МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 31

УТВЕРЖДАЮ

Руководитель направления

доц.,к.т.н.,доц.

(должность, уч. степень, звание)

С.В. Солёный

(инициалы, фамилия)

«23» июня 2022 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Теория автоматического управления» (Наименование дисциплины)

Код направления подготовки/ специальности	13.05.02
Наименование направления подготовки/ специальности	Специальные электромеханические системы
Наименование направленности	Электромеханические системы специальных устройств и изделий
Форма обучения	очная

Лист согласования рабочей программы дисциплины

Программу составил (а)		
ст.преп.	22,06.2022	Н.В. Решетникова
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Программа одобрена на заседани	ии кафедры № 31	
«22» июня 2022 г, протокол № 7		
Заведующий кафедрой № 31		
д.т.н.,проф.	23.06.2022	В.Ф. Шишлаков
(уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Ответственный за ОП ВО 13.05.	02(0)	
доц.,к.т.н.	COC 95196 2022	О.Я. Солёная
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Заместитель директора институт	а №3 по методической ра	боте
ст.преп,	23.06.2022	Н.В. Решетникова
(должность, уч. степень, звание)	(подпись, дата)	(нинциалы, фамилия)

Аннотация

Дисциплина «Теория автоматического управления» входит в образовательную программу высшего образования — программу специалитета по направлению подготовки/ специальности 13.05.02 «Специальные электромеханические системы» направленности «Электромеханические системы специальных устройств и изделий». Дисциплина реализуется кафедрой «№31».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ОПК-4 «Способен использовать методы анализа, моделирования и оценки качества действующих и проектируемых образцов элементов специальных электромеханических систем»

ОПК-6 «Способен применять нормы законодательства Российской Федерации в профессиональной деятельности»

Содержание дисциплины охватывает круг вопросов, связанных с изучением теоретических основ и прикладных алгоритмов разработки и исследования систем автоматического управления, в том числе:

- основные положения теории управления, современные тенденции в развитии и применении систем автоматического управления.
- применение теоретических знаний к решению конкретных инженерных задач проектирования систем автоматического управления различными объектами;

использование современных пакетов математического моделирования для решения задач анализа и синтеза систем автоматического управления.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, практические занятия, самостоятельная работа обучающегося, курсовое проектирование.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 9 зачетных единиц, 324 часа.

Язык обучения по дисциплине «русский»

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Теория автоматического управления представляет собой научную дисциплину, имеющую важное фундаментальное и прикладное значение. Она занимает одно из центральных мест среди технических наук общего применения. Теория управления является базой для проектирования и исследования автоматических и автоматизированных систем во всех отраслях производства.

Целью преподавания дисциплины является изучение студентами основ теории автоматического управления, а также получение практических навыков, необходимых при создании, исследовании и эксплуатации систем и средств автоматизации и управления.

- 1.2. Дисциплина входит в состав обязательной части образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблипе 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа)	Код и наименование	Код и наименование индикатора
компетенции	компетенции	достижения компетенции
Общепрофессиональные компетенции	ОПК-4 Способен использовать методы анализа, моделирования и оценки качества действующих и проектируемых образцов элементов специальных электромеханических систем	ОПК-4.3.1 знает особенности режимов работы электроэнергетического и электротехнического оборудования объектов электроэнергетики; назначение, конструкцию, технические параметры и принцип работы электрооборудования
Общепрофессиональные компетенции Общепрофессиональные компетенции Общепрофессиональные даконодательства Российской Федерации в профессиональной деятельности		ОПК-6.В.1 владеет навыками обеспечения оптимальных режимов и параметров технологического процесса после проведённых работ с учетом требований норм законодательства Российской Федерации и технических регламентов в сфере профессиональной деятельности

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- «Математика. Математический анализ»,
- «Теоретическая механика».

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и могут использоваться при изучении других дисциплин:

- «Основы теории переходных процессов и устойчивости».
 - 3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

Dyna ywyddyraid archaryy	Всего	Трудоемкость по семестрам		
Вид учебной работы	Beero	№5	№6	
1	2	3	4	
Общая трудоемкость дисциплины,	9/ 324	5/ 180	4/ 144	
3E/ (час)	<i>31 32</i> 1	3/ 100		
Из них часов практической подготовки				
Аудиторные занятия, всего час.	153	85	68	
в том числе:				
лекции (Л), (час)	68	34	34	
практические/семинарские занятия (ПЗ),	34	17	17	
(час)	34	17		
лабораторные работы (ЛР), (час)	51	34	17	
курсовой проект (работа) (КП, КР), (час)				
экзамен, (час)	72	36	36	
Самостоятельная работа, всего (час)	99	59	40	
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Экз., Экз.	Экз.	Экз.	

Примечание: ** кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Пасятица 5 газделы, темы диецинынны, их трудоемкость ———————————————————————————————————					
Разделы, темы дисциплины		П3	ЛР	КΠ	CPC
		(C3)	(час)	(час)	(час)
Семестр 5					
Раздел 1. Основные понятия теории автоматического	4				1.4
управления.	4	-	-	-	14
Раздел 2. Преобразование Лапласа и аппарат	10	8	10		1.5
передаточных функций	10	8	10	-	15
Раздел 3. Корневые оценки устойчивости и качества	0		10		1.5
систем управления	8	6	12	-	15
Раздел 4. Частотные методы анализа и синтеза систем	12	3	12		15
управления	12	3	12	-	13
Итого в семестре:		17	34		59
Семестр 6					
Раздел 5. Модели в пространстве состояний	10	8	-	-	13
Раздел 6. Модальное управление и наблюдающие	12	9	1.4		12
устройства		9	14	-	13
Раздел 7. Оптимальное и адаптивное управление в			3		14
пространстве состояний			3		14
Итого в семестре:	34	17	17		40
Итого	68	34	51	0	99

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

	4 – Содержание разделов и тем лекционного цикла
Номер раздела	Название и содержание разделов и тем лекционных занятий
1	Основные понятия теории автоматического управления (ТАУ). История развития ТАУ. классификация объектов и систем управления (СУ); этапы синтеза системы управления; примеры СУ техническими, экономическими и организационными объектами; задачи теории управления. Разомкнутые и замкнутые системы; компенсация возмущений; системы с компенсацией параметрических возмущений; идентификация, адаптивное управление. Классификации СУ: по типу сигналов; по типу алгоритма.
2	Преобразование Лапласа и аппарат передаточных функций. Линейные СУ и их свойства. Принципы и примеры линеаризации. Линеаризация системы со многими входами. Операторная форма записи уравнений СУ. Преобразование Лапласа. Передаточная функция. Нули и полюса. Типовые динамические звенья. Единичная ступенчатая функция и дельта-функция. Переходная функция и функция веса. Правила преобразования структурных схем систем автоматического управления. Использование графовой модели: формула Мейсона. Преимущества и недостатки введения обратной связи. Частные передаточные функции. Чувствительность систем управления. Точность в установившихся режимах. Инвариантные системы.
3	Корневые оценки устойчивости и качества систем управления. Показатели качества переходного процесса во временной области. Корневые оценки качества переходного процесса. Влияние нулей. Интегральные оценки качества переходного процесса. Установившаяся ошибка системы управления с обратной связью. Статические и астатические системы. Необходимое и достаточное условие устойчивости. Алгебраический критерий устойчивости. Структурно неустойчивые системы. Корневые показатели качества переходного процесса. Корневой годограф. Прямой синтез параметров регулятора.
4	Частотные методы анализа и синтеза систем управления. Частотная характеристика динамического звена. Полоса пропускания и частота среза. Логарифмические частотные характеристики: ЛАЧХ и ЛФЧХ. Алгоритм построения ЛАЧХ разомкнутой системы. Критерий устойчивости Михайлова. Формулировка частотного критерия устойчивости Найквиста. Критерий Найквиста для систем с запаздыванием. Оценка запасов устойчивости по ЛАЧХ и ЛФЧХ разомкнутой системы. Частотные критерии качества. Запасы устойчивости. Точность при гармоническом воздействии. Оценка качества следящей системы по виду ЛАЧХ разомкнутой системы. Коррекция с помощью дифференцирующего устройства и интегро-дифференцирующей цепи. Частотный синтез последовательного корректирующего устройства общего вида. Типовые аналоговые корректирующие звенья.
5	Модели в пространстве состояний. Метод пространства состояний. Общие понятия. Модели систем в переменных состояния в виде сигнального графа. Временные характеристики и переходная матрица состояния. Линеаризация в пространстве состояний. Структурные преобразования в пространстве состояний. Переходная матрица состояния.

	Решение уравнений состояния. Матричные передаточные функции.				
	Каноническая форма управляемости; наблюдаемости; идентифицируемости.				
	Диагональная каноническая форма. Уравнения состояния и сигнальный граф.				
	Преобразование подобия				
6	Модальное управление и наблюдающие устройства.				
	Критерий управляемости. Устойчивость линейной системы в пространстве				
	состояний. Собственные значения и собственные векторы. Модальное				
	управление. Синтез модального регулятора в канонической форме				
	управляемости. Выбор полюсов желаемой замкнутой системы. Формула				
	Аккермана. Устранение статической ошибки расширением вектора состояния.				
	Критерий наблюдаемости. Наблюдатель полного порядка. Редуцированные				
	наблюдающие устройства.				
7	Оптимальное и адаптивное управление в пространстве состояний.				
	Оптимальное управление в пространстве состояний. Критерии оптимальности.				
	Линейные квадратичные регуляторы. Прямое и непрямое адаптивное				
	управление. Принципы адаптивного управления с эталонной моделью.				
	Адаптивный регулятор с эталонной моделью в пространстве состояний.				
	Критерий идентифицируемости. Методы идентификации. Адаптивная система с				
	идентификатором в пространстве состояний.				

4.3. Практические (семинарские) занятия Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

				Из них	№
No	Темы практических	Формы практических	Трудоемкость,	практической	раздела
Π/Π	занятий	занятий	(час)	подготовки,	дисцип
				(час)	лины
		Семестр 5			
1	Линеаризация	Решение задач	2	-	2
	статических и				
	динамических				
	систем				
2	Преобразование	Решение задач	3	-	2
	структурных схем				
	СУ и формула				
	Мейсона				
3	Преобразование	Решение задач	3	_	2
	Лапласа				
4	Алгебраический	Решение задач	3	-	3
	критерий				
	устойчивости				
5	Прямой синтез	Решение задач	3	_	3
	регулятора				
6	Частотные критерии	Решение задач	3	_	4
	устойчивости				
	Семестр 6				
7	Передаточная	Решение задач	2	-	5
	функция и				
	уравнения				
	состояния				
8	Линеаризация в	Решение задач	3	-	5

	пространстве состояний				
9	Матричная	Решение задач	3	-	5
	экспонента и				
	матричная				
	передаточная				
	функция				
10	Преобразования	Решение задач	3	-	6
	подобия и				
	канонические				
	формы				
11	Диагональная	Решение задач	3	-	6
	каноническая форма				
12	Модальный синтез	Решение задач	3	-	6
	системы 2го				
	порядка				
	Всего)	34		

4.4. Лабораторные занятия Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

	1		Из них	$N_{\underline{0}}$
$N_{\underline{0}}$	Наименование лабораторных работ	Трудоемкость,	практической	раздела
Π/Π	тинменование заоораторных расот	(час)	подготовки,	дисцип
			(час)	ЛИНЫ
	Семестр :	5		
1	Исследование типовых динамических	3	_	2
1	звеньев	3	_	2
2	Исследование типовых динамических	3	_	2
	звеньев на лабораторном стенде	3	_	<i>L</i>
3	Структурные преобразования	4	-	2
4	Исследование устойчивости систем с	4	_	3
4	обратной связью	4	_	3
5	Метод корневого годографа	4	-	3
6	Синтез ПИД-регуляторов	4	-	3
7	Частотные характеристики динамических	4		4
/	звеньев	4	_	4
8	Частотный синтез корректирующего звена	4	-	4
9	Синтез регулятора двигателя постоянного	4		4
9	тока	4	_	4
	Семестр (6		
10	Синтез модального регулятора с помощью	3	_	6
10	формулы Аккермана	3	_	U
11	Синтез модального регулятора с	4	_	6
11	расширенным вектором состояния	7	_	U
	Синтез модального регулятора с			
12	наблюдающим устройством полного	3	-	6
	порядка			
13	Синтез модального регулятора с	4	_	6
13	наблюдающим устройством пониженного	+	_	U

	порядка				
14	Адаптивная система управления с эталонной моделью		3	1	7
		Всего	51		

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего, час	Семестр 5, час	Семестр 6, час
1	2	3	4
Изучение теоретического материала дисциплины (TO)	50	25	25
Подготовка к текущему контролю успеваемости (ТКУ)	19	14	5
Подготовка к промежуточной аттестации (ПА)	30	20	10
Всего:	99	59	40

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8. Таблица 8— Перечень печатных и электронных учебных изданий

Количество экземпляров Шифр/ в библиотеке Библиографическая ссылка URL адрес (кроме электронных экземпляров) Теория автоматического управления: учебное пособие. Ч. 1 / М. В. Бураков; С.-Петерб. гос. ун-т аэрокосм. приборостроения. -Электрон. текстовые дан. -СПб.: Изд-во ГУАП, 2013. - 254 c. Теория автоматического управления: учебное пособие. Ч. 2 / М. В.

