

$$W_{\varphi}^{y}(p) = \frac{\varphi(p)}{U_{g}(p)} = \frac{k_{U}}{(T_{M}T_{g}p^{2} + T_{M}p + 1)p};$$
(1)

ОПК-3.У.1

$$W_{\varphi}^{B}(p) = \frac{\varphi(p)}{M(p)} = \frac{K_{M}(T_{9}p+1)}{(T_{M}T_{9}p+T_{M}p+1)p}.$$
 (2)

$$W_{\varphi}^{y}(p) = \frac{\varphi(p)}{U_{\sigma}(p)} = \frac{k_{U}}{(T_{M}p+1)p};$$
 (3)

$$W_{\varphi}^{\text{B}}(p) = \frac{\varphi(p)}{M(p)} = \frac{K_{\text{M}}}{(T_{\text{M}}p+1)p}.$$
 (4)

где:

 $K_{\rm M} = R_{\rm M}/({\rm C_e}\Phi)^2$ - коэффициент передачи двигателя по возмущению;

 $k_{\rm U}=1/k_{\rm e}=1/({\rm C_e}\Phi)$ — коэффициент передачи двигателя по управляющему воздействию;

 $T_{\rm M} = J_{\rm g} R_{\rm g} / ({\rm C_e \Phi})^2$ —электромеханическая постоянная времени ЭП; $T_{\rm h} = L_{\rm g} / R_{\rm g}$ — электромагнитная постоянная времени ЭП.

Номер ответа	Номер формулы
1	1
2	2
3	3
4	4

Тест 27: Укажите номер формулы (1, 2, 3 или 4), передаточной функции ЭП постоянного тока по возмущению без учет электромагнитых переходных процессов при условии, что выходной координатой является угол поворота вала двигателя

ОПК-4.3.1

$$W_{\varphi}^{y}(p) = \frac{\varphi(p)}{U_{g}(p)} = \frac{k_{U}}{(T_{M}T_{2}p^{2} + T_{M}p + 1)p};$$
(1)

$$W_{\phi}^{B}(p) = \frac{\phi(p)}{M(p)} = \frac{K_{M}(T_{9}p+1)}{(T_{M}T_{9}p+T_{M}p+1)p}.$$
 (2)

$$W_{\varphi}^{y}(p) = \frac{\varphi(p)}{U_{g}(p)} = \frac{k_{U}}{(T_{M}p+1)p};$$
 (3)

$$W_{\varphi}^{\text{B}}(p) = \frac{\varphi(p)}{M(p)} = \frac{K_{\text{M}}}{(T_{\text{M}}p+1)p}.$$
 (4)

где:

 $K_{\rm M} = R_{\rm M} / ({\rm C_e} \Phi)^2$ - коэффициент передачи двигателя по возмущению;

 $k_{\rm U} = 1/k_{\rm e} = 1/({\rm C_e} \Phi)$ — коэффициент передачи двигателя по управляющему воздействию;

 $T_{\rm M} = J_{\rm R} R_{\rm R}/({\rm C_e}\Phi)^2$ –электромеханическая постоянная времени ЭП; $T_{\rm 9} = L_{\rm R}/R_{\rm R}$ – электромагнитная постоянная времени ЭП.

Номер ответа	Номер формулы
1	1
2	2
3	3
4	4

Тест28: Укажите номер формулы (1, 2, 3 или 4), передаточной функции асинхронного ЭП при управлении по каналу напряжения без учета электромагнитых переходных процессов.

ОПК-4.У.1

$$W_{\Omega}^{y}(p) = \frac{\Delta\Omega(p)}{\Delta U_{1}(p)} = \frac{k_{u}}{T_{M}p + 1},$$
(1)

$$W_{\Omega}^{y}(p) = \frac{\Omega(p)}{f(p)} = \frac{k_{f}}{T_{M}p+1}.$$

$$W_{\beta}^{y}(p) = \frac{\beta(p)}{\alpha(p)} = \frac{T_{M}p}{T_{L}p+1}.$$
(2)

$$W_{\beta}^{y}(p) = \frac{\beta(p)}{\gamma(p)} = \frac{T_{M}p}{T_{M}p+1}.$$
 (4)

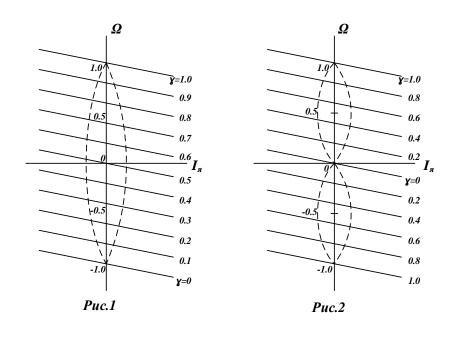
Номер ответа	Номер формулы
1	1
2	2
3	3
4	4

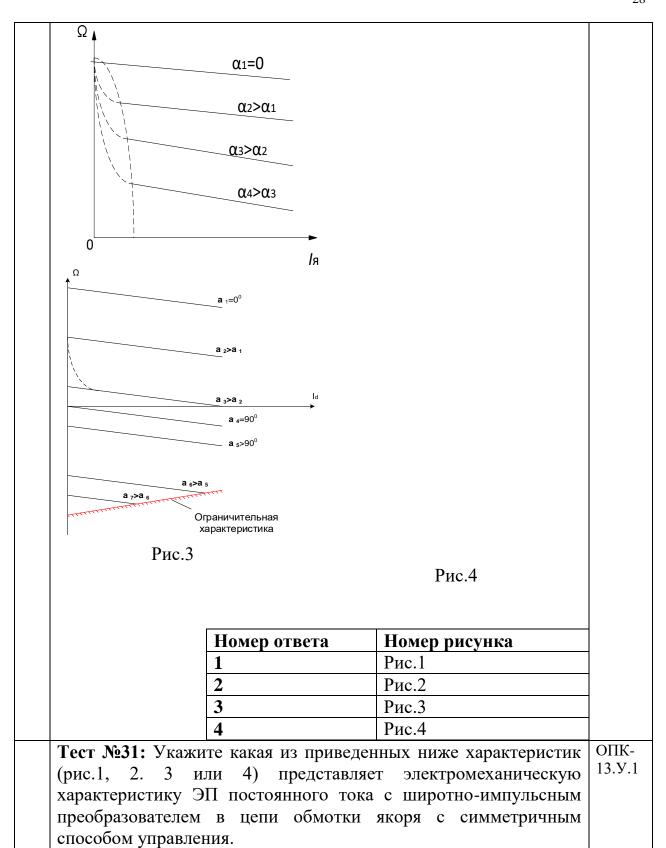
Тест 29: Укажите номер формулы (1, 2, 3 или 4), передаточной функции асинхронного ЭП при управлении по каналу частоты без учета электромагнитых переходных процессов.