	Бураков; СПетерб. гос. ун-т аэрокосм. приборостроения Электрон. текстовые дан СПб.: Изд-во ГУАП, 2015 143 с.	
681.5 E 78	Ерофеев, А. А. Теория автоматического управления [Текст]: учебник для вузов / А. А. Ерофеев 2-е изд., доп. и перераб СПб.: Политехника, 2005 302 с.	99
681.5 Б 53	Бесекерский, Виктор Антонович (проф., лауреат Гос. премии). Теория систем автоматического управления [Текст] / В. А. Бесекерский, Е. П. Попов 4-е изд., перераб. и доп СПб. : Профессия, 2007 752 с.	10
https://new.znanium.com/catalog/product/548433	Панкратов, В. В. Избранные разделы современной теории автоматического управления/ПанкратовВ.В., НосО.В., ЗимаЕ.А Новосибирск: НГТУ, 2011 223 с.: ISBN 978-5-7782-1810-9 Текст: электронный.	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационнот телекоммуникационной сети «Интернет»

URL адрес	Наименование
	Не предусмотрено

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

№ п/п	Наименование
1	Matlab

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п		Наименование
	Не предусмотрено	

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице 12.

Таблица 12 – Состав материально-технической базы

№ π/π	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Лекционная аудитория	
2	Компьютерный класс	
3	Специализированная лаборатория «Теория	
	автоматического управления»	

- 10. Оценочные средства для проведения промежуточной аттестации
- 10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Экзамен	Список вопросов к экзамену;
	Тесты.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции	Vanaratanyatika ahan ginanataiyi iy kargiataiyiyi		
5-балльная шкала	Характеристика сформированных компетенций		
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий. 		

Оценка компетенции	Характеристика сформированных компетенций		
5-балльная шкала	жарактеристика еформированных компетенции		
- обучающийся твердо усвоил программный материал, грамот по существу излагает его, опираясь на знания основ литературы; - не допускает существенных неточностей; - увязывает усвоенные знания с практической деятельнос направления; - аргументирует научные положения; - делает выводы и обобщения; - владеет системой специализированных понятий.			
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий. 		
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 		

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	Код индикатора	
	5 семестр		
1.	Типовые динамические звенья	ОПК-4.3.1	
2.	Анализ систем управления в частотной области. Получение	ОПК-6.В.1	
	частотных характеристик по передаточным функциям		
3.	Частотная характеристика динамического звена. Полоса	ОПК-4.3.1	
	пропускания и частота среза		
4.	Частотные критерии качества	ОПК-4.3.1	
5.	Примеры ЛЧХ типовых звеньев	ОПК-4.3.1	
6.	Физический смысл критерия устойчивости Найквиста	ОПК-4.3.1	
7.	Способы математического описания объектов управления	ОПК-4.3.1	
8.	Линейные системы управления и их свойства. Принципы	ОПК-4.3.1	
	линеаризации.		
9.	Единичная ступенчатая функция и дельта-функция.	ОПК-4.3.1	
	Переходная функция и функция веса		
10.	Инвариантные системы	ОПК-4.3.1	
11.	Интегральные оценки качества переходного процесса	ОПК-4.3.1	
12.	Корневые оценки качества переходного процесса. Влияние	ОПК-4.3.1	
	нулей		
13.	Необходимое условие устойчивости систем управления	ОПК-4.3.1	
14.	Метод <i>D</i> -разбиения	ОПК-4.3.1	
15.	Критерий устойчивости Рауса-Гурвица	ОПК-4.3.1	

16.	Логарифмические частотные характеристики	ОПК-6.В.1
17.	Критерий устойчивости Михайлова	ОПК-4.3.1
18.	Формулировка частотного критерия устойчивости Найквиста	ОПК-4.3.1
19.	Оценка запасов устойчивости по ЛАЧХ и ЛФЧХ разомкнутой	ОПК-4.3.1
	системы	
20.	Этапы синтеза системы управления	ОПК-6.В.1
21.	Линеаризация: системы со многими входами	ОПК-6.В.1
22.	Операторная форма записи уравнений системы управления	ОПК-4.3.1
	Преобразование Лапласа	
23.	Передаточная функция. Нули и полюса	ОПК-4.3.1
24.	Частные передаточные функции	ОПК-4.3.1
25.	Теорема о конечном значении и установившаяся ошибка	ОПК-4.3.1
	систем управления с обратной связью	
26.	Устойчивые и неустойчивые системы. Оценка устойчивости по	ОПК-4.3.1
20.	полюсам передаточной функции	
27.	Корневой годограф	ОПК-4.3.1
28.	ПИД-регуляторы	ОПК-6.В.1
29.	Передаточная функция системы с обратной связью	ОПК-4.3.1
30.	Правила преобразования структурных схем систем	ОПК-4.3.1
	автоматического управления	31110 1.3.1
31.	Сигнальные графы и метод Мейсона	ОПК-6.В.1
32.	Показатели качества переходного процесса во временной	ОПК-6.В.1
32.	области	0.B.1
33.	Алгоритм построения ЛАЧХ разомкнутой системы. Пример	ОПК-6.В.1
34.	Прямой синтез параметров регулятора	ОПК-6.В.1
35.	Частотный синтез последовательного корректирующего	ОПК-6.В.1
35.	устройства	0.2.1
36.	Чувствительность систем управления	ОПК-4.3.1
37.	Коррекция с помощью дифференцирующих устройств	ОПК-6.В.1
38.	Коррекция с помощью интегрирующих устройств	ОПК-6.В.1
39.	Коррекция с помощью интегро-дифференцирующих устройств	ОПК-6.В.1
40.	Корректирующие звенья на операционных усилителях	ОПК-6.В.1
	6 семестр	
1.	Связь между передаточной функцией и уравнениями состояния	ОПК-4.3.1
2.	Переход от уравнений состояния к передаточной функции для	ОПК-6.В.1
	RLC-цепи	
3.	Выбор переменных состояния. Запись уравнений состояния по	ОПК-6.В.1
	дифференциальному уравнению системы	
4.	Модальные характеристики системы (собственные значения и	ОПК-4.3.1
	собственные векторы)	
5.	Модальное управление. Основная теорема	ОПК-4.3.1
6.	Формула Аккермана	ОПК-4.3.1
7.	Матричная запись уравнений состояния	ОПК-4.3.1
8.	Линеаризация в пространстве состояний	ОПК-4.3.1
9.	Переход от передаточной функции к уравнениям состояния	ОПК-4.3.1
10.	Фундаментальная (переходная) матрица системы в	ОПК-4.3.1
10.	пространстве состояний	31111 1.3.1
11.	Понятие управляемости системы	ОПК-4.3.1
12.	Понятие наблюдаемости системы	ОПК-4.3.1
13.	Понятие идентифицируемости системы	ОПК-4.3.1
14.	Критерии управляемости и наблюдаемости	ОПК-4.3.1
14.	тритерии управляемости и наолюдаемости	OHK-4.3.1

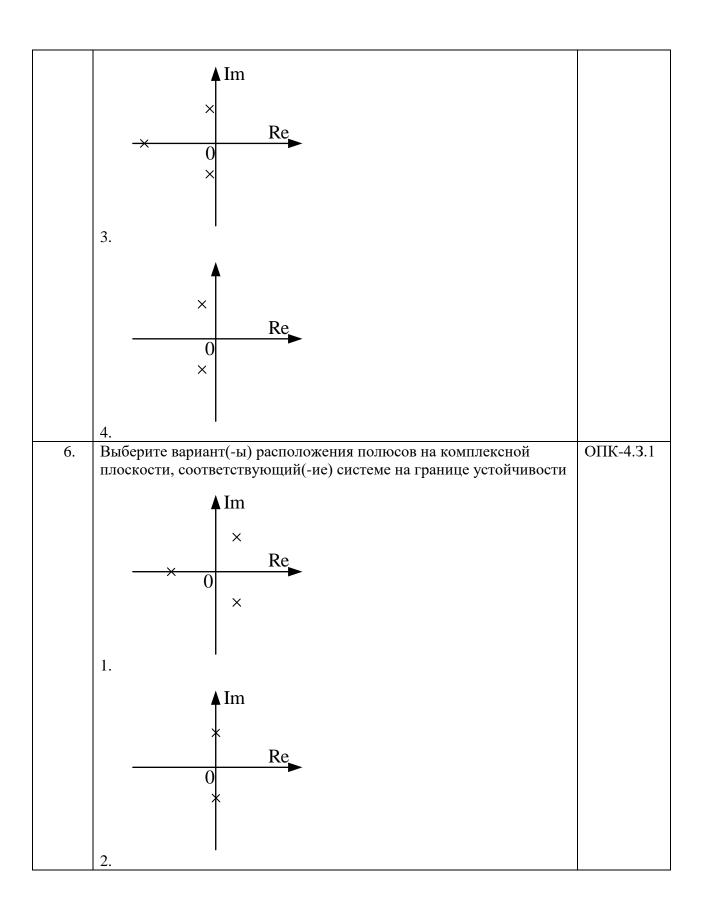
15.	Критерий идентифицируемости	ОПК-4.3.1
16.	Каноническая форма управляемости	ОПК-4.3.1
17.	Каноническая форма наблюдаемости	ОПК-4.3.1
18.	Диагональная каноническая форма	ОПК-4.3.1
19.	Преобразования подобия	ОПК-4.3.1
20.	Синтез модального регулятора с использованием канонической	ОПК-4.3.1
	формы управляемости	
21.	Наблюдающие устройства. Основные понятия	ОПК-4.3.1
22.	Метод пространства состояний. Общие понятия. Примеры	ОПК-4.3.1
23.	Структурные преобразования в пространстве состояний	ОПК-4.3.1
24.	Уравнения состояния и сигнальный граф	ОПК-4.3.1
25.	Выбор полюсов желаемой замкнутой системы	ОПК-4.3.1
26.	Линейные квадратичные регуляторы	ОПК-4.3.1
27.	Использование внутренней модели эталонного сигнала	ОПК-4.3.1
28.	Пример синтеза модального регулятора	ОПК-4.3.1
29.	Принцип работы наблюдающего устройства	ОПК-4.3.1
30.	Редуцированные наблюдающие устройства	ОПК-6.В.1
31.	Оптимальное управление в пространстве состояний	ОПК-4.3.1
32.	Прямое и непрямое адаптивное управление	ОПК-6.В.1
33.	Адаптивный регулятор с эталонной моделью в пространстве	ОПК-6.В.1
	состояний	

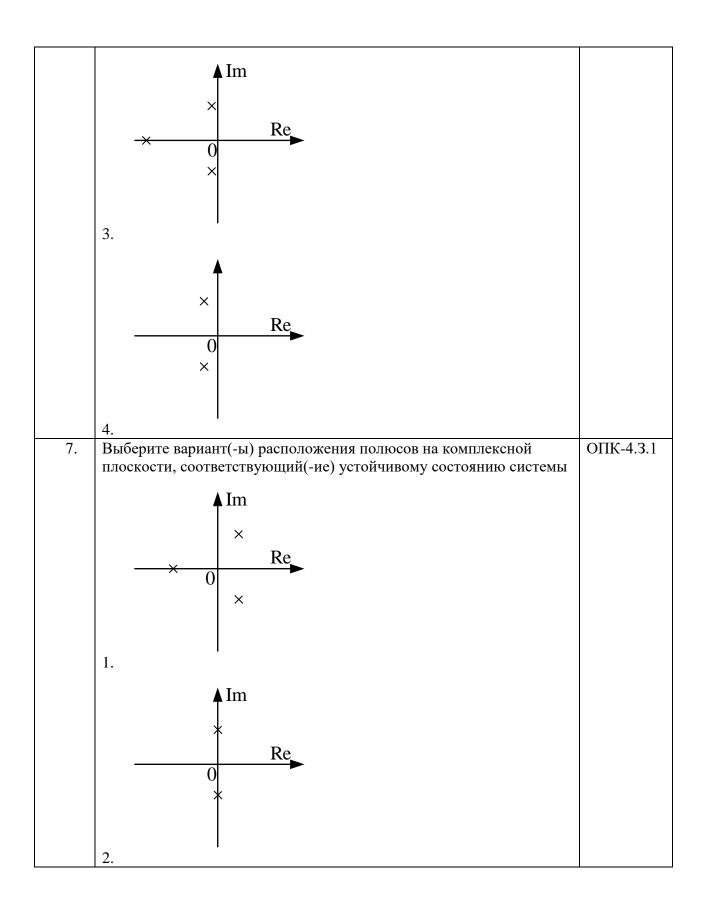
Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16. Таблица 16 — Вопросы (задачи) для зачета / дифф. зачета

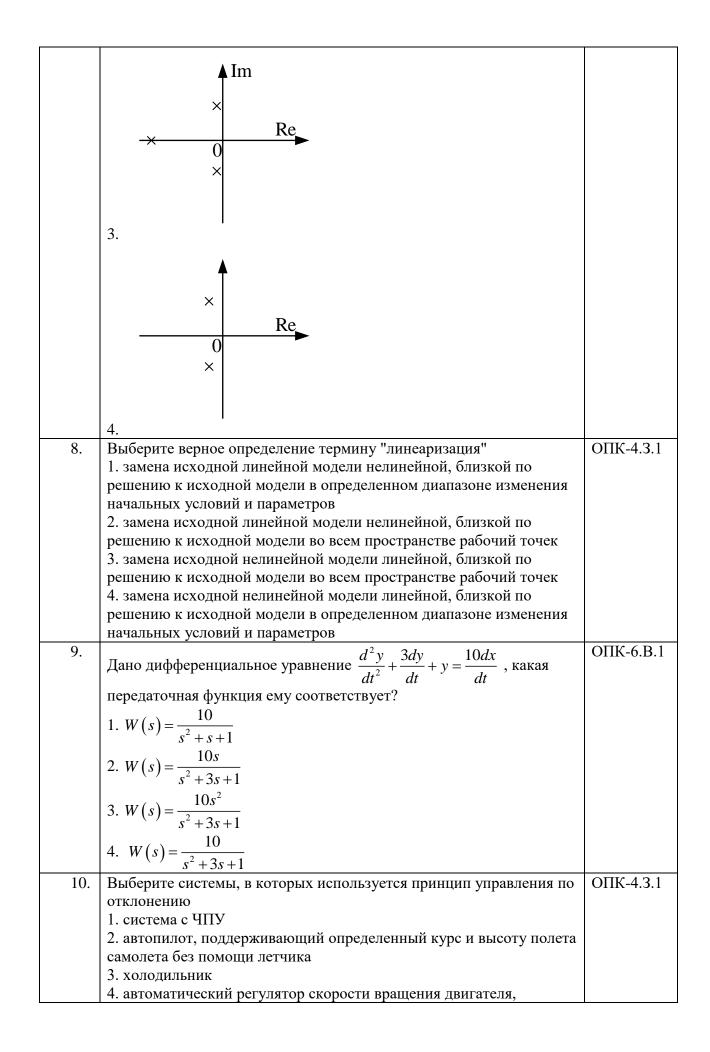
№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код индикатора
	Учебным планом не предусмотрено	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы


№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено


Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.


Таблица 18 – Примерный перечень вопросов для тестов

	1 1 1 1 1 1	
№ п/п	Примерный перечень вопросов для тестов	Код индикатора
	5 семестр	
1.	Алгебраический критерий устойчивости Рауса-Гурвица позволяет: 1. Судить об устойчивости по полюсам системы 2. Судить об устойчивости по корням характеристического	ОПК-4.3.1
	уравнения 3. Судить об абсолютной устойчивости по коэффициентам характеристического уравнения 4. Судить о запасах устойчивости по коэффициентам	
	характеристического уравнения	
2.	В каком бытовом приборе используется принцип управления с	ОПК-4.3.1

	of porryogy open vo?			
	обратной связью? 1. Микроволновая печь			
	1. Микроволновая печь 2. Холодильник			
	3. Кофеварка			
2	4. Вентилятор	ОПК-4.3.1		
3.				
	1. Система неустойчива			
	2. Характеристическое уравнение содержит только комплексные			
	3. У практаристическое урариение со перукит коминекси је кории			
	3. Характеристическое уравнение содержит комплексные корни			
	4. Характеристическое уравнение содержит только вещественные			
	корни	OFFI 4 D 1		
4.	В чем особенность принципа управления по отклонению?	ОПК-4.3.1		
	1. принцип позволяет не учитывать влияние возмущений на САУ			
	2. принцип позволяет получать информацию о выходной величине в			
	течение работы САУ			
	3. принцип позволяет не использовать информацию о выходной			
	величине			
	4. принцип позволяет "отрабатывать" действующие на систему			
	возмущения			
	5. принцип основан на использовании сигнала отрицательной			
	обратной связи, с помощью которого вычисляется ошибка			
	управления	OFFICAD 1		
5.	Выберите вариант(-ы) расположения полюсов на комплексной	ОПК-4.3.1		
	плоскости, соответствующий(-ие) неустойчивому состоянию			
	системы			
	▲ Im			
	×			
	$\mathbf{p}_{\mathbf{q}}$			
	\longrightarrow 0			
	X			
	1.			
	▲ Im			
	*			
	Re_			
	↑			
	2.			

не 5. 6. 7. шо 11. Вы ра: 1. 2. сан 3. 4.	ддерживающий постоянную угловую скорость двигателя зависимо от внешней нагрузки утюг система самонаведения снаряда на цель автомат, выбрасывающий какие-либо предметы (билеты, околад) при опускании в него определенной комбинации монет ыберите системы, в которых может быть использован принцип зомкнутого управления система с ЧПУ автопилот, поддерживающий определенный курс и высоту полета молета без помощи летчика холодильник автоматический регулятор скорости вращения двигателя, оддерживающий постоянную угловую скорость двигателя зависимо от внешней нагрузки	ОПК-6.В.1
5. 6. 7. шо 11. Вы раз 1. 2. сая 3. 4. по	утюг система самонаведения снаряда на цель автомат, выбрасывающий какие-либо предметы (билеты, околад) при опускании в него определенной комбинации монет ыберите системы, в которых может быть использован принцип зомкнутого управления система с ЧПУ автопилот, поддерживающий определенный курс и высоту полета молета без помощи летчика холодильник автоматический регулятор скорости вращения двигателя, оддерживающий постоянную угловую скорость двигателя зависимо от внешней нагрузки	ОПК-6.В.1
6. 7. шс 11. Вы раг 1. 2. сап 3. 4. по	система самонаведения снаряда на цель автомат, выбрасывающий какие-либо предметы (билеты, околад) при опускании в него определенной комбинации монет ыберите системы, в которых может быть использован принцип зомкнутого управления система с ЧПУ автопилот, поддерживающий определенный курс и высоту полета молета без помощи летчика холодильник автоматический регулятор скорости вращения двигателя, оддерживающий постоянную угловую скорость двигателя зависимо от внешней нагрузки	ОПК-6.В.1
7. mo	автомат, выбрасывающий какие-либо предметы (билеты, околад) при опускании в него определенной комбинации монет ыберите системы, в которых может быть использован принцип зомкнутого управления система с ЧПУ автопилот, поддерживающий определенный курс и высоту полета молета без помощи летчика холодильник автоматический регулятор скорости вращения двигателя, оддерживающий постоянную угловую скорость двигателя зависимо от внешней нагрузки	ОПК-6.В.1
11. Bb par 1. 2. car 3. 4. по	околад) при опускании в него определенной комбинации монет оберите системы, в которых может быть использован принцип зомкнутого управления система с ЧПУ автопилот, поддерживающий определенный курс и высоту полета молета без помощи летчика холодильник автоматический регулятор скорости вращения двигателя, оддерживающий постоянную угловую скорость двигателя зависимо от внешней нагрузки	ОПК-6.В.1
11. Вы раг 1. 2. car 3. 4. по	ыберите системы, в которых может быть использован принцип зомкнутого управления система с ЧПУ автопилот, поддерживающий определенный курс и высоту полета молета без помощи летчика холодильник автоматический регулятор скорости вращения двигателя, ддерживающий постоянную угловую скорость двигателя зависимо от внешней нагрузки	ОПК-6.В.1
ра: 1. 2. cai 3. 4. по	зомкнутого управления система с ЧПУ автопилот, поддерживающий определенный курс и высоту полета молета без помощи летчика холодильник автоматический регулятор скорости вращения двигателя, ддерживающий постоянную угловую скорость двигателя зависимо от внешней нагрузки	ОПК-6.В.1
ра: 1. 2. cai 3. 4. по	зомкнутого управления система с ЧПУ автопилот, поддерживающий определенный курс и высоту полета молета без помощи летчика холодильник автоматический регулятор скорости вращения двигателя, ддерживающий постоянную угловую скорость двигателя зависимо от внешней нагрузки	
1. 2. сан 3. 4. по	система с ЧПУ автопилот, поддерживающий определенный курс и высоту полета молета без помощи летчика холодильник автоматический регулятор скорости вращения двигателя, ддерживающий постоянную угловую скорость двигателя зависимо от внешней нагрузки	
сат 3. 4. по	молета без помощи летчика холодильник автоматический регулятор скорости вращения двигателя, ддерживающий постоянную угловую скорость двигателя зависимо от внешней нагрузки	
сат 3. 4. по	молета без помощи летчика холодильник автоматический регулятор скорости вращения двигателя, ддерживающий постоянную угловую скорость двигателя зависимо от внешней нагрузки	
3. 4. по	холодильник автоматический регулятор скорости вращения двигателя, ддерживающий постоянную угловую скорость двигателя зависимо от внешней нагрузки	
4. по	автоматический регулятор скорости вращения двигателя, ддерживающий постоянную угловую скорость двигателя зависимо от внешней нагрузки	
по	ддерживающий постоянную угловую скорость двигателя зависимо от внешней нагрузки	
	зависимо от внешней нагрузки	İ
	утюг	
	система самонаведения снаряда на цель	
	автомат, выбрасывающий какие-либо предметы (билеты,	
	околад) при опускании в него определенной комбинации монет	OFFICA DA
	го такое "корневой годограф"?	ОПК-4.3.1
	Совокупность траекторий перемещения всех корней	
	рактеристического уравнения замкнутой системы при изменении	
	кого-либо параметра этой системы	
	Совокупность траекторий перемещения всех корней	
	рактеристического уравнения разомкнутой системы при	
ИЗ	менении какого-либо параметра этой системы	
3.	Положение полюсов передаточной функции замкнутой системы	
на	комплексной плоскости.	
4.	Положение полюсов передаточной функции разомкнутой	
	стемы на комплексной плоскости	
13. Ka	кая система называется детерминированной?	ОПК-4.3.1
	система, оператор которой устанавливает однозначное	
	ответствие между входными и выходной переменными	
	система, в которой выходной сигнал в текущий момент времени	
	зависит от значений входного сигнала в последующие моменты	
	емени	
_	система, оператор которой является случайным	
	система, параметры которой (коэффициенты дифференциального	
	авнения) не изменяются во времени	
	авнения) не изменяются во времени кая система называется стационарной?	ОПК-4.3.1
	кая система называется стационарнои: система, оператор которой устанавливает однозначное	O11K-4.3.1
	ответствие между входными и выходной переменными	
	•	
	система, в которой выходной сигнал в текущий момент времени	
	зависит от значений входного сигнала в последующие моменты	
_	емени	
	система, оператор которой является случайным	
	система, параметры которой (коэффициенты дифференциального	
	авнения) не изменяются во времени	
	кая система называется стохастической?	ОПК-4.3.1
1.	система, оператор которой устанавливает однозначное	
co	ответствие между входными и выходной переменными	
2.	система, в которой выходной сигнал в текущий момент времени	
1. co	система, оператор которой устанавливает однозначное ответствие между входными и выходной переменными	OHK-4.3.1

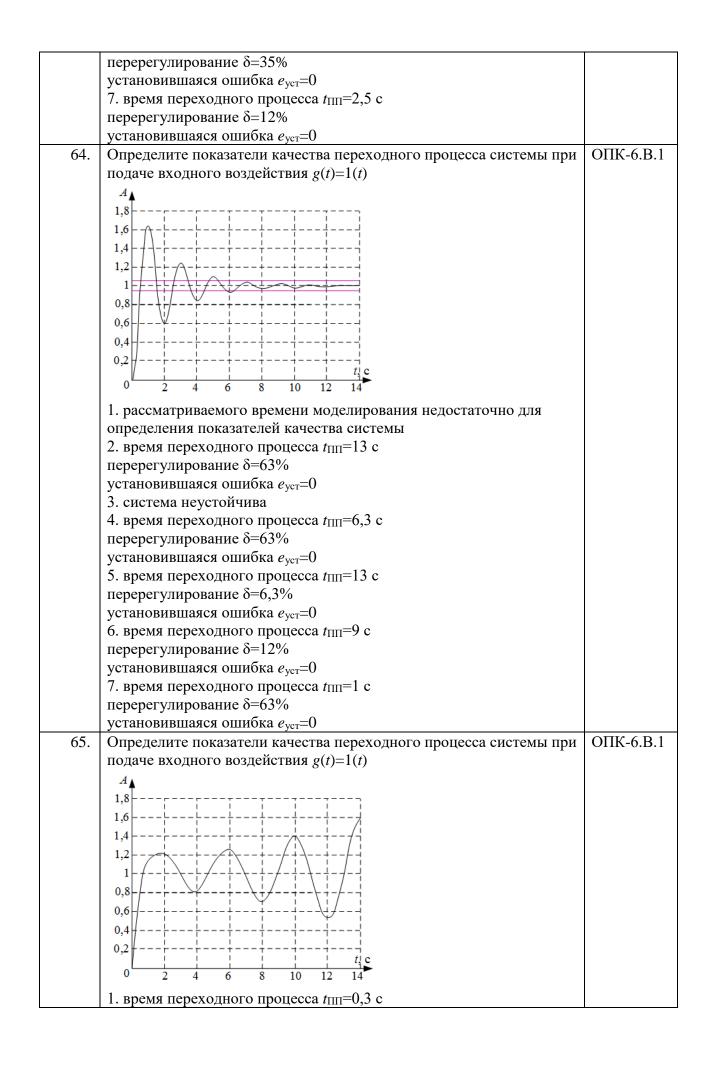
	HA DARWANT OT SHAHAMAY PYOTHAFO SHENATA B HASTATIVANINA MOMONTH	
	не зависит от значений входного сигнала в последующие моменты времени	
	3. система, оператор которой является случайным	
	4. система, параметры которой (коэффициенты дифференциального	
	уравнения) не изменяются во времени	
16.	Какая система называется физически реализуемой?	ОПК-4.3.1
10.	1. система, оператор которой устанавливает однозначное	OIIIC-4.5.1
	соответствие между входными и выходной переменными	
	2. система, в которой выходной сигнал в текущий момент времени	
	не зависит от значений входного сигнала в последующие моменты	
	времени	
	3. система, оператор которой является случайным	
	4. система, параметры которой (коэффициенты дифференциального	
	уравнения) не изменяются во времени	
17.	Дайте определение задаче идентификации	ОПК-4.3.1
	1. оценка показателей качества работы САУ	01111
	2. настройка параметров модели с целью достижения наибольшего	
	сходства между ее выходом и выходом объекта	
	3. нахождение нулей и полюсов передаточной функции	
	4. построение переходного процесса системы	
18.	Какие задачи требуется решать при разработке САУ?	ОПК-4.3.1
	1. дефектовка	
	2. оценка экономической эффективности	
	3. анализ	
	4. синтез	
19.	Как называется методика настройки ПИД – регулятора?	ОПК-4.3.1
	1. Метод Рауса-Гурвица	
	2. Метод Зиглера-Николса	
	3. Метод Гаусса-Зейделя	
	4. Метод Рунге-Кутта	
20.	Как называется переходный процесс без перерегулирования?	ОПК-4.3.1
	1. Апериодический	
	2. Астатический	
	3. Колебательный	
	4. Неустойчивый	
21.	Дайте определение экстремальной системе управления	ОПК-4.3.1
	1. Экстремальные САУ - это такие САУ, в которых один из	
	показателей качества работы нужно удерживать на предельном	
	уровне	
	2. Экстремальные системы - это системы, изменения в которых	
	происходят под воздействием случайных факторов.	
	3. Экстремальной называют такую систему управления, в которой	
	возможно изменение закона управления в условиях меняющихся	
	параметров объекта или среды с целью поддержания показателя	
	качества в заданных границах.	
	4. Экстремальной называется такая система, которая содержит хотя	
	бы одно звено, описываемое нелинейным уравнением	
22.	Для какого устройства были созданы первые автоматические	ОПК-4.3.1
	регуляторы?	
	1. Дирижабль	
	2. Паровоз	
	3. Аэроплан	