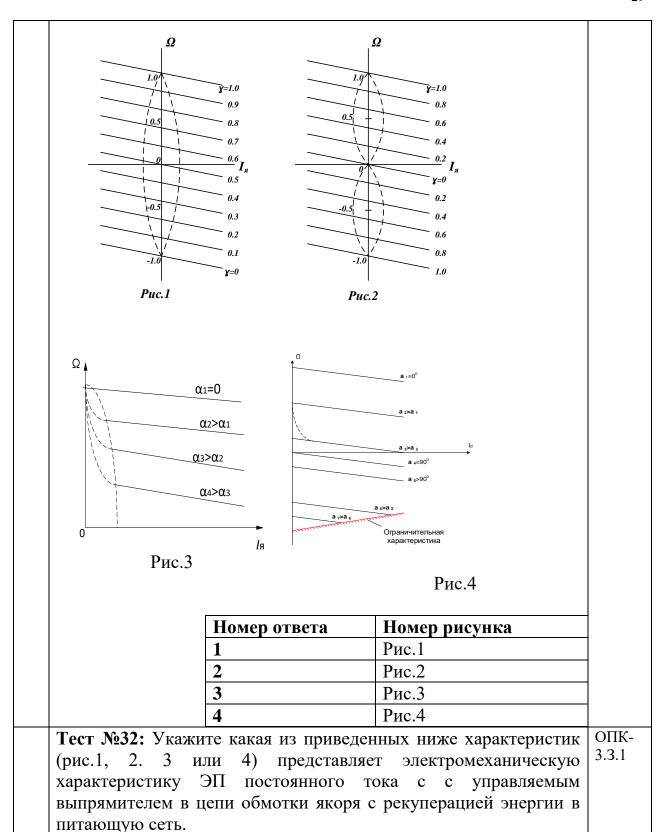
ОПК-4.В.1

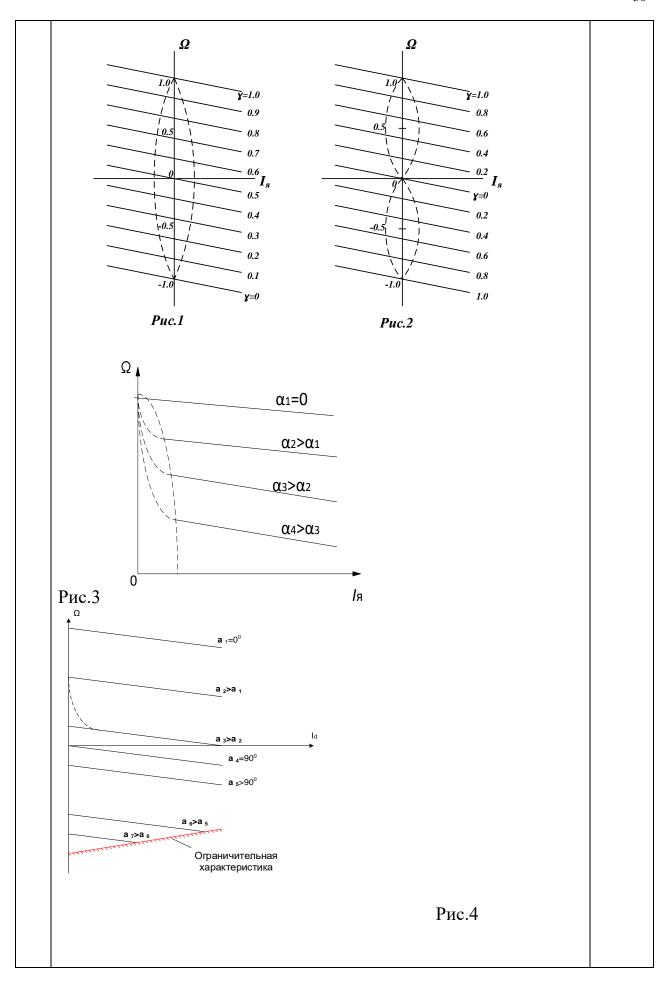
$$W_{\Omega}^{y}(p) = \frac{\Delta\Omega(p)}{\Delta U_{1}(p)} = \frac{k_{u}}{T_{M}p+1},$$
(1)

$$W_{\Omega}^{y}(p) = \frac{\Omega(p)}{f(p)} = \frac{k_{f}}{T_{M}p+1}.$$


$$W_{\beta}^{y}(p) = \frac{\beta(p)}{\alpha(p)} = \frac{T_{M}p}{T_{M}p+1}.$$
(2)


$$W_{\beta}^{y}(p) = \frac{\beta(p)}{\gamma(p)} = \frac{T_{M}p}{T_{M}p+1}.$$
 (4)


Номер ответа	Номер формулы
1	1
2	2
3	3
4	4


Тест №30: Укажите какая из приведенных ниже характеристик (рис.1, 2. 3 или 4) представляет электромеханическую характеристику ЭП постоянного тока с широтно-импульсным преобразователем в цепи обмотки якоря с несимметричным способом управления.

ОПК-12.В.1

	Номер ответа	Номер рисунка	
	1	Рис.1	
	2	Рис.2	
	3	Рис.3	
	4	Рис.4	
		ных ниже характеристик	ОПК-
(рис.1, 2. 3 и		т электромеханическую	3.У.1
		с широтно-импульсным	
		коря с несимметричным	
способом управлен	. RИН		
Ω		Ω	
	10/		
1.0	γ=1.0 1.0/	¥=1.0	
	0.9	0.8	
10.5	0.8	0.6	
		/ 0.2	
	I_{g} I_{g} I_{g}	$\gamma = 0$ $I_{\mathcal{A}}$	
1-0.5	0.4	0.2	
1-0.3	0.3	0.4	
	0.2	0.6	
-1.0		1.0	
Puc.1	Puc		
	1 uc	.2	
	Ω		
		$a_1 = 0^0$	
Ω		a ₂ >a ₁	
α1=) \		
		a ₃>a ₂	
α2>	να1	a ₄ =90°	
α3>0	12	a ₅ >90 ⁰	
α4>	PQ3 a 7>a 6	a 6>a 5	
0	mannaman	Ограничительная	
	lя	характеристика	
Рис.3			
	Цомор отрота	Номор ризунка	
	Номер ответа 1	Номер рисунка Рис.1	-
	2	Рис.2]
	3	Рис.3 Рис.4	-
	"	1 nc.7	<u> </u>

4 - $U_{\text{вых.cp}} = U_{\text{вх}} / (1 - \gamma)$. Ответ:	мер формулы
1 1	мер формулы
1 1	
2	
3 2	
<mark>4</mark> <mark>4</mark>	ОП
$3 - U_{\text{вых.cp}} = U_{\text{вх}} (1 - \gamma) / k_{\text{тр}};$ $4 - U_{\text{вых.cp}} = U_{\text{вх}} / [(1 - \gamma) k_{\text{тр}}].$ Ответ:	мер формулы
1	T-F V
$\begin{array}{c c} 1 & 1 \\ \hline 2 & 3 \end{array}$	T-F /
<u> </u>	
$\frac{1}{2}$ 3	
2 3 3 2 4 4	
$\frac{1}{2}$ 3	орой следует П, выполненного по 3.У
2 3 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	орой следует П, выполненного по 3.У
2 3 3 2 4 4 Тест №36: Укажите формулу (1, 2, 3 или 4), по кот рассчитывать величину выходного напряжения ВИ схеме ДППН II: 1 - U _{вых.ср} =U _{вх} //k _{тр} ; гд 2 - U _{вых.ср} =U _{вх} /(γ k _{тр}); гд 3 - U _{вых.ср} =U _{вх} /(γ k _{тр}); гд 4 - U _{вых.ср} =U _{вх} /[(1-γ)/k _{тр}]. Ответ:	орой следует ОП, выполненного по 3.У е k _{тp} =W1/W2;
2 3 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	орой следует ОП, выполненного по 3.У е k _{тp} =W1/W2;