	4. Паровая машина	
23.	Для ошибки управления справедливо	ОПК-4.3.1
	1. используется регулятором для формирования сигнала управления	
	u(t)	
	2. равна $e(t)=g(t)-y(t)$	
	3. может появляться только в нелинейных системах	
	4. измеряется в градусах	
24.	Какие критерии относятся к показателям качества управления?	ОПК-4.3.1
24.	1. корневой годограф	OIIK-4.5.1
	2. перерегулирование	
	3. линеаризация	
	4. время переходного процесса	
	5. статическая ошибка	
25	6. астатизм	OFFIC 4 D 1
25.	Какие системы называются оптимальными?	ОПК-4.3.1
	1. Система, все параметры которой не изменяются во времени	
	2. Системы, в которых обеспечивается минимум соответствующей	
	оценки качества	
	3. Система, параметр(ы) которой изменяются во времени	
	4. Система, в которой присутствует хотя бы один элемент,	
	производящий квантование сигналов	
26.	Какие системы называются инвариантными?	ОПК-4.3.1
	1. системы, параметры которых не изменяются во времени	
	2. системы, в которых выходной сигнал в текущий момент времени	
	не зависит от значений входного сигнала в последующие моменты	
	времени	
	3. системы, оператор которых устанавливает однозначное	
	соответствие между входными и выходной переменными	
	4. системы, в которых по окончании переходного процесса,	
	обусловленного ненулевыми начальными условиями, ошибка и	
	регулируемая величина не зависят от этого входного сигнала	
27.	Какие полюса системы дают наиболее медленно затухающую	ОПК-4.3.1
	составляющую переходного процесса?	
	1. Отрицательные, имеющие наименьшую по модулю	
	вещественную часть	
	2. Отрицательные, имеющие наибольшую по модулю	
	вещественную часть	
	3. Положительные, имеющие наименьшую вещественную часть	
	4. Положительные, имеющие наибольшую вещественную часть	
28.	Какие операторы относятся к линейным?	ОПК-4.3.1
	1. Интегрирования	
	2. Дифференцирования	
	3. Возведения в степень	
	4. Логарифмирования	
29.	Какие операторы не относятся к линейным?	ОПК-4.3.1
<i></i> .	1. Интегрирования	51110 1.5.1
	2. Дифференцирования	
	3. Возведения в степень	
	4. Логарифмирования	
30.		ОПК-6.В.1
30.	Сопоставьте передаточную функцию и название звена	OHK-0.B.
	$W(s) = \frac{3}{0.1s+1}$ усилительное дифференцирующее с	
	$w(s) = \frac{1}{0.1s+1}$ дифференцирующее с	

	$W(s) = \frac{1}{0.1s^2 + 0.02s + 1}$ запаздыванием инерционное изодромное $W(s) = \frac{3}{0.1s^2 + s}$ дифференцирующее с интегрирующее с запаздыванием колебательное Если у инерционного звена уменьшить постоянную времени T нуля, звено преобразуется в 1. интегрирующее 2. пропорциональное 3. консервативное 4. дифференцирующее Если на вход линейной динамической системы подать гармоническое воздействие, то выходной сигнал будет	до ОПК-4.3.1		
	Если у инерционного звена уменьшить постоянную времени <i>Т</i> нуля, звено преобразуется в 1. интегрирующее 2. пропорциональное 3. консервативное 4. дифференцирующее Если на вход линейной динамической системы подать	до ОПК-4.3.1		
	Если у инерционного звена уменьшить постоянную времени <i>Т</i> нуля, звено преобразуется в 1. интегрирующее 2. пропорциональное 3. консервативное 4. дифференцирующее Если на вход линейной динамической системы подать	до ОПК-4.3.1		
	Если у инерционного звена уменьшить постоянную времени <i>Т</i> нуля, звено преобразуется в 1. интегрирующее 2. пропорциональное 3. консервативное 4. дифференцирующее Если на вход линейной динамической системы подать	до ОПК-4.3.1		
	Если у инерционного звена уменьшить постоянную времени <i>Т</i> нуля, звено преобразуется в 1. интегрирующее 2. пропорциональное 3. консервативное 4. дифференцирующее Если на вход линейной динамической системы подать	до ОПК-4.3.1		
	Если у инерционного звена уменьшить постоянную времени <i>Т</i> нуля, звено преобразуется в 1. интегрирующее 2. пропорциональное 3. консервативное 4. дифференцирующее Если на вход линейной динамической системы подать	до ОПК-4.3.1		
	Если у инерционного звена уменьшить постоянную времени <i>Т</i> нуля, звено преобразуется в 1. интегрирующее 2. пропорциональное 3. консервативное 4. дифференцирующее Если на вход линейной динамической системы подать	до ОПК-4.3.1		
	нуля, звено преобразуется в 1. интегрирующее 2. пропорциональное 3. консервативное 4. дифференцирующее Если на вход линейной динамической системы подать	до ОПК-4.3.1		
	1. интегрирующее 2. пропорциональное 3. консервативное 4. дифференцирующее Если на вход линейной динамической системы подать			
	 пропорциональное консервативное дифференцирующее Если на вход линейной динамической системы подать 			
	3. консервативное 4. дифференцирующее Если на вход линейной динамической системы подать			
	4. дифференцирующее Если на вход линейной динамической системы подать			
	Если на вход линейной динамической системы подать			
32.	гармоническое возлействие то выхолной сигнал булет	ОПК-4.3.1		
	rapmonn reckee bosgenerane, to barrognon em has ofger			
	представлять собой:			
	1. гармоническую функцию с той же фазой, но с измененной			
	амплитудой и частотой			
	2. гармоническую функцию той же частоты, но с измененной			
	амплитудой и фазой			
	3. гармоническую функцию, но с измененной частотой, амплит	гудой		
	и фазой			
	4. гармоническую функцию с той же амплитудой, но с изменен	пной		
	частотой и фазой			
	Если динамика системы описывается дифференциальными	ОПК-4.3.1		
	уравнениями, коэффициенты которых меняются со временем,			
	такую систему называют			
	1. цифровой			
	2. нелинейной			
	3. дискретной			
	4. нестационарной			
	Линеаризация нелинейной системы предполагает:	ОПК-4.3.1		
54.	1. Разложение в ряд Тейлора в рабочей точке	OIIK- 4 .5.1		
	· · · · ·			
	2. Разложение в ряд Лагранжа в рабочей точке			
	3. Преобразование Лапласа в рабочей точке			
	4. Использование полиномов Баттерворта	ОПК-4.3.1		
35.	Какой эффект вызывает линеаризация?	OHK-4.3.1		
	1. Обобщает математическое описание процесса			
	2. Усложняет математическое описание процесса			
	3. Уточняет математическое описание процесса			
	4. Упрощает математическое описание процесса			
36.	Единицы измерения функции $L(\omega)$ по оси ординат ЛАЧХ?	ОПК-4.3.1		
	1. октавы			
	2. градусы			
	1			
	5. децибелы			
	Звено, выходная величина которого в каждый момент времени	ОПК-4.3.1		
	пропорциональна входной величине, называется			
	1. усилительным			
	2. форсирующим			
	3. дифференциальным			
37.	3. декады 4. ангстремы 5. децибелы Звено, выходная величина которого в каждый момент времени пропорциональна входной величине, называется	ОПК-4.3.1		

	4. астатическим	
	5. апериодическим первого порядка	
38.	К каким последствиям приводит введение отрицательной обратной	ОПК-4.3.1
	связи?	
	1. Коэффициент усиления уменьшается, а чувствительность	
	увеличивается	
	2. Уменьшаются коэффициент усиления и чувствительность	
	системы	
	3. Коэффициент усиления увеличивается, а чувствительность	
	уменьшается	
	4. Увеличиваются коэффициент усиления и чувствительность	
	системы	
39.	Какие эффекты вызывает увеличение дифференциального	ОПК-6.В.1
	коэффициента в ПИД-регуляторе?	
	1. Уменьшение перерегулирования	
	2. Рост времени нарастания и статической ошибки, уменьшение	
	перерегулирования	
	3. Уменьшение времени нарастания и статической ошибки, рост	
	перерегулирования	
	4. Уменьшение времени нарастания, рост статической ошибки и	
	перерегулирования	
40.	Полюсами передаточной функции называются	ОПК-4.3.1
	1. наиболее близкие друг к другу корни характеристического	
	уравнения	
	2. числитель и знаменатель передаточной функции	
	3. корни полинома числителя передаточной функции	
	4. наиболее удаленные друг от друга корни характеристического	
	уравнения	
	5. корни полинома знаменателя передаточной функции	
41.	Порядок передаточной функции определяется:	ОПК-4.3.1
	1. суммой степеней полиномов числителя и знаменателя	
	2. порядком следования элементов знаменателя	
	3. степенью полинома знаменателя	
	4. степенью полинома числителя	
	5. порядком следования элементов числителя	
42.	Укажите верное утверждение:	ОПК-4.3.1
	1. Одной передаточной функции может соответствовать только	
	одна модель в пространстве состояний.	
	2. Одной модели в пространстве состояний может соответствовать	
	несколько вариантов передаточной функции.	
	3. Разным моделям в пространстве состояния может	
	соответствовать одна и та же передаточная функция.	
	4. Разным передаточным функциям может соответствовать одна и	
	та же модель в пространстве состояния.	
43.	Передаточной функцией в изображениях Лапласа называют:	ОПК-4.3.1
	1. отношение выхода к входу при нулевых начальных условиях	
	2. отношение выходного сигнала к входному сигналу при нулевых	
	начальных условиях	
	3. реакцию системы на единичное импульсное воздействие при	
	нулевых начальных условиях	
	4. реакцию системы на единичное ступенчатое воздействие при	
	т. реакцию системы на едини шос ступен штос возденствие при	


	5. отношение изображения выходной переменной к изображению входной переменной при нулевых начальных условиях	
44.	Выходной сигнал будет монотонно возрастать, если ступенчатый	ОПК-6.В.1
44.		OHK-0.D.1
	входной сигнал подать на звено с передаточной функцией	
	1. $W(s) = \frac{k}{s^2 + 1}$	
	2. W(s) = ks	
	2. $W(s) = ks$ 3. $W(s) = \frac{k}{s}$ 4. $W(s) = \frac{k}{s^2 + 0.002s + 1}$	
	S	
	4. $W(s) = \frac{k}{s}$	
	$s^2 + 0.002s + 1$	
45.	Дано описание нелинейной системы:	ОПК-6.В.1
	$\begin{cases} \dot{x}_1 = x_2 = f_1 \\ \dot{x}_2 = -2x_1x_2 - x_1 + 2u = f_2 \end{cases}$	
	$(x_2 = -2x_1x_2 - x_1 + 2u = f_2)$	
	Какой будет матрица B при линеаризации в рабочей точке [x_1 = -1	
	$x_2=2 u_0=0.5$]?	
	$\lceil 0 \rceil$	
	1. $B = \begin{bmatrix} 0 \\ 0.5 \end{bmatrix}$	
	2. $B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	
	[0]	
	3. $B = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$	
	4. $B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$	
	$ A. B = _{2} $	
	5. $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$	
	$\begin{vmatrix} 3 \cdot B - \\ 1 \end{vmatrix}$	
46.	Дано описание нелинейной системы:	ОПК-6.В.1
40.		OHK-0.D.1
	$ \begin{cases} x_1 = x_2 = f_1 \end{cases} $	
	$\begin{cases} \dot{x}_1 = x_2 = f_1 \\ \dot{x}_2 = -2x_1x_2 - x_1 + 2u = f_2 \end{cases}$	
	Какой будет матрица A при линеаризации в рабочей точке [x_1 =1,	
	$x_2=-1, u_0=2$]?	
	1. $A = \begin{bmatrix} 0 & 1 \\ 1 & -2 \end{bmatrix}$	
	$\begin{bmatrix} 1 & 0 \end{bmatrix}$	
	2. $A = \begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix}$	
	$\begin{bmatrix} 2 & A & 0 \end{bmatrix}$	
	$3. A = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix}$	
	$4. \ A = \begin{bmatrix} 0 & 1 \\ -2 & 1 \end{bmatrix}$	
	Γ0 1 7	
	5. $A = \begin{bmatrix} 0 & 1 \\ 2 & -1 \end{bmatrix}$	
47.	Для параллельного соединения <i>n</i> динамических звеньев	ОПК-4.3.1
	справедлива формула:	


	$1. W(s) = \sum_{i=1}^{n} W_i(s)$	
	$2. W(s) = \prod_{i=1}^{n} W_i(s)$	
	3. $W(s) = \frac{1}{n} \prod_{i=1}^{n} W_i(s)$	
	$4. W(s) = n \sum_{i=1}^{n} W_i(s)$	
48.	Для последовательного соединения n динамических звеньев справедлива формула:	ОПК-4.3.1
	1. $W(s) = \sum_{i=1}^{n} W_i(s)$	
	$2. W(s) = \prod_{i=1}^{n} W_i(s)$	
	3. $W(s) = \frac{1}{n} \prod_{i=1}^{n} W_i(s)$	
	$4. W(s) = n \sum_{i=1}^{n} W_i(s)$	
49.	Единичная импульсная функция описывается формулой:	ОПК-4.3.1
	$1. \ x(t) = \begin{cases} 0, \ t \neq 0 \\ \infty, \ t = 0 \end{cases}$	
	$2. \ x(t) = \begin{cases} 1, \ t \le 0 \\ 0, \ t > 0 \end{cases}$	
	3. $x(t) = \begin{cases} \infty, & t \neq 0 \\ 1, & t = 0 \end{cases}$	
	$4. \ x(t) = \begin{cases} 0, \ t \le 0 \\ 1, \ t > 0 \end{cases}$	
	$\begin{bmatrix} 1, t > 0 \end{bmatrix}$	OFFICA D.1
50.	Единичная ступенчатая функция описывается формулой:	ОПК-4.3.1
	$1. \ x(t) = \begin{cases} 0, & t \leq 0 \\ 1, & t > 0 \end{cases}$	
	$\begin{pmatrix} 1, & t \leq 0 \\ 1 & t < 0 \end{pmatrix}$	
	$2. \ x(t) = \begin{cases} 1, \ t \ge 0 \\ 0, \ t > 0 \end{cases}$	
	$3. \ x(t) = \begin{cases} \infty, \ t \le 0 \\ 0, \ t > 0 \end{cases}$	
	Единичная ступенчатая функция описывается формулой. 1. $x(t) = \begin{cases} 0, \ t < 0 \\ 1, \ t \ge 0 \end{cases}$ 2. $x(t) = \begin{cases} 1, \ t \le 0 \\ 0, \ t > 0 \end{cases}$ 3. $x(t) = \begin{cases} \infty, \ t \le 0 \\ 0, \ t > 0 \end{cases}$ 4. $x(t) = \begin{cases} 0, \ t \le 0 \\ \infty, \ t > 0 \end{cases}$	
51.	Если η – степень устойчивости системы, то время переходного	ОПК-4.3.1
	процесса можно оценить по формуле:	
	1. $t \approx 2\eta$	
	2. $t \approx 5\eta$	
	2. $t \approx 5\eta$ 3. $t \approx \frac{1}{2}$	
	η	

	$4. t \approx \frac{3}{1}$			
	$\frac{\neg \cdot \cdot \cdot \sim \neg}{\eta}$			
52.	Звено $\frac{1}{2+1}$ называется:	ОПК-4.3.1		
	2s+1 1. астатическим			
	2. консервативным			
	3. пропорциональным			
	4. инерционным			
	5. колебательным			
53.	Изображение по Лапласу 1 соответствует типовому воздействию	ОПК-4.3.1		
	1.1(t)			
	2. t			
	$3. \delta(t)$			
	$4. \sin(t)$			
54.	Имеется график асимптотической ЛАЧХ.	ОПК-6.В.1		
	L(ω), дБ ▲			
	L(ω), дБ ↑ -20 дБ/дек 20			
	ω, c ⁻¹			
	0,1 1 10 100			
	−20 жБ/дек			
	1-20			
	—40 дБ/дек			
	Какая передаточная функция ей соответствует?			
	10 . 1			
	1. $W(s) = \frac{10s+1}{(100s+1)(0.1s+1)(0.01s+1)}$			
	(100s+1)(0.1s+1)(0.01s+1)			
	2 W(s) - 10. $s+1$			
	2. $W(s) = 10 \cdot \frac{s+1}{(10s+1)(0.1s+1)(0.01s+1)}$			
	10s+1			
	3. $W(s) = 100 \cdot \frac{10s+1}{(s+1)(0.1s+1)(0.01s+1)}$			
	4. $W(s) = 100 \cdot \frac{10s+1}{(100s+1)(0.1s+1)(0.01s+1)}$			
55		ОПИ 6 В 1		
55.	Имеется график асимптотической ЛАЧХ. Какая передаточная функция ему соответствует?	ОПК-6.В.1		
	1. $W(s) = 10 \cdot \frac{0.01s + 1}{s^2(s+1)(0.01s+1)}$			
	S(S+1)(0.01S+1)			
	2. $W(s) = 100 \cdot \frac{0.1s + 1}{s(s+1)(0.01s+1)}$			
	s(s+1)(0.01s+1)			
	0.1s + 1			
	3. $W(s) = 10 \cdot \frac{0.1s + 1}{s(s+1)(0.01s+1)^2}$			
	4. $W(s) = 10 \cdot \frac{0.1s + 1}{s^2(s+1)(0.01s+1)^2}$			
	$s^{2}(s+1)(0.01s+1)^{2}$			
56.	Какая передаточная функция соответствует ПИД-регулятору?	ОПК-6.В.1		