1 11 11/1.		L W/1/W/2.	
$ \begin{vmatrix} 1 - U_{\text{BMX.cp}} = U_{\text{BX}} \gamma / k_{\text{Tp}}; \\ 2 - U_{\text{BMX.cp}} = U_{\text{BX}} / (\gamma k_{\text{Tp}}); \end{vmatrix} $	где	$k_{Tp}=W1/W2;$	
$3 - U_{\text{BMX.cp}} = U_{\text{BX}} (\gamma k_{\text{Tp}}),$			
$4 - U_{\text{BMX.cp}} = U_{\text{BX}}/[(1-\gamma) \text{ k}]$			
Ответ:	-TpJ·		
Olbei.			
	Номер ответа	Номер формулы	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	
	2	3	
	3	2	
	4	4	
	-	<u> </u>	
Тест №38: Укажите (формулу (1, 2, 3 или 4), п	о которой слелует	ОПК-
		ия ВИП, выполненного по	4.У.1
схеме ООП:	J , , , 1	,	
$1 - U_{\text{вых.cp}} = U_{\text{вх}} \gamma / k_{\text{тр}};$	где	$k_{Tp}=W1/W2;$	
2 - $U_{\text{BMX.cp}} = U_{\text{BX}} / (\gamma k_{\text{Tp}});$		•	
3 - $U_{\text{BMX.cp}} = U_{\text{BX}} (1 - \gamma) / k_{\text{Tp}}$	•		
4 - $U_{\text{вых.cp}} = U_{\text{вх}} \gamma / [(1 - \gamma)]$			
Ответ:	•		
	Номер ответа	Номер формулы	
	1	1	
	2	3	
	3	2	
	<mark>4</mark>	<mark>4</mark>	
		тя расчета коэффициента	ОПК-
полезного действия Е	ЗИП η:		4.B.1
$1 - \eta = P_{HI}/P_{BX};$			
$2 - \eta = P_{BX}/P_{HF};$			
$3 - \eta = 1 - P_{HI}/P_{BX}$.			
$4 - \eta = 1 - P_{BX} / P_{HF};$			
Отрет			
Ответ:	Номер ответа	Номер формулы	
Ответ:	Номер ответа 1	Номер формулы 1	
Ответ:	1	1	
Ответ:	1 2	3	
Ответ:	1	1	
	1 2 3 4	1 3 2 4	ОПК-
Тест №40: Укажите (1 2 3 4 формулу (1, 2, 3 или 4) дл	1 3 2 4 ия расчета требуемого общего	ОПК- 12.В.1
Тест №40: Укажите с коэффициента усилен	1 2 3 4 формулу (1, 2, 3 или 4) дл	1 3 2 4 ия расчета требуемого общего	ОПК- 12.В.1
Тест №40: Укажите с коэффициента усилен 1 – K=ΔU _{нг. раз} /ΔU _{нг. за}	1 2 3 4 формулу (1, 2, 3 или 4) дл ния замкнутой по напряж _{мк} -1;	1 3 2 4 ия расчета требуемого общего	
Тест №40: Укажите с коэффициента усилен 1 – K=ΔU _{HΓ. раз} /ΔU _{HΓ. 3а} 2 - K=U _{HΓ. HOM} /U _{УПР. МАКС}	1 2 3 4 формулу (1, 2, 3 или 4) дл ния замкнутой по напряж _{мк} -1; -1;	1 3 2 4 ия расчета требуемого общего	
Тест №40: Укажите с коэффициента усилен 1 — К=ΔU _{HГ. раз} /ΔU _{HГ. за} 2 - К=U _{HГ. ном} /U _{УПР. макс} 3 - К=U _{HГ. ном} /U _{ОП. макс}	1 2 3 4 формулу (1, 2, 3 или 4) дл ния замкнутой по напряж -1; -1; -1;	1 3 2 4 ия расчета требуемого общего	
Тест №40: Укажите с коэффициента усилен 1 – K=ΔU _{HΓ. раз} /ΔU _{HΓ. 3а} 2 - K=U _{HΓ. HOM} /U _{УПР. МАКС}	1 2 3 4 формулу (1, 2, 3 или 4) дл ния замкнутой по напряж -1; -1; -1;	1 3 2 4 ия расчета требуемого общего	