$1. \ W(s) = \frac{k_s s + k_a s^2 + k_t}{s}$ $2. \ W(s) = \frac{k_s s + k_b s^2 + k_t}{s}$ $3. \ W(s) = \frac{k_s s^2 + k_a s + k_t}{s}$ $4. \ W(s) = \frac{k_s s^2 + k_a s + k_t}{s}$ $4. \ W(s) = \frac{k_s s^2 + k_a s + k_t}{s}$ $5. \ \text{Какая формула и спользуется для вычисления передаточной функции системы управления по се графу?}$ $1. \ \text{формула Вайкоиста}$ $2. \ \text{формула Михайлова}$ $3. \ \text{формула Рауса-Турвина}$ $5. \ \text{Какви из представленных матриц Гурвица соответствуют устойчивой системе?}$ $1. \ G = \begin{bmatrix} -1.2 & 0.5 \\ 3 & 1 \end{bmatrix}$ $2. \ G = \begin{bmatrix} 5 & -0.2 \\ -10 & 1 \end{bmatrix}$ $4. \ G = \begin{bmatrix} -3 & 0.2 \\ -3 & 1.5 \end{bmatrix}$ $5. \ \text{Нулями передаточной функции называются:}$ $1. \ \text{кории полинома числителя передаточной функции}$ $2. \ \text{кории полинома числителя передаточной функции}$ $3. \ \text{наиболее близкие друг к другу кории характеристического уравнения}$ $4. \ \text{наиболее близкие друг т от друга корни характеристического уравнения 4. \ \text{наиболее близкие друг т от друга корни характеристического уравнения 5. \ \text{числитель и знаменатель передаточной функции} 60. \ \text{Сопоставьт попятия и их определения протессе на входе ОУ, обсепечивающий такое протескание процессе на выходе ОУ, при котором пе достигается заданная цель управления; \text{система, в которой происходит пе подлежащий управления процесс: воздействие на ОУ, зависящие от системы, управления;}$				1	
3. $W(s) = \frac{k_p s^2 + k_q s + k_l}{s}$ 4. $W(s) = \frac{k_p + k_q s^2 + k_l s}{s}$ 57. Какая формула используется для вычисления передаточной функции системы управления по ее графу? 1. формула Найквиста 2. формула Мейсона 3. формула Ляпунова 4. формула Михайлова 5. формула Рауса-Гурвица 58. Какие из представленных матриц Гурвица соответствуют устойчивой системе? 1. $G = \begin{bmatrix} -1.2 & 0.5 \\ 3 & 1 \end{bmatrix}$ 2. $G = \begin{bmatrix} 0 & -0.2 \\ -10 & 1 \end{bmatrix}$ 4. $G = \begin{bmatrix} -3 & -0.4 \\ 8 & 0.5 \end{bmatrix}$ 5. Нулями передаточной функции называются: 1. корын полинома числителя передаточной функции 2. корин полинома числителя передаточной функции 3. наиболее близкие друг к другу корни характеристического уравнения 4. наиболее облизкие друг от друга корпи характеристического уравнения 5. числитель и знаменатель передаточной функции 60. Сопоставьте понятия и их определения 5. числитель и знаменатель передаточной функции 60. Сопоставьте понятия и их определения процесс па входе ОУ, обеспечивающий такое иротекание процессов на выходе ОУ, при котором не достигается заданная цель управления; система, в которой происходит пе подлежащий управлению процесс; воздействие па ОУ, зависящие		$\int_{-1}^{1} W(s) = k_p s + k_d s^2 + k_i$			
3. $W(s) = \frac{k_p s^2 + k_d s + k_t}{s}$ 4. $W(s) = \frac{k_p + k_d s^2 + k_t s}{s}$ 57. Какая формула используется для вычисления передаточной функции системы управления по ее графу? 1. формула Найквиста 2. формула Мейсона 3. формула Ляпунова 4. формула Михайлова 5. формула Рауса-Гурвица 58. Какие из представленных матриц Гурвица соответствуют устойчивой системе? 1. $G = \begin{bmatrix} -1.2 & 0.5 \\ 3 & 1 \end{bmatrix}$ 2. $G = \begin{bmatrix} 0 & -0.2 \\ -10 & 1 \end{bmatrix}$ 4. $G = \begin{bmatrix} -3 & -0.4 \\ 8 & 0.5 \end{bmatrix}$ 5. Нулями передаточной функции называются: 1. корын полинома числителя передаточной функции 2. корин полинома знаменателя передаточной функции 3. наиболее близкие друг к другу корни характеристического уравнения 4. наиболее близкие друг от друга корни характеристического уравнения 5. числитель и знаменатель передаточной функции 60. Сопоставьте понятия и их определения 5. числитель и знаменатель передаточной функции 60. Сопоставьте понятия и их определения 9. числитель и знаменатель передаточной процесс на входе ОУ, обеспечивающий такое протекание процессов на выходе ОУ, при котором не достигается заданная цель управления; система, в которой происходит пе подлежащий управлению процесс; воздействие на ОУ, зависящие		1. $W(s) = \frac{s}{s}$			
3. $W(s) = \frac{k_p s^2 + k_d s + k_t}{s}$ 4. $W(s) = \frac{k_p + k_d s^2 + k_t s}{s}$ 57. Какая формула используется для вычисления передаточной функции системы управления по ее графу? 1. формула Найквиста 2. формула Мейсона 3. формула Ляпунова 4. формула Михайлова 5. формула Рауса-Гурвица 58. Какие из представленных матриц Гурвица соответствуют устойчивой системе? 1. $G = \begin{bmatrix} -1.2 & 0.5 \\ 3 & 1 \end{bmatrix}$ 2. $G = \begin{bmatrix} 0 & -0.2 \\ -10 & 1 \end{bmatrix}$ 4. $G = \begin{bmatrix} -3 & -0.4 \\ 8 & 0.5 \end{bmatrix}$ 5. Нулями передаточной функции называются: 1. корын полинома числителя передаточной функции 2. корин полинома знаменателя передаточной функции 3. наиболее близкие друг к другу корни характеристического уравнения 4. наиболее близкие друг от друга корни характеристического уравнения 5. числитель и знаменатель передаточной функции 60. Сопоставьте понятия и их определения 5. числитель и знаменатель передаточной функции 60. Сопоставьте понятия и их определения 9. числитель и знаменатель передаточной процесс на входе ОУ, обеспечивающий такое протекание процессов на выходе ОУ, при котором не достигается заданная цель управления; система, в которой происходит пе подлежащий управлению процесс; воздействие на ОУ, зависящие		$k \cdot s + k \cdot s^2 + k$			
3. $W(s) = \frac{k_p s^2 + k_d s + k_t}{s}$ 4. $W(s) = \frac{k_p + k_d s^2 + k_t s}{s}$ 57. Какая формула используется для вычисления передаточной функции системы управления по ее графу? 1. формула Найквиста 2. формула Мейсона 3. формула Ляпунова 4. формула Михайлова 5. формула Рауса-Гурвица 58. Какие из представленных матриц Гурвица соответствуют устойчивой системе? 1. $G = \begin{bmatrix} -1.2 & 0.5 \\ 3 & 1 \end{bmatrix}$ 2. $G = \begin{bmatrix} 0 & -0.2 \\ -10 & 1 \end{bmatrix}$ 4. $G = \begin{bmatrix} -3 & -0.4 \\ 8 & 0.5 \end{bmatrix}$ 5. Нулями передаточной функции называются: 1. корын полинома числителя передаточной функции 2. корин полинома знаменателя передаточной функции 3. наиболее близкие друг к другу корни характеристического уравнения 4. наиболее близкие друг от друга корни характеристического уравнения 5. числитель и знаменатель передаточной функции 60. Сопоставьте понятия и их определения 5. числитель и знаменатель передаточной функции 60. Сопоставьте понятия и их определения 9. числитель и знаменатель передаточной процесс на входе ОУ, обеспечивающий такое протекание процессов на выходе ОУ, при котором не достигается заданная цель управления; система, в которой происходит пе подлежащий управлению процесс; воздействие на ОУ, зависящие		$2. W(s) = \frac{\kappa_d s + \kappa_p s + \kappa_l}{s}$			
57. Какая формула используется для вычисления передаточной функции системы управления по ее графу? 1. формула Найквиста 2. формула Мейсона 3. формула Михайлова 5. формула Рауса-Гурвица 58. Какие из представленных матриц Гурвица соответствуют устойчивой системе? 1. $G = \begin{bmatrix} -1.2 & 0.5 \\ 3 & 1 \end{bmatrix}$ 2. $G = \begin{bmatrix} 0 & -0.2 \\ 5 & 2 \end{bmatrix}$ 3. $G = \begin{bmatrix} -2 & 0.2 \\ -10 & 1 \end{bmatrix}$ 4. $G = \begin{bmatrix} 3 & 0.2 \\ -3 & 1.5 \end{bmatrix}$ 59. Нулями передаточной функции называются: 1. корін полінюма числителя передаточной функции 2. корін полінюма числителя передаточной функции 3. наиболее близкие друг к другу корін характеристического уравнения 4. паиболее удаленные друг от друга коріни характеристического уравнения 5. числитель и знаменатель передаточной функции 60. Сопоставьте понятия и их определения Управление 1. Корін полінома числителя передаточной функции 3. наиболее удаленные друг от друга коріни характеристического уравнения 4. паиболее удаленные друг от друга коріни характеристического уравнения 5. числитель и знаменатель передаточной функции 60. Сопоставьте понятия и их определения 1. процесс на входе ОУ, обеспечивающий такое протекание процессов на выходе ОУ, при котором пе доститаєтся заданная цель управления; система, в которой происходит не подлежащий управлению процесс; объект управления 1. объект управле					
57. Какая формула используется для вычисления передаточной функции системы управления по ее графу? 1. формула Найквиста 2. формула Мейсона 3. формула Михайлова 5. формула Рауса-Гурвица 58. Какие из представленных матриц Гурвица соответствуют устойчивой системе? 1. $G = \begin{bmatrix} -1.2 & 0.5 \\ 3 & 1 \end{bmatrix}$ 2. $G = \begin{bmatrix} 0 & -0.2 \\ 5 & 2 \end{bmatrix}$ 3. $G = \begin{bmatrix} -2 & 0.2 \\ -10 & 1 \end{bmatrix}$ 4. $G = \begin{bmatrix} 3 & 0.2 \\ -3 & 1.5 \end{bmatrix}$ 59. Нулями передаточной функции называются: 1. корін полінюма числителя передаточной функции 2. корін полінюма числителя передаточной функции 3. наиболее близкие друг к другу корін характеристического уравнения 4. паиболее удаленные друг от друга коріни характеристического уравнения 5. числитель и знаменатель передаточной функции 60. Сопоставьте понятия и их определения Управление 1. Корін полінома числителя передаточной функции 3. наиболее удаленные друг от друга коріни характеристического уравнения 4. паиболее удаленные друг от друга коріни характеристического уравнения 5. числитель и знаменатель передаточной функции 60. Сопоставьте понятия и их определения 1. процесс на входе ОУ, обеспечивающий такое протекание процессов на выходе ОУ, при котором пе доститаєтся заданная цель управления; система, в которой происходит не подлежащий управлению процесс; объект управления 1. объект управле		$k_{p}s^{2} + k_{d}s + k_{i}$			
57. Какая формула используется для вычисления передаточной функции системы управления по ее графу? 1. формула Найквиста 2. формула Мейсона 3. формула Михайлова 5. формула Рауса-Гурвица 58. Какие из представленных матриц Гурвица соответствуют устойчивой системе? 1. $G = \begin{bmatrix} -1.2 & 0.5 \\ 3 & 1 \end{bmatrix}$ 2. $G = \begin{bmatrix} 0 & -0.2 \\ 5 & 2 \end{bmatrix}$ 3. $G = \begin{bmatrix} -2 & 0.2 \\ -10 & 1 \end{bmatrix}$ 4. $G = \begin{bmatrix} 3 & 0.2 \\ -3 & 1.5 \end{bmatrix}$ 59. Нулями передаточной функции называются: 1. корін полінюма числителя передаточной функции 2. корін полінюма числителя передаточной функции 3. наиболее близкие друг к другу корін характеристического уравнения 4. паиболее удаленные друг от друга корін характеристического уравнения 5. числитель и знаменатель передаточной функции 60. Сопоставьте понятия и их определения Управление 1. Какая формула Ингарианся по опік на процесс на входе ОУ, обеспечивающий такое протеканне процессов на выходе ОУ, при котором пе доститаєтся заданная цель управления; система, в которой происходит не подлежащий управлению процесс; 1. Возмущение 1. Споставьте понятия и копределення процесстви процесства в которой происходит не подлежащий управлению процесс; 1. Какие из предаточной функции 1. Процесства в которой происходит не подлежащий управлению процесс; 1. Какие из предаточной функции 2. Корни полинома числителя передаточной функции 3. наиболее близкие друг от друга корін характеристического уравнення процесства в в котором пе доститаєтся заданная цель управления; 1. Спетема, в котором пе доститаєтся заданная цель управлению процесс; 1. Каке из предаточной функции называются: 2. Каке из предаточной функции называются: 3. Каке из предаточной функции 4. Полином процесства на ОУ, зависящие		$S. W(s) = \frac{s}{s}$			
57. Какая формула используется для вычисления передаточной функции системы управления по ее графу? 1. формула Найквиста 2. формула Мейсона 3. формула Михайлова 5. формула Рауса-Гурвица 58. Какие из представленных матриц Гурвица соответствуют устойчивой системе? 1. $G = \begin{bmatrix} -1.2 & 0.5 \\ 3 & 1 \end{bmatrix}$ 2. $G = \begin{bmatrix} 0 & -0.2 \\ 5 & 2 \end{bmatrix}$ 3. $G = \begin{bmatrix} -2 & 0.2 \\ -10 & 1 \end{bmatrix}$ 4. $G = \begin{bmatrix} 3 & 0.2 \\ -3 & 1.5 \end{bmatrix}$ 59. Нулями передаточной функции называются: 1. корін полінюма числителя передаточной функции 2. корін полінюма числителя передаточной функции 3. наиболее близкие друг к другу корін характеристического уравнения 4. паиболее удаленные друг от друга коріни характеристического уравнения 5. числитель и знаменатель передаточной функции 60. Сопоставьте понятия и их определения Управление 1. Корін полінома числителя передаточной функции 3. наиболее удаленные друг от друга коріни характеристического уравнения 4. паиболее удаленные друг от друга коріни характеристического уравнения 5. числитель и знаменатель передаточной функции 60. Сопоставьте понятия и их определения 1. процесс на входе ОУ, обеспечивающий такое протекание процессов на выходе ОУ, при котором пе доститаєтся заданная цель управления; система, в которой происходит не подлежащий управлению процесс; объект управления 1. объект управле		$k + k s^2 + k s$			
57. Какая формула используется для вычисления передаточной функции системы управления по ее графу? 1. формула Найквиста 2. формула Мейсона 3. формула Михайлова 5. формула Рауса-Гурвица 58. Какие из представленных матриц Гурвица соответствуют устойчивой системе? 1. $G = \begin{bmatrix} -1.2 & 0.5 \\ 3 & 1 \end{bmatrix}$ 2. $G = \begin{bmatrix} 0 & -0.2 \\ 5 & 2 \end{bmatrix}$ 3. $G = \begin{bmatrix} -2 & 0.2 \\ -10 & 1 \end{bmatrix}$ 4. $G = \begin{bmatrix} 3 & 0.2 \\ -3 & 1.5 \end{bmatrix}$ 59. Нулями передаточной функции называются: 1. корін полінюма числителя передаточной функции 2. корін полінюма числителя передаточной функции 3. наиболее близкие друг к другу корін характеристического уравнения 4. паиболее удаленные друг от друга коріни характеристического уравнения 5. числитель и знаменатель передаточной функции 60. Сопоставьте понятия и их определения Управление 1. Корін полінома числителя передаточной функции 3. наиболее удаленные друг от друга коріни характеристического уравнения 4. паиболее удаленные друг от друга коріни характеристического уравнения 5. числитель и знаменатель передаточной функции 60. Сопоставьте понятия и их определения 1. процесс на входе ОУ, обеспечивающий такое протекание процессов на выходе ОУ, при котором пе доститаєтся заданная цель управления; система, в которой происходит не подлежащий управлению процесс; объект управления 1. объект управле		4. $W(s) = \frac{\kappa_p + \kappa_d s + \kappa_i s}{s}$			
функции системы управления по ее графу? 1. формула Найквиста 2. формула Мейсона 3. формула Ляпунова 4. формула Рауса-Гурвица 58. Какие из представленных матриц Гурвица соответствуют устойчивой системе? 1. $G = \begin{bmatrix} -1.2 & 0.5 \\ 3 & 1 \end{bmatrix}$ 2. $G = \begin{bmatrix} 0 & -0.2 \\ 5 & 2 \end{bmatrix}$ 3. $G = \begin{bmatrix} -2 & 0.2 \\ -10 & 1 \end{bmatrix}$ 4. $G = \begin{bmatrix} 3 & 0.2 \\ -3 & 1.5 \end{bmatrix}$ 59. Нулями передаточной функции называются: 1. корни полинома числителя передаточной функции 2. корни полинома знаменателя передаточной функции 3. наиболее близкие друг к другу корни характеристического уравнения 4. наиболее облизкие друг от друга корни характеристического уравнения 5. числитель и знаменатель передаточной функции 60. Сопоставьте понятия и их определения 1. управление 1. формула Найквиста 2. формула Михайлова 3. формула Рауса-Гурвица 4. изывания передаточной функции 60. Сопоставьте понятия и их определения 1. процесс на входе ОУ, обсепечивающий такое протекание процессов на выходе ОУ, при котором не достигается заданная цель управления; система, в которой происходит не подлежащий управлению процесс; 1. формула Михайлова 1. формула Рауса-Гурвица 2. формула Михайлова 3. формула Рауса-Гурвица соответствуют управлению процесс; 1. Бормущение 1. $G = \begin{bmatrix} -1.2 & 0.5 \\ 0 & -0.2 \end{bmatrix}$ 2. $G = \begin{bmatrix} -1.2 & 0.5 \\ 0 & -0.2 \end{bmatrix}$ 3. $G = \begin{bmatrix} -2 & 0.2 \\ -2 & 1.5 \end{bmatrix}$ 4. $G = \begin{bmatrix} -2 & 0.2 \\ 0 & -0.2 \end{bmatrix}$ 5. $G = \begin{bmatrix} 3 & 0.2 \\ -3 & 1.5 \end{bmatrix}$ 5. $G = \begin{bmatrix} 3 & 0.2 \\ -3 & 1.5 \end{bmatrix}$ 5. $G = \begin{bmatrix} 3 & 0.2 \\ -3 & 1.5 \end{bmatrix}$ 5. $G = \begin{bmatrix} -3 & 0.4 \\ 8 & 0.5 \end{bmatrix}$ 6. ОПК-4.3.1 6. ОПК-4.3.1 6. ОПК-4.3.1 6. ОПК-4.3.1 6. ОПК-4.3.1 6. ОПК-4.3.1					
1. формула Найквиста 2. формула Мейсона 3. формула Михайлова 4. формула Михайлова 5. формула Рауса-Гурвица OПК-6.В.1 58. Какие из представленных матриц Гурвица соответствуют устойчивой системе? ОПК-6.В.1 1. G =	57.	1	<u>-</u>	ОПК-4.3.1	
2. формула Мейсона 3. формула Ляпунова 4. формула Михайлова 5. формула Рауса-Гурвица 58. Какие из представленных матриц Гурвица соответствуют устойчивой системе? 1. $G = \begin{bmatrix} -1.2 & 0.5 \\ 3 & 1 \end{bmatrix}$ 2. $G = \begin{bmatrix} 0 & -0.2 \\ 5 & 2 \end{bmatrix}$ 3. $G = \begin{bmatrix} -2 & 0.2 \\ -10 & 1 \end{bmatrix}$ 4. $G = \begin{bmatrix} 3 & 0.2 \\ -3 & 1.5 \end{bmatrix}$ 59. Нулями передаточной функции называются: 1. корни полинома числителя передаточной функции 2. корни полинома знаменателя передаточной функции 3. наиболее близкие друг к другу корни характеристического уравнения 4. наиболее удаленные друг от друга корни характеристического уравнения 5. числитель и знаменатель передаточной функции 60. Сопоставьте понятия и их определения 5. числитель и знаменатель передаточной функции 60. Сопоставьте понятия и их определения 9 процесс на входе ОУ, обеспечивающий такое протекание процессов на выходе ОУ, при котором не доститается заданная цель управления; 60 система, в которой происходит не подлежащий управлению процесе; 803действие на ОУ, зависящие		1	ее графу?		
3. формула Ляпунова 4. формула Михайлова 5. формула Рауса-Гурвица 58. Какие из представленных матриц Гурвица соответствуют устойчивой системе? 1. $G = \begin{bmatrix} -1.2 & 0.5 \\ 3 & 1 \end{bmatrix}$ 2. $G = \begin{bmatrix} 0 & -0.2 \\ 5 & 2 \end{bmatrix}$ 3. $G = \begin{bmatrix} -2 & 0.2 \\ -10 & 1 \end{bmatrix}$ 4. $G = \begin{bmatrix} 3 & -0.4 \\ 8 & 0.5 \end{bmatrix}$ 5. $G = \begin{bmatrix} 3 & 0.2 \\ -3 & 1.5 \end{bmatrix}$ 59. Нулями передаточной функции называются: 1. корни полинома числителя передаточной функции 2. корни полинома знаменателя передаточной функции 3. наиболее близкие друг к другу корни характеристического уравнения 4. наиболее удаленные друг от друга корни характеристического уравнения 5. числитель и знаменатель передаточной функции 60. Сопоставьте понятия и их определения процесс на входе ОУ, обеспечивающий такое протекание процессов на выходе ОУ, при котором не достигается заданная цель управления; система, в которой происходит не подлежащий управлению процесс; Объект управления процесс; воздействие на ОУ, зависящие		1. формула Найквиста			
4. формула Михайлова 5. формула Рауса-Гурвица 58. Какие из представленных матриц Гурвица соответствуют устойчивой системе? 1. $G = \begin{bmatrix} -1.2 & 0.5 \\ 3 & 1 \end{bmatrix}$ 2. $G = \begin{bmatrix} 0 & -0.2 \\ 5 & 2 \end{bmatrix}$ 3. $G = \begin{bmatrix} -2 & 0.2 \\ -10 & 1 \end{bmatrix}$ 4. $G = \begin{bmatrix} 3 & 0.2 \\ -3 & 1.5 \end{bmatrix}$ 59. Нулями передаточной функции называются: 1. корни полинома числителя передаточной функции 2. корни полинома числителя передаточной функции 3. наиболее близкие друг к другу корни характеристического уравнения 4. наиболее удаленные друг от друга корни характеристического уравнения 5. числитель и знаменатель передаточной функции 60. Сопоставьте понятия и их определения процесс на входе ОУ, обеспечивающий такое протекание процессов на выходе ОУ, при котором не доститается заданная цель управления; система, в которой происходит не подлежащий управлению процесс; воздействие на ОУ, зависящие		2. формула Мейсона			
5. формула Рауса-Гурвица 58. Какие из представленных матриц Гурвица соответствуют устойчивой системе? 1. $G = \begin{bmatrix} -1.2 & 0.5 \\ 3 & 1 \end{bmatrix}$ 2. $G = \begin{bmatrix} 0 & -0.2 \\ 5 & 2 \end{bmatrix}$ 3. $G = \begin{bmatrix} -2 & 0.2 \\ -10 & 1 \end{bmatrix}$ 4. $G = \begin{bmatrix} 3 & 0.2 \\ -3 & 1.5 \end{bmatrix}$ 59. Нулями передаточной функции называются: 1. корни полинома числителя передаточной функции 2. корни полинома знаменателя передаточной функции 3. наиболее близкие друг к другу корни характеристического уравнения 4. наиболее удаленные друг от друга корни характеристического уравнения 5. числитель и знаменатель передаточной функции 60. Сопоставьте понятия и их определения процесс на входе ОУ, обеспечивающий такое протскание процессов на выходе ОУ, при котором не доститается заданная цель управления; система, в которой происходит не подлежащий управлению процесс; воздействие на ОУ, зависящие Объект управления		3. формула Ляпунова			
58. Какие из представленных матриц Гурвица соответствуют устойчивой системс? $1. G = \begin{bmatrix} -1.2 & 0.5 \\ 3 & 1 \end{bmatrix}$ $2. G = \begin{bmatrix} 0 & -0.2 \\ 5 & 2 \end{bmatrix}$ $3. G = \begin{bmatrix} -2 & 0.2 \\ -10 & 1 \end{bmatrix}$ $4. G = \begin{bmatrix} 3 & 0.2 \\ -3 & 1.5 \end{bmatrix}$ $59. $		4. формула Михайлова			
устойчивой системе? 1. $G = \begin{bmatrix} -1.2 & 0.5 \\ 3 & 1 \end{bmatrix}$ 2. $G = \begin{bmatrix} 0 & -0.2 \\ 5 & 2 \end{bmatrix}$ 3. $G = \begin{bmatrix} -2 & 0.2 \\ -10 & 1 \end{bmatrix}$ 4. $G = \begin{bmatrix} -3 & -0.4 \\ 8 & 0.5 \end{bmatrix}$ 5. $G = \begin{bmatrix} 3 & 0.2 \\ -3 & 1.5 \end{bmatrix}$ 59. Нулями передаточной функции называются: 1. корни полинома числителя передаточной функции 2. корни полинома знаменателя передаточной функции 3. наиболее близкие друг к другу корни характеристического уравнения 4. наиболее удаленные друг от друга корни характеристического уравнения 5. числитель и знаменатель передаточной функции 60. Сопоставьте понятия и их определения 10		5. формула Рауса-Гурвица			
устойчивой системе? 1. $G = \begin{bmatrix} -1.2 & 0.5 \\ 3 & 1 \end{bmatrix}$ 2. $G = \begin{bmatrix} 0 & -0.2 \\ 5 & 2 \end{bmatrix}$ 3. $G = \begin{bmatrix} -2 & 0.2 \\ -10 & 1 \end{bmatrix}$ 4. $G = \begin{bmatrix} -3 & -0.4 \\ 8 & 0.5 \end{bmatrix}$ 5. $G = \begin{bmatrix} 3 & 0.2 \\ -3 & 1.5 \end{bmatrix}$ 59. Нулями передаточной функции называются: 1. корни полинома числителя передаточной функции 2. корни полинома знаменателя передаточной функции 3. наиболее близкие друг к другу корни характеристического уравнения 4. наиболее удаленные друг от друга корни характеристического уравнения 5. числитель и знаменатель передаточной функции 60. Сопоставьте понятия и их определения процесс на входе ОУ, обеспечивающий такое управление протекание процессов на выходе ОУ, при котором не достигается заданная цель управления; система, в которой происходит не подлежащий управлению процесс; воздействие на ОУ, зависящие	58.	Какие из представленных матри	ц Гурвица соответствуют	ОПК-6.В.1	
1. $G = \begin{bmatrix} -1.2 & 0.5 \\ 3 & 1 \end{bmatrix}$ 2. $G = \begin{bmatrix} 0 & -0.2 \\ 5 & 2 \end{bmatrix}$ 3. $G = \begin{bmatrix} -2 & 0.2 \\ -10 & 1 \end{bmatrix}$ 4. $G = \begin{bmatrix} -3 & -0.4 \\ 8 & 0.5 \end{bmatrix}$ 5. $G = \begin{bmatrix} 3 & 0.2 \\ -3 & 1.5 \end{bmatrix}$ 59. Нулями передаточной функции называются: 1. корни полинома числителя передаточной функции 2. корни полинома знаменателя передаточной функции 3. наиболее близкие друг к другу корни характеристического уравнения 4. наиболее близкие друг от друга корни характеристического уравнения 5. числитель и знаменатель передаточной функции 60. Сопоставьте понятия и их определения процесс на входе ОУ, обеспечивающий такое протекание процессов на выходе ОУ, при котором не достигается заданная цель управления; система, в которой происходит не подлежащий управлению процесс; воздействие на ОУ, зависящие		_ =			
2. $G = \begin{bmatrix} 0 & -0.2 \\ 5 & 2 \end{bmatrix}$ 3. $G = \begin{bmatrix} -2 & 0.2 \\ -10 & 1 \end{bmatrix}$ 4. $G = \begin{bmatrix} -3 & -0.4 \\ 8 & 0.5 \end{bmatrix}$ 5. $G = \begin{bmatrix} 3 & 0.2 \\ -3 & 1.5 \end{bmatrix}$ 59. Нулями передаточной функции называются: 1. корни полинома числителя передаточной функции 2. корни полинома знаменателя передаточной функции 3. наиболее близкие друг к другу корни характеристического уравнения 4. наиболее удаленные друг от друга корни характеристического уравнения 5. числитель и знаменатель передаточной функции 60. Сопоставьте понятия и их определения процесс на входе ОУ, обеспечивающий такое протекание процессов на выходе ОУ, при котором не достигается заданная цель управления; система, в которой происходит не подлежащий управлению процесс; воздействие на ОУ, зависящие		-			
2. $G = \begin{bmatrix} 0 & -0.2 \\ 5 & 2 \end{bmatrix}$ 3. $G = \begin{bmatrix} -2 & 0.2 \\ -10 & 1 \end{bmatrix}$ 4. $G = \begin{bmatrix} -3 & -0.4 \\ 8 & 0.5 \end{bmatrix}$ 5. $G = \begin{bmatrix} 3 & 0.2 \\ -3 & 1.5 \end{bmatrix}$ 59. Нулями передаточной функции называются: 1. корни полинома числителя передаточной функции 2. корни полинома знаменателя передаточной функции 3. наиболее близкие друг к другу корни характеристического уравнения 4. наиболее удаленные друг от друга корни характеристического уравнения 5. числитель и знаменатель передаточной функции 60. Сопоставьте понятия и их определения процесс на входе ОУ, обеспечивающий такое протекание процессов на выходе ОУ, при котором не достигается заданная цель управления; системы, в которой происходит не подлежащий управлению процесс; воздействие на ОУ, зависящие		$\begin{bmatrix} 1. & G = \end{bmatrix}$			
3. $G = \begin{bmatrix} -2 & 0.2 \\ -10 & 1 \end{bmatrix}$ 4. $G = \begin{bmatrix} -3 & -0.4 \\ 8 & 0.5 \end{bmatrix}$ 5. $G = \begin{bmatrix} 3 & 0.2 \\ -3 & 1.5 \end{bmatrix}$ 59. Нулями передаточной функции называются: 1. корни полинома числителя передаточной функции 2. корни полинома знаменателя передаточной функции 3. наиболее близкие друг к другу корни характеристического уравнения 4. наиболее удаленные друг от друга корни характеристического уравнения 5. числитель и знаменатель передаточной функции 60. Сопоставьте понятия и их определения Управление 10 ОПК-4.3.1 10 ОПК-4.3.1 11 ОПК-4.3.1 12 ОПК-4.3.1 13 ОПК-4.3.1 14 ОПК-4.3.1 15 ОПК-4.3.1 16 ОПК-4.3.1 17 ОПК-4.3.1 18 ОПК-4.3.1					
3. $G = \begin{bmatrix} -2 & 0.2 \\ -10 & 1 \end{bmatrix}$ 4. $G = \begin{bmatrix} -3 & -0.4 \\ 8 & 0.5 \end{bmatrix}$ 5. $G = \begin{bmatrix} 3 & 0.2 \\ -3 & 1.5 \end{bmatrix}$ 59. Нулями передаточной функции называются: 1. корни полинома числителя передаточной функции 2. корни полинома знаменателя передаточной функции 3. наиболее близкие друг к другу корни характеристического уравнения 4. наиболее удаленные друг от друга корни характеристического уравнения 5. числитель и знаменатель передаточной функции 60. Сопоставьте понятия и их определения Управление 10 ОПК-4.3.1 10 ОПК-4.3.1 11 ОПК-4.3.1 12 ОПК-4.3.1 13 ОПК-4.3.1 14 ОПК-4.3.1 15 ОПК-4.3.1 16 ОПК-4.3.1 17 ОПК-4.3.1 18 ОПК-4.3.1 18 ОПК-4.3.1 18 ОПК-4.3.1 18 ОПК-4.3.1 19 ОПК-4.3.1 10 ОПК-4.3.1		$\begin{bmatrix} 2 & 0 & -0.2 \end{bmatrix}$			
3. $G = \begin{bmatrix} -2 & 0.2 \\ -10 & 1 \end{bmatrix}$ 4. $G = \begin{bmatrix} -3 & -0.4 \\ 8 & 0.5 \end{bmatrix}$ 5. $G = \begin{bmatrix} 3 & 0.2 \\ -3 & 1.5 \end{bmatrix}$ 59. Нулями передаточной функции называются: 1. корни полинома числителя передаточной функции 2. корни полинома знаменателя передаточной функции 3. наиболее близкие друг к другу корни характеристического уравнения 4. наиболее удаленные друг от друга корни характеристического уравнения 5. числитель и знаменатель передаточной функции 60. Сопоставьте понятия и их определения Управление 10 ОПК-4.3.1 10 ОПК-4.3.1 11 ОПК-4.3.1 12 ОПК-4.3.1 13 ОПК-4.3.1 14 ОПК-4.3.1 15 ОПК-4.3.1 16 ОПК-4.3.1 17 ОПК-4.3.1 18 ОПК-4.3.1		$\begin{bmatrix} 2. & G = \\ 5 & 2 \end{bmatrix}$			
4. $G = \begin{bmatrix} -3 & -0.4 \\ 8 & 0.5 \end{bmatrix}$ 5. $G = \begin{bmatrix} 3 & 0.2 \\ -3 & 1.5 \end{bmatrix}$ 59. Нулями передаточной функции называются: 1. корни полинома числителя передаточной функции 2. корни полинома знаменателя передаточной функции 3. наиболее близкие друг к другу корни характеристического уравнения 4. наиболее удаленные друг от друга корни характеристического уравнения 5. числитель и знаменатель передаточной функции 60. Сопоставьте понятия и их определения процесс на входе ОУ, обеспечивающий такое протекание процессов на выходе ОУ, при котором не достигается заданная цель управления; система, в которой происходит не подлежащий управлению процесс; воздействие на ОУ, зависящие					
4. $G = \begin{bmatrix} -3 & -0.4 \\ 8 & 0.5 \end{bmatrix}$ 5. $G = \begin{bmatrix} 3 & 0.2 \\ -3 & 1.5 \end{bmatrix}$ 59. Нулями передаточной функции называются: 1. корни полинома числителя передаточной функции 2. корни полинома знаменателя передаточной функции 3. наиболее близкие друг к другу корни характеристического уравнения 4. наиболее удаленные друг от друга корни характеристического уравнения 5. числитель и знаменатель передаточной функции 60. Сопоставьте понятия и их определения процесс на входе ОУ, обеспечивающий такое протекание процессов на выходе ОУ, при котором не достигается заданная цель управления; система, в которой происходит не подлежащий управлению процесс; воздействие на ОУ, зависящие		3. G = -2 0.2			
59. Нулями передаточной функции называются: 1. корни полинома числителя передаточной функции 2. корни полинома знаменателя передаточной функции 3. наиболее близкие друг к другу корни характеристического уравнения 4. наиболее удаленные друг от друга корни характеристического уравнения 5. числитель и знаменатель передаточной функции 60. Сопоставьте понятия и их определения процесс на входе ОУ, обеспечивающий такое протекание процессов на выходе ОУ, при котором не достигается заданная цель управления; система, в которой происходит не подлежащий управлению процесс; воздействие на ОУ, зависящие		l I			
59. Нулями передаточной функции называются: 1. корни полинома числителя передаточной функции 2. корни полинома знаменателя передаточной функции 3. наиболее близкие друг к другу корни характеристического уравнения 4. наиболее удаленные друг от друга корни характеристического уравнения 5. числитель и знаменатель передаточной функции 60. Сопоставьте понятия и их определения процесс на входе ОУ, обеспечивающий такое протекание процессов на выходе ОУ, при котором не достигается заданная цель управления; система, в которой происходит не подлежащий управлению процесс; воздействие на ОУ, зависящие					
59. Нулями передаточной функции называются: 1. корни полинома числителя передаточной функции 2. корни полинома знаменателя передаточной функции 3. наиболее близкие друг к другу корни характеристического уравнения 4. наиболее удаленные друг от друга корни характеристического уравнения 5. числитель и знаменатель передаточной функции 60. Сопоставьте понятия и их определения процесс на входе ОУ, обеспечивающий такое протекание процессов на выходе ОУ, при котором не достигается заданная цель управления; система, в которой происходит не подлежащий управлению процесс; воздействие на ОУ, зависящие		4. G = 0.5			
59. Нулями передаточной функции называются: 1. корни полинома числителя передаточной функции 2. корни полинома знаменателя передаточной функции 3. наиболее близкие друг к другу корни характеристического уравнения 4. наиболее удаленные друг от друга корни характеристического уравнения 5. числитель и знаменатель передаточной функции 60. Сопоставьте понятия и их определения процесс на входе ОУ, обеспечивающий такое протекание процессов на выходе ОУ, при котором не достигается заданная цель управления; система, в которой происходит не подлежащий управлению процесс; воздействие на ОУ, зависящие					
59. Нулями передаточной функции называются: 1. корни полинома числителя передаточной функции 2. корни полинома знаменателя передаточной функции 3. наиболее близкие друг к другу корни характеристического уравнения 4. наиболее удаленные друг от друга корни характеристического уравнения 5. числитель и знаменатель передаточной функции 60. Сопоставьте понятия и их определения процесс на входе ОУ, обеспечивающий такое протекание процессов на выходе ОУ, при котором не достигается заданная цель управления; система, в которой происходит не подлежащий управлению процесс; воздействие на ОУ, зависящие		$\begin{bmatrix} 5 & C \end{bmatrix}$ 3 0.2			
59. Нулями передаточной функции называются: 1. корни полинома числителя передаточной функции 2. корни полинома знаменателя передаточной функции 3. наиболее близкие друг к другу корни характеристического уравнения 4. наиболее удаленные друг от друга корни характеристического уравнения 5. числитель и знаменатель передаточной функции 60. Сопоставьте понятия и их определения процесс на входе ОУ, обеспечивающий такое протекание процессов на выходе ОУ, при котором не достигается заданная цель управления; система, в которой происходит не подлежащий управлению процесс; воздействие на ОУ, зависящие		$\begin{bmatrix} 5. & G = \\ -3 & 1.5 \end{bmatrix}$			
1. корни полинома числителя передаточной функции 2. корни полинома знаменателя передаточной функции 3. наиболее близкие друг к другу корни характеристического уравнения 4. наиболее удаленные друг от друга корни характеристического уравнения 5. числитель и знаменатель передаточной функции 60. Сопоставьте понятия и их определения процесс на входе ОУ, обеспечивающий такое протекание процессов на выходе ОУ, при котором не достигается заданная цель управления; система, в которой происходит не подлежащий управлению процесс; воздействие на ОУ, зависящие	50		Hant Indiamage	ОПК 4 2 1	
2. корни полинома знаменателя передаточной функции 3. наиболее близкие друг к другу корни характеристического уравнения 4. наиболее удаленные друг от друга корни характеристического уравнения 5. числитель и знаменатель передаточной функции 60. Сопоставьте понятия и их определения процесс на входе ОУ, обеспечивающий такое протекание процессов на выходе ОУ, при котором не достигается заданная цель управления; система, в которой происходит не подлежащий управлению процесс; воздействие на ОУ, зависящие	39.			O11K-4.5.1	
3. наиболее близкие друг к другу корни характеристического уравнения 4. наиболее удаленные друг от друга корни характеристического уравнения 5. числитель и знаменатель передаточной функции 60. Сопоставьте понятия и их определения процесс на входе ОУ, обеспечивающий такое протекание процессов на выходе ОУ, при котором не достигается заданная цель управления; система, в которой происходит не подлежащий управлению процесс; воздействие на ОУ, зависящие					
уравнения 4. наиболее удаленные друг от друга корни характеристического уравнения 5. числитель и знаменатель передаточной функции 60. Сопоставьте понятия и их определения процесс на входе ОУ, обеспечивающий такое протекание процессов на выходе ОУ, при котором не достигается заданная цель управления; система, в которой происходит не подлежащий управлению процесс; воздействие на ОУ, зависящие					
4. наиболее удаленные друг от друга корни характеристического уравнения 5. числитель и знаменатель передаточной функции 60. Сопоставьте понятия и их определения процесс на входе ОУ, обеспечивающий такое протекание процессов на выходе ОУ, при котором не достигается заданная цель управления; система, в которой происходит не подлежащий управлению процесс; воздействие на ОУ, зависящие		1 1 1 1	корни характеристического		
уравнения 5. числитель и знаменатель передаточной функции 60. Сопоставьте понятия и их определения процесс на входе ОУ, обеспечивающий такое протекание процессов на выходе ОУ, при котором не достигается заданная цель управления; система, в которой происходит не подлежащий управлению процесс; воздействие на ОУ, зависящие		* *			
5. числитель и знаменатель передаточной функции 60. Сопоставьте понятия и их определения процесс на входе ОУ, обеспечивающий такое протекание процессов на выходе ОУ, при котором не достигается заданная цель управления; система, в которой происходит не подлежащий управлению процесс; воздействие на ОУ, зависящие			руга корни характеристического		
60. Сопоставьте понятия и их определения процесс на входе ОУ, обеспечивающий такое протекание процессов на выходе ОУ, при котором не достигается заданная цель управления; система, в которой происходит не подлежащий управлению процесс; воздействие на ОУ, зависящие		* *			
процесс на входе ОУ, обеспечивающий такое протекание процессов на выходе ОУ, при котором не достигается заданная цель управления; система, в которой происходит не подлежащий управлению процесс; воздействие на ОУ, зависящие	60	1	1,	OTH: 4 2 1	
Управление Управление Управление Управление Управление Выходе ОУ, при котором не достигается заданная цель управления; система, в которой происходит не подлежащий управлению процесс; воздействие на ОУ, зависящие	60.	Сопоставьте понятия и их опред		OHK-4.3.1	
Управление протекание процессов на выходе ОУ, при котором не достигается заданная цель управления; система, в которой происходит не подлежащий управлению процесс; воздействие на ОУ, зависящие			-		
выходе ОУ, при котором не достигается заданная цель управления; система, в которой происходит не подлежащий управлению процесс; воздействие на ОУ, зависящие					
Выходе ОУ, при котором не достигается заданная цель управления; система, в которой происходит не подлежащий управлению процесс; воздействие на ОУ, зависящие		Управление			
управления; система, в которой происходит Возмущение не подлежащий управлению процесс; воздействие на ОУ, зависящие		•			
система, в которой происходит Возмущение не подлежащий управлению процесс; воздействие на ОУ, зависящие					
Возмущение не подлежащий управлению процесс; воздействие на ОУ, зависящие			* -		
процесс; объект управления воздействие на ОУ, зависящие		_			
Объект управления воздействие на ОУ, зависящие		Возмущение			
т пробект управления					
от системы управления;		Объект управления			
· 1 /		Cobert Jiipabiteiiini	от системы управления;		