	Номер ответа	Номер формулы	
	1	1	
	2	3	
	3	2	
	4	4	
усиления силовой 1 - k _{пр} =E _{пр} /U _{упр. мак} 2 - k _{пр} =E _{пр} /U _{нг. мак} 3 - k _{пр} =E _{пр} /U _{вх. ном} ; 4 - k _{пр} =U _{нг} /U _{упр. мах} Ответ: Те ст №42:Укажи	те формулу (1, 2, 3 или 4 схемы ВИП: кс; ; ; ; ;	Номер формулы 1 3 2 4 коэффициента передачи датчика по напряжению нагрузки:	ОПК- 13.У.1 ОПК- 3.3.1
$1 - k_{\text{ДП}} = U_{\text{H}\Gamma \text{ HOM}} / U_{\text{OCH}}$ $2 - k_{\text{ДП}} = U_{\text{BX HOM}} / U_{\text{OCH}}$	сн;		
	сн;		
$2 - k_{\text{дп}} = U_{\text{вх ном}}/U_{\text{ос}}$ $3 - k_{\text{дп}} = U_{\text{осн}}/U_{\text{упр}}$ $4 - k_{\text{дп}} = U_{\text{осн}}/U_{\text{нг}}$; ,	Номер формулы	
$2-k_{ m дп} = U_{ m BX\ HOM}/U_{ m oc}$ $3-k_{ m дп} = U_{ m och}/U_{ m ynp}$. $4-k_{ m дn} = U_{ m och}/U_{ m HT}$	Номер ответа	Номер формулы 1	
$2-k_{ m дп} = U_{ m BX\ HOM}/U_{ m oc}$ $3-k_{ m дп} = U_{ m och}/U_{ m ynp}$. $4-k_{ m дn} = U_{ m och}/U_{ m HT}$; ,	Номер формулы 1 3	
$2-k_{ m дп} = U_{ m BX\ HOM}/U_{ m oc}$ $3-k_{ m дп} = U_{ m och}/U_{ m ynp}$. $4-k_{ m дn} = U_{ m och}/U_{ m HT}$	Номер ответа 1	1	
$2 - k_{дп} = U_{вх ном}/U_{ос}$ $3 - k_{дп} = U_{осн}/U_{упр}$ $4 - k_{дп} = U_{осн}/U_{HT}$ Ответ:	Номер ответа 1 2 3 4	1 3 2 4	
2 - k _{дп} = U _{вх ном} /U _{ос} 3 - k _{дп} = U _{осн} / U _{упр} 4 - k _{дп} =U _{осн} / U _{нг} Ответ: Тест №43: Укажи диапазон регулиро схеме ОППНІІ род 1 - U _{вых} >U _{вх} ; 2 - U _{вых} <- U _{вх} ; 3 - U _{вых} =U _{вх} ;	Номер ответа 1 2 3 4 ите по какой формуле 1, 2 ования выходного напрях	1 3 2 4 , 3 или 4 определятся возможный жения ВИП, выполненного по	ОПК-3.У.1
2 - k _{дп} = U _{вх ном} /U _{ос} 3 - k _{дп} = U _{осн} / U _{упр} 4 - k _{дп} = U _{осн} / U _{нт} Ответ: Тест №43: Укажит диапазон регулиро схеме ОППНІІ род 1 - U _{вых} >U _{вх} ; 2 - U _{вых} <- U _{вх} ; 3 - U _{вых} может бытт	Номер ответа 1 2 3 4 ите по какой формуле 1, 2 ования выходного напряхода:	1 3 2 4 , 3 или 4 определятся возможный жения ВИП, выполненного по	
2 - k _{дп} = U _{вх ном} /U _{ос} 3 - k _{дп} = U _{осн} / U _{упр} 4 - k _{дп} =U _{осн} / U _{нт} Ответ: Тест №43: Укажит диапазон регулиро схеме ОППНІІ род 1 - U _{вых} >U _{вх} ; 2 - U _{вых} <- U _{вх} ; 3 - U _{вых} = U _{вх} ; 4 - U _{вых} может быт	Номер ответа 1 2 3 4 ите по какой формуле 1, 2 ования выходного напрязода:	1 3 2 4 4 , 3 или 4 определятся возможный жения ВИП, выполненного по	
2 - k _{дп} = U _{вх ном} /U _{ос} 3 - k _{дп} = U _{осн} / U _{упр} 4 - k _{дп} = U _{осн} / U _{нт} Ответ: Тест №43: Укажит диапазон регулиро схеме ОППНІІ род 1 - U _{вых} >U _{вх} ; 2 - U _{вых} = U _{вх} ; 3 - U _{вых} = U _{вх} ; 4 - U _{вых} может быт	Номер ответа 1 2 3 4 ите по какой формуле 1, 2 ования выходного напрязода:	1 3 2 4 4 , 3 или 4 определятся возможный жения ВИП, выполненного по	
2 - k _{дп} = U _{вх ном} /U _{ос} 3 - k _{дп} = U _{осн} / U _{упр} . 4 - k _{дп} = U _{осн} / U _{нг} Ответ: Ответ: 1 - U _{вых} >U _{вх} ; 2 - U _{вых} = U _{вх} ; 3 - U _{вых} = U _{вх} ; 4 - U _{вых} может быт	Номер ответа 1 2 3 4 ите по какой формуле 1, 2 ования выходного напряхода: ть как больше, так и мень Номер ответа 1	1 3 2 4 4 3 или 4 определятся возможный жения ВИП, выполненного по ше U _{вх} . Номер формулы 1	
2 - k _{дп} = U _{вх ном} /U _{ос} 3 - k _{дп} = U _{осн} / U _{упр} 4 - k _{дп} = U _{осн} / U _{нт} Ответ: Тест №43: Укажит диапазон регулиро схеме ОППНІІ род 1 - U _{вых} >U _{вх} ; 2 - U _{вых} <- U _{вх} ; 3 - U _{вых} может бытт	Номер ответа 1 2 3 4 ите по какой формуле 1, 2 ования выходного напрязода: ть как больше, так и мень Номер ответа 1 2	1 3 2 4 4 , 3 или 4 определятся возможный жения ВИП, выполненного по ше U _{вх} . Номер формулы 1 3	
2 - k _{дп} = U _{вх ном} /U _{ос} 3 - k _{дп} = U _{осн} / U _{упр} . 4 - k _{дп} =U _{осн} / U _{нг} Ответ: Ответ: Тест №43: Укажит диапазон регулиро схеме ОППНІІ ро, 1 - U _{вых} >U _{вх} ; 2 - U _{вых} <-U _{вх} ; 3 - U _{вых} =U _{вх} ; 4 - U _{вых} может бытт Ответ:	Номер ответа 1 2 3 4 ите по какой формуле 1, 2 ования выходного напряхода: Тъ как больше, так и мень Номер ответа 1 2 3 4	1 3 2 4 4 , 3 или 4 определятся возможный жения ВИП, выполненного по ше U _{вх} . Номер формулы 1 3 2 2	3.У.1
2 — k _{дп} = U _{вх ном} /U _{ос} 3 — k _{дп} = U _{осн} / U _{упр} . 4 -k _{дп} =U _{осн} / U _{нг} Ответ: Тест №43: Укажи диапазон регулиро схеме ОППНП ро, 1 - U _{вых} >U _{вх} ; 2 - U _{вых} >U _{вх} ; 3 - U _{вых} =U _{вх} ; 4 - U _{вых} может быт Ответ: Тест №44: Укажи	Номер ответа 1 2 3 4 те по какой формуле 1, 2 ования выходного напряхода: Ть как больше, так и мень Номер ответа 1 2 3 4 те по какой формуле 1, 2	1 3 2 4 , 3 или 4 определятся возможный жения ВИП, выполненного по ше U _{вх} . Номер формулы 1 3 2 4	

- 1 $U_{\text{BMX}} > U_{\text{BX}}$;
- $2 U_{\text{BMX}} < U_{\text{BX}};$
- 3 $U_{\text{вых}}=U_{\text{вх}}$;
- 4 $U_{\text{вых}}$ может быть как больше, так и меньше $U_{\text{вх}}$.

Ответ:

Номер ответа	Номер формулы
1	<mark>2</mark>
2	3
3	1
4	4

Тест №45: Укажите по какой формуле 1, 2, 3 или 4 определятся возможный диапазон регулирования выходного напряжения ВИП, выполненного по схеме ДППНІ:

- 1 $U_{\text{вых}} > U_{\text{вх}}$;
- $2 U_{\text{вых}} < U_{\text{вх}}$:
- 3 $U_{вых} = U_{вх}$;
- 4 $U_{\text{вых}}$ может быть как больше, так и меньше $U_{\text{вх}}$.

Номер ответа	Номер формулы
1	1
2	3
3	2
4	4

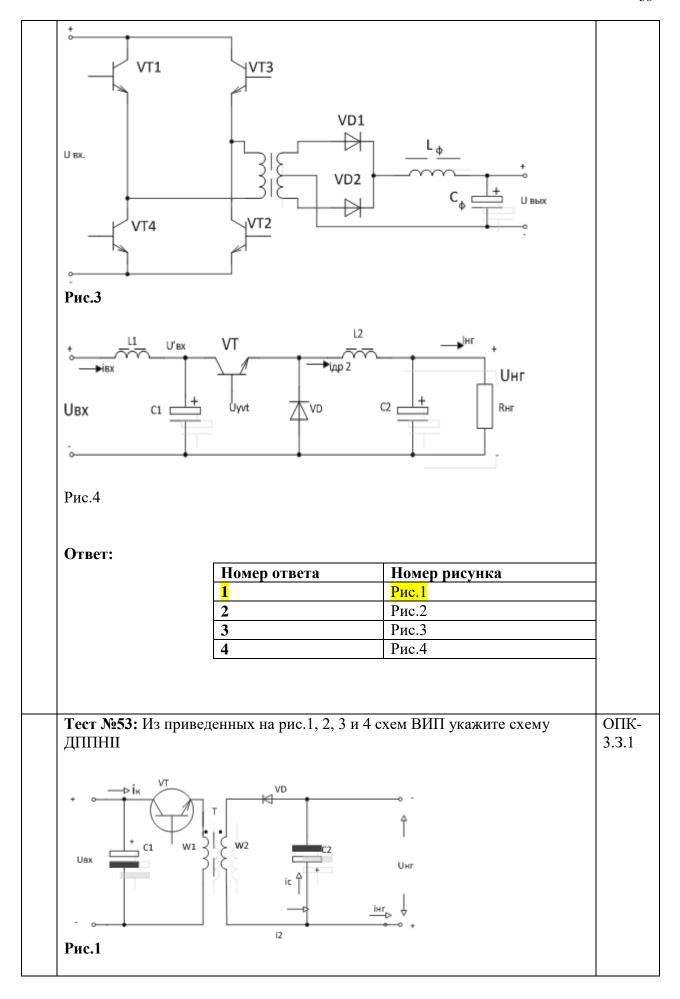
Тест №46: Укажите по какой формуле 1, 2, 3 или 4 определятся возможный диапазон регулирования выходного напряжения ВИП, выполненного по схеме ДППН II:

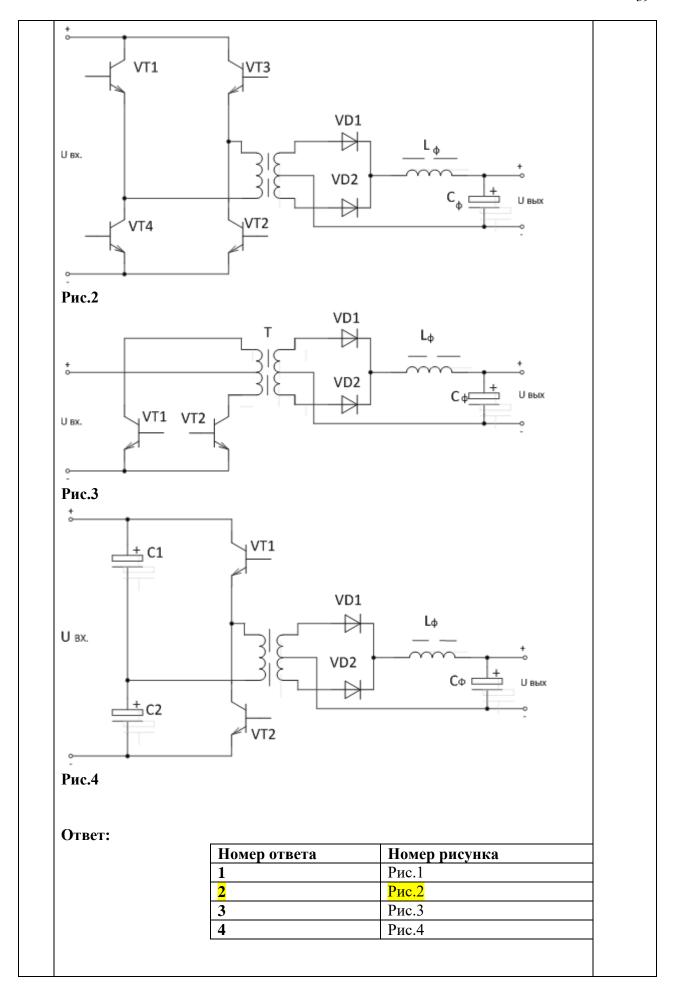
ОПК-4.У.1

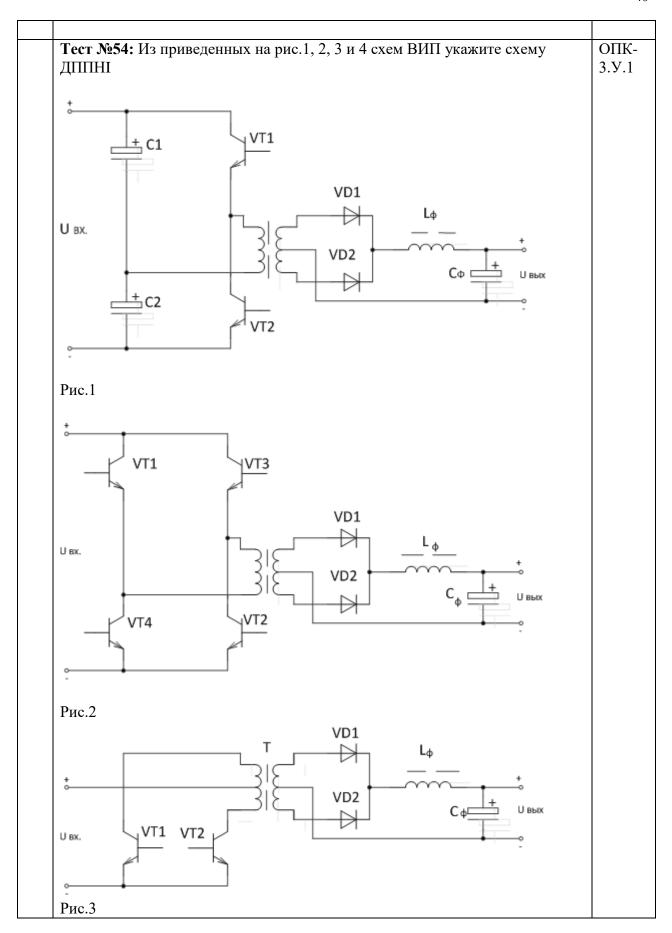
- 1 $U_{\text{вых}} > U_{\text{вх}}$;
- 2 $U_{\text{вых}} < U_{\text{вх}}$;
- 3 $U_{вых} = U_{вх}$;
- 4 $U_{\text{вых}}$ может быть как больше, так и меньше $U_{\text{вх}}$.

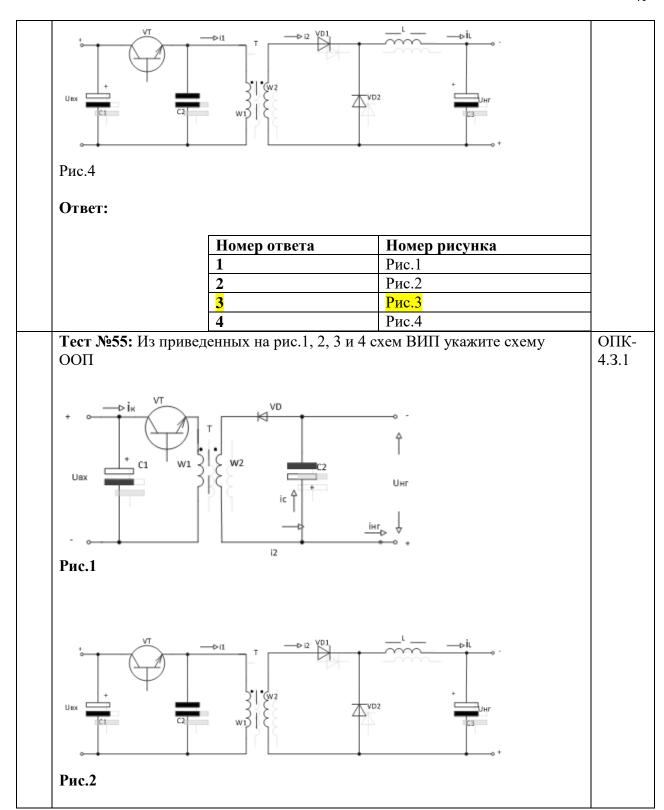
Ответ:

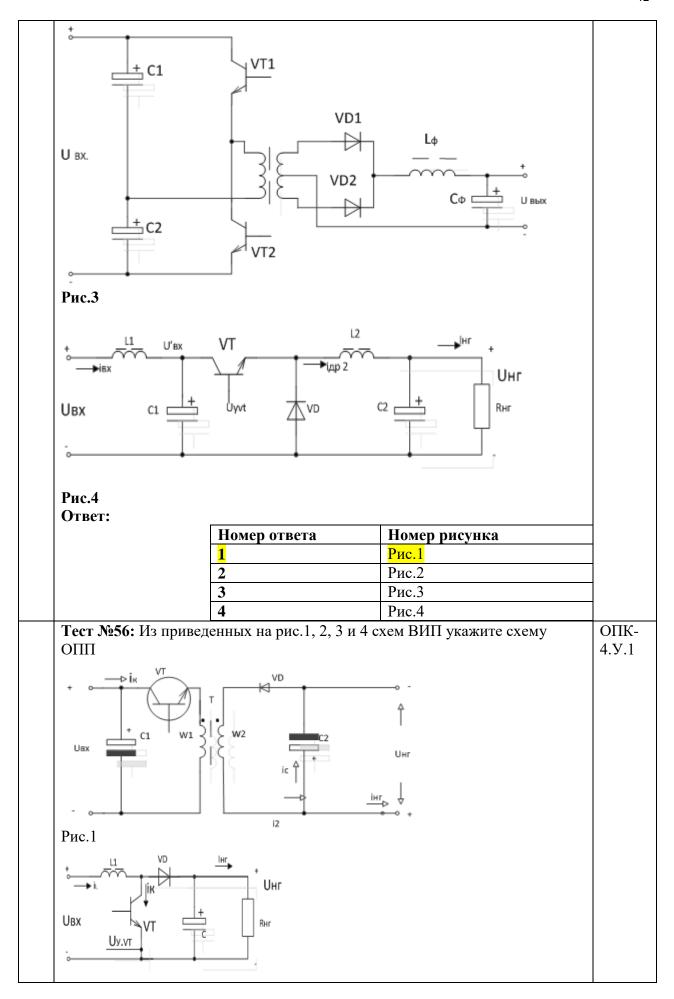
Номер ответа	Номер формулы
1	1
2	3
3	2
4	4

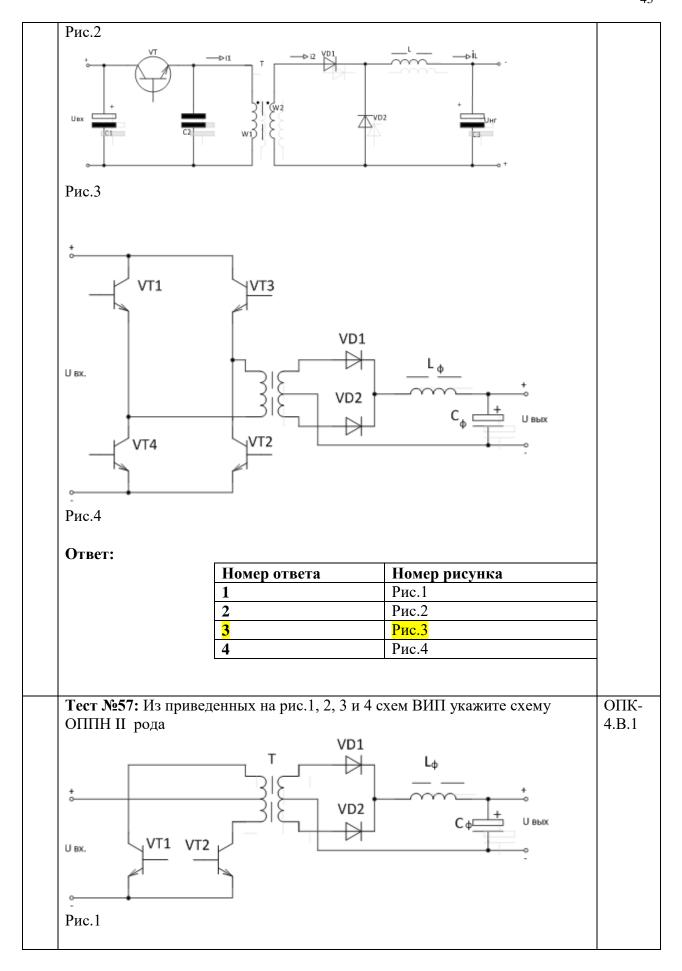

Тест№47: Укажите по какой формуле 1, 2, 3 или 4 определятся возможный диапазон регулирования выходного напряжения ВИП, выполненного по схемеДППН III:

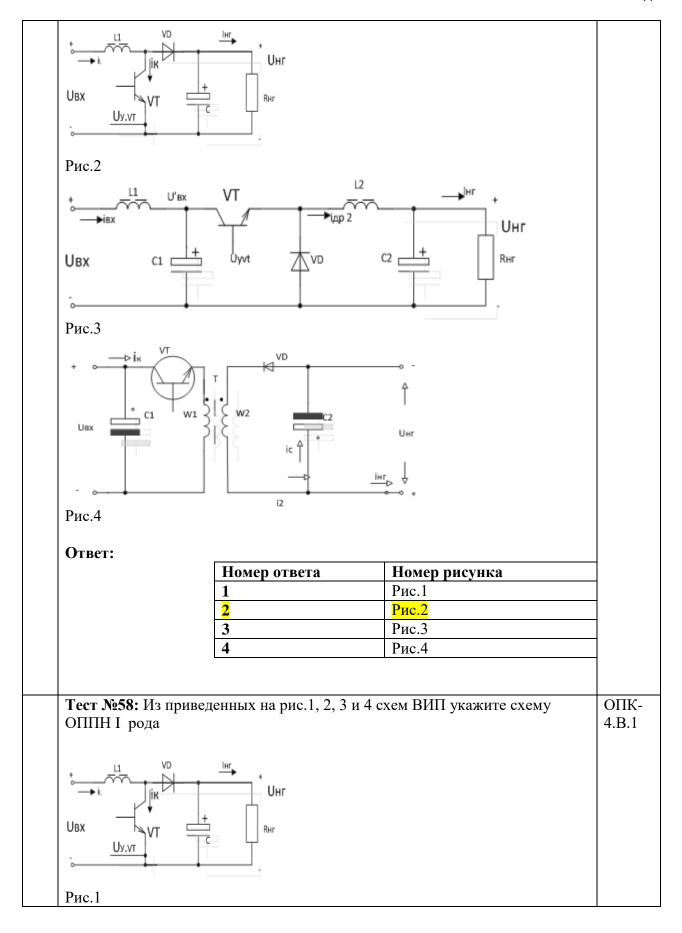

ОПК-4.В.1

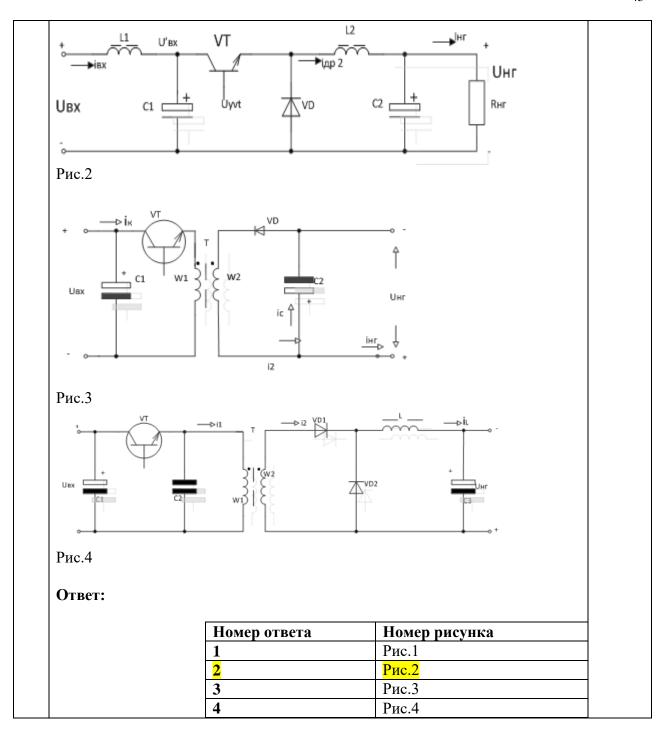

- 1 $U_{\text{вых}} > U_{\text{вх}}$;
- 2 $U_{\text{BMX}} < U_{\text{BX}}$;
- $3 U_{\text{BMX}} = U_{\text{BX}}$;