	система, в которой происходит	
	подлежащий управлению	
	процесс;	
	процесс на входе ОУ,	
	обеспечивающий такое	
	протекание процессов на	
	выходе ОУ, при котором	
	достигается заданная цель	
	управления; воздействие на ОУ, не	
	зависящие от системы	
61.	управления; Определите запасы устойчивости по амплитуде и фазе по	ОПК-6.В.1
01.		OHK-0.B.1
	диаграммам Боде	
	$L(\omega)$, $\pi \mathbf{b}$	
	20	
	0	
	-20 	
	-40	
	-60	
	$\varphi(\omega), \circ $ $\downarrow $	
	-45	
	-90	
	-135	
	$-180 \Big _{10^{\circ}} -1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - $	
	1. запас устойчивости по амплитуде 20 дБ	
	запас устойчивости по фазе 180°	
	2. система неустойчива, следовательно, запасов устойчивости нет	
	3. запас устойчивости по амплитуде 38 дБ	
	запас устойчивости по фазе 70°	
	4. запас устойчивости по амплитуде 54 дБ	
	запас устойчивости по фазе 70°	
	5. запас устойчивости по амплитуде 20 дБ	
	запас устойчивости по фазе 70°	
	6. запас устойчивости по амплитуде 38 дБ	
	запас устойчивости по фазе 90°	
	7.запас устойчивости по фазе 70	
	запас устойчивости по фазе 180°	
	8. запас устойчивости по фазе 160	
	запас устойчивости по амилитуде 34 дв	
	9. запасы устойчивости невозможно определить по данным	
62.	характеристикам Определите коэффициенты передаточной функции для	ОПК-6.В.1
02.	апериодического звена 1 го порядка $W(s) = \frac{k}{Ts+1}$ по графику	O111C-0.D.1
	переходного процесса	