Ответ:			
	Номер ответа	Номер формулы	
	1	1	
	2	3	
	3	2	
	<mark>4</mark>	4	
диапазон регули схеме ООП: $1 - U_{\text{вых}} > U_{\text{вх}};$ $2 - U_{\text{вых}} < U_{\text{вх}};$ $3 - U_{\text{вых}} = U_{\text{вх}};$		L , 3 или 4 определятся возможный жения ВИП, выполненного по ше $U_{\rm Bx}$.	OI 12.
Orber:	Т	T .	
	Номер ответа	Номер формулы	
	2	3	
	4	3	
	3	2	
	3 4	4	
диапазон регули схеме ОПП: $1 - U_{\text{вых}} > U_{\text{вх}};$ $2 - U_{\text{вых}} < U_{\text{вх}};$ $3 - U_{\text{вых}} = U_{\text{вх}};$ $4 - U_{\text{вых}}$ может бы	4 ките по какой формуле 1, 2	4 2, 3 или 4 определятся возможный жения ВИП, выполненного по	OI 13.
диапазон регули схеме ОПП: $1 - U_{\text{вых}} > U_{\text{вх}};$ $2 - U_{\text{вых}} < U_{\text{вх}};$ $3 - U_{\text{вых}} = U_{\text{вх}};$	ите по какой формуле 1, 2 прования выходного напряж шть как больше, так и мень	4 , 3 или 4 определятся возможный жения ВИП, выполненного по ше $U_{\rm Bx}$.	
диапазон регули схеме ОПП: $1 - U_{\text{вых}} > U_{\text{вх}};$ $2 - U_{\text{вых}} < U_{\text{вх}};$ $3 - U_{\text{вых}} = U_{\text{вх}};$ $4 - U_{\text{вых}}$ может бы	4 ките по какой формуле 1, 2 грования выходного напрях	4 2, 3 или 4 определятся возможный жения ВИП, выполненного по ше $U_{\text{вx}}$.	
диапазон регули схеме ОПП: $1 - U_{\text{вых}} > U_{\text{вх}};$ $2 - U_{\text{вых}} < U_{\text{вх}};$ $3 - U_{\text{вых}} = U_{\text{вх}};$ $4 - U_{\text{вых}}$ может бы	4 ките по какой формуле 1, 2 крования выходного напряж ыть как больше, так и мень Номер ответа 1	4 , 3 или 4 определятся возможный жения ВИП, выполненного по ше $U_{\rm Bx}$.	
диапазон регули схеме ОПП: $1 - U_{\text{вых}} > U_{\text{вх}};$ $2 - U_{\text{вых}} < U_{\text{вх}};$ $3 - U_{\text{вых}} = U_{\text{вх}};$ $4 - U_{\text{вых}}$ может бы	ите по какой формуле 1, 2 прования выходного напряж шть как больше, так и мень	4 2, 3 или 4 определятся возможный жения ВИП, выполненного по ше U _{вх} . Номер формулы 1	
диапазон регули схеме ОПП: $1 - U_{\text{вых}} > U_{\text{вх}};$ $2 - U_{\text{вых}} < U_{\text{вх}};$ $3 - U_{\text{вых}} = U_{\text{вх}};$ $4 - U_{\text{вых}}$ может бы	ите по какой формуле 1, 2 прования выходного напряжить как больше, так и мень Номер ответа 1 2	4 2, 3 или 4 определятся возможный жения ВИП, выполненного по ше U _{вх} . Номер формулы 1 3	


	1	Номер формулы 1	
	2	3	
	3	2	
	4	4	
		, 3 или 4 следует рассчитывать	C
	напряжения ВИП, вы	полненного по схеме ОППН I:	3
$1 - U_{\text{BMX.cp}} = U_{\text{BX}} \gamma;$			
2 - $U_{BMX,cp} = U_{BX}/\gamma$;			
3 - $U_{\text{BMX.cp}} = U_{\text{BX}}(1-\gamma);$ 4 - $U_{\text{BMX.cp}} = U_{\text{BX}}/(1-\gamma).$			
Ответ:			
012011			
	Номер ответа	Номер формулы	
	1	1	
	2	3 2	
	3	4	
	7	1 7	(
Тост №52. Из прива	панни из вис 1 2 3 и	и 4 схем ВИП укажите схему	4
	денных на рис.1, 2, 3 и	14 схем Бинг укажите схему	-
ДППНІІІ			
÷ +			
	VT1		
<u></u> ← C1	V11		
	6 1		
	VD	1	
		L ₀	
I I		─	
U BX.		· — —	
U BX.]] [, , , ,		
U BX.	VD2	2	
U вх.	VDZ		
-	VDZ	2	
U вх.		2	
-	VD2	2	
+ C2		2	
-		2	
+ C2	VT2	Сф Н О Вых	
+ C2		Сф + U вых	
+ C2	VT2 VD	Сф Н О Вых	
+ C2	VT2 VD	Сф	
+ C2	VT2 VD	Сф	
Puc.1	VT2 VD VD	Сф	
+ C2	VT2 VD VD	Сф	
Puc.1	VT2 VD VD	Сф	
Puc.1	VT2 VD VD	Сф	
Puc.1	VT2 VD VD	Сф	







Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

	1 1	
№ п/п	Перечень контрольных работ	
	Не предусмотрено	•

10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

11. Методические указания для обучающихся по освоению дисциплины

11.1. Методические указания для обучающихся по освоению лекционного материала

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

Раздел 1. Элементная база полупроводниковых преобразователей (ППП).

Основы принципа работы и вольт- амперные характеристики диодов, тиристоров, симисторов, транзисторов и запираемых по цепи управления тиристоров.

Раздел 2. Основы проектирования реверсивных схем управляемых выпрямителей

В этом разделе излагаются вопросы устройства, принципа работы, однофазных и многофазных выпрямителей, выполняется вывод основных расчетных соотношений для рассматриваемых схем выпрямления, выполняется анализ характеристик тиристорных выпрямителей и активных выпрямителей. Даются методики расчета выпрямителей и сглаживающих фильтров.

Раздел 3. Широтно-импульсные преобразователи электропривода постоянного тока. В этом разделе излагаются вопросы:

- Силовые схемы и способы управления. Расчет индуктивности сглаживающего дросселя;
 - Регулировочные и внешние характеристики реверсивных ШИП;
 - Расчет загрузки полупроводниковых вентилей по току и напряжению.