		1
	перерегулирование δ =250%	
	установившаяся ошибка $e_{\text{уст}}$ =2,5	
	2. время переходного процесса $t_{\Pi\Pi}$ =15 с	
	перерегулирование δ =250%	
	установившаяся ошибка e_{yct} =2,5	
	3 . время переходного процесса $t_{\Pi\Pi}$ =0,3 с	
	перерегулирование δ =250%	
	установившаяся ошибка $e_{ycr}=0$	
	4. время переходного процесса $t_{\Pi\Pi}$ =15 с	
	перерегулирование δ =250%	
	установившаяся ошибка $e_{ycr}=0$	
	5. система неустойчива	
	6. рассматриваемого времени моделирования недостаточно для	
	определения показателей качества системы	
66.	Принцип суперпозиции для линейной системы описывается	ОПК-4.3.1
00.	формулой:	01110 1.5.1
	$1. f\left(\prod_{i=1}^{n} x_i\right) = \sum_{i=1}^{n} f\left(x_i\right)$	
	$2. f\left(\prod_{i=1}^{n} x_i\right) = \prod_{i=1}^{n} f\left(x_i\right)$	
	$ 2. f \prod x_i = \prod f(x_i)$	
	3. $f\left(\sum_{i=1}^{n} x_i\right) = \prod_{i=1}^{n} f\left(x_i\right)$	
	$\begin{bmatrix} J \cdot J & \sum_{i=1}^{n} \lambda_i \end{bmatrix} = \prod_{i=1}^{n} J \begin{pmatrix} \lambda_i \end{pmatrix}$	
	$4. f\left(\sum_{i=1}^{n} x_i\right) = \sum_{i=1}^{n} f\left(x_i\right)$	
	(1-1) 1-1	
67.	Укажите формулу преобразования схемы к эквивалентному звену	ОПК-6.В.1
	xy	
	$\stackrel{\sim}{\longrightarrow} W_1 \longrightarrow W_2 \longrightarrow W_n \longrightarrow$	
	W	
	1. $W = \frac{W_1}{1 \mp W_1 W_n}$	
	$1 \mp W_1 W_n$	
	$2. W = W_1 W_2 \dots W_n$	
	1 1 1	
	$3. W = \frac{1}{W_1} \cdot \frac{1}{W_2} \times \dots \times \frac{1}{W_n}$	
	4. $W = \frac{1}{W_1} + \frac{1}{W_2} + \ldots + \frac{1}{W_n}$	
	W_1 W_2 W_n	
	$5. W = W_1 + W_2 + \ldots + W_n$	
68.		ОПК-6.В.1
08.	Укажите формулу преобразования схемы к эквивалентному звену	OHK-0.B.1
	W_1	
	$x \longrightarrow w_0$	
	VV n	
	W.	
	1. $W = \frac{W_1}{1 \mp W_1 W_n}$	
	1 "	
	$2. W = W_1 W_2 \dots W_n$	
	•	•