Раздел 4. Замкнутые ЭМТС. В этом разделе излагаются вопросы:

- Расчета замкнутой по току ЭМТС;
- Расчета замкнутой по току и скорости ЭМТС.

Раздел 5. Инверторы. В этом разделе излагаются вопросы:

- Устройство, принцип работы, вывод основных расчетных соотношений инверторов напряжения;
- Методика расчета трехфазных транзисторных инверторов напряжения с ШИМ;

- Зависимые инверторы.

Раздел 6. Преобразователи частоты. В этом разделе излагаются вопросы:

- Преобразователи частоты с управляемым тиристорным выпрямителем;
- Преобразователь частоты с активным выпрямителем.

Раздел 7. Вторичные источники питания (ВИП) для систем управления ЭМТС, в этом разделе излагаются вопросы:

- Бестрансформаторные ВИП;
- ВИП с трансформаторной связью цепи питания и цепи нагрузки;
- Оценка динамических характеристик стабилизаторов напряжения.

Раздел 8. Зарядно-разрядные устройства (ЗРУ) источников бесперебойного питания. В этом разделе излагаются вопросы:

- Тиристорные ЗРУ;
- Транзисторные ЗРУ с трансформаторной связью входной и выходной цепей.

11.2. Методические указания для обучающихся по участию в семинарах

Основной целью для обучающегося является систематизация и обобщение знаний по изучаемой теме, разделу, формирование умения работать с дополнительными источниками информации, сопоставлять и сравнивать точки зрения, конспектировать прочитанное, высказывать свою точку зрения и т.п. В соответствии с ведущей дидактической целью содержанием семинарских занятий являются узловые, наиболее трудные для понимания и усвоения темы, разделы дисциплины. Спецификой данной формы занятий является совместная работа преподавателя и обучающегося над решением поставленной проблемы, а поиск верного ответа строится на основе чередования индивидуальной и коллективной деятельности.

При подготовке к семинарскому занятию по теме прослушанной лекции необходимо ознакомиться с планом его проведения, с литературой и научными публикациями по теме семинара.

11.3. Методические указания для обучающихся по прохождению практических занятий приведены в «Методических указаниях по изучению дисциплины «Проектирование и эксплуатация полупроводниковых преобразователей для электромеханотронных систем», размещенных на электронном ресурсе каф. №32, а также в учебных пособиях в учебно-методических пособиях [1], [2], [3] и в методических указаниях к выполнению лабораторных работ [5], [6].

Практическое занятие является одной из основных форм организации учебного процесса, заключающаяся в выполнении обучающимися под руководством преподавателя комплекса учебных заданий с целью усвоения научно-теоретических основ учебной дисциплины, приобретения умений и навыков, опыта творческой деятельности.

Целью практического занятия для обучающегося является привитие обучающимся умений и навыков практической деятельности по изучаемой дисциплине.

Планируемые результаты при освоении обучающимся практических занятий:

- закрепление, углубление, расширение и детализация знаний при решении конкретных задач;
- развитие познавательных способностей, самостоятельности мышления, творческой активности;
- овладение новыми методами и методиками изучения конкретной учебной дисциплины;
- выработка способности логического осмысления полученных знаний для выполнения заданий;

- обеспечение рационального сочетания коллективной и индивидуальной форм обучения.
- 11.4. Методические указания для обучающихся по прохождению лабораторных работ приведены в «Методических указаниях по изучению дисциплины «Методических указаниях изучению дисциплины «Проектирование эксплуатация по полупроводниковых преобразователей ДЛЯ электромеханотронных систем», размещенных на электронном ресурсе каф. №32, а также в учебных пособиях в учебнометодических пособиях [1], [2], [3] и в методических указаниях к выполнению лабораторных работ [5], [6].

В ходе выполнения лабораторных работа обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом и относится к средствам, обеспечивающим решение следующих основных задач у обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задание и требования к проведению лабораторных работ приведены учебно-методических пособиях [1], [2] и в методических указаниях к выполнению лабораторных работ [5], [6].

Структура и форма отчета о лабораторной работе приведены в методических указаниях к выполнению лабораторных работ [5], [6].

Требования к оформлению отчета о лабораторной работе приведены в методических указаниях к выполнению лабораторных работ [5], [6].

11.5.Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий

уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихся являются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ (для обучающихся по заочной форме обучения).

11.6. Методические указания для обучающихся по прохождению курсового проектирования/выполнения курсовой работы

Курсовой проект/ работа проводится с целью формирования у обучающихся опыта комплексного решения конкретных задач профессиональной деятельности.

Курсовой проект/ работа позволяет обучающемуся:

- систематизировать и закрепить полученные теоретические знания и практические умения по профессиональным учебным дисциплинам и модулям в соответствии с требованиями к уровню подготовки, установленными программой учебной дисциплины, программой подготовки специалиста соответствующего уровня, квалификации;
- применить полученные знания, умения и практический опыт при решении комплексных задач, в соответствии с основными видами профессиональной деятельности по направлению/ специальности/ программе;
 - углубить теоретические знания в соответствии с заданной темой;
- сформировать умения применять теоретические знания при решении нестандартных задач;
- приобрести опыт аналитической, расчётной, конструкторской работы и сформировать соответствующие умения;
- сформировать умения работы со специальной литературой, справочной, нормативной и правовой документацией и иными информационными источниками;
- сформировать умения формулировать логически обоснованные выводы,
 предложения и рекомендации по результатам выполнения работы;
 - развить профессиональную письменную и устную речь обучающегося;
- развить системное мышление, творческую инициативу, самостоятельность, организованность и ответственность за принимаемые решения;
- сформировать навыки планомерной регулярной работы над решением поставленных задач.

Структура пояснительной записки курсовой работы / проекта

Пояснительная записка курсовой работы должна включать в себя следующие разделы:

- Цель проекта;
- -Исходные данные на проектирование;
- -Расчет силовой части преобразователя;
- -Выбор элементов силовой части преобразователя;

Расчет потерь мощности и КПД;

- -Тепловой расчет и выбор охладителя;
- -Разработка схемы управления и защиты;

- -Разработка математической модели проектируемого преобразователя;
- -Результаты исследования динамических характеристик спроектированного преобразователя;

-Заключение.

Требования к оформлению пояснительной записки курсовой работы / проекта

Пояснительная записка оформляется в соответствии с требованиями стандартов ГУАП к оформлению пояснительных записок курсовых работ.

Текст записки должен быть напечатан на листах формата А4 и сброшюрован.

11.7. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

Текущий контроль успеваемости проводится в течение семестра с использованием тестовых вопросов (табл.18) и оценки выполнения лабораторных работ, защиты отчетов, решении задач на практических занятиях. В конце семестра по результатам текущего контроля выставляется оценка, которая учитывается при выставлении оценки по результатам промежуточной аттестации.

11.8. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

– экзамен – форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Промежуточная аттестация проводится по вопросам, приведенным в таблице 15.

При оценке окончательных результатов обучения по дисциплине учитывается оценка по текущему контролю, а также отсутствие или наличие задолженности по лабораторным работам и практическим занятиям. При наличии задолженностей по лабораторным работам и практическим занятиям итоговая оценка снижается на 0,5 балла за каждую не выполненную и не защищенную лабораторную работу или не решенную задачу.

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой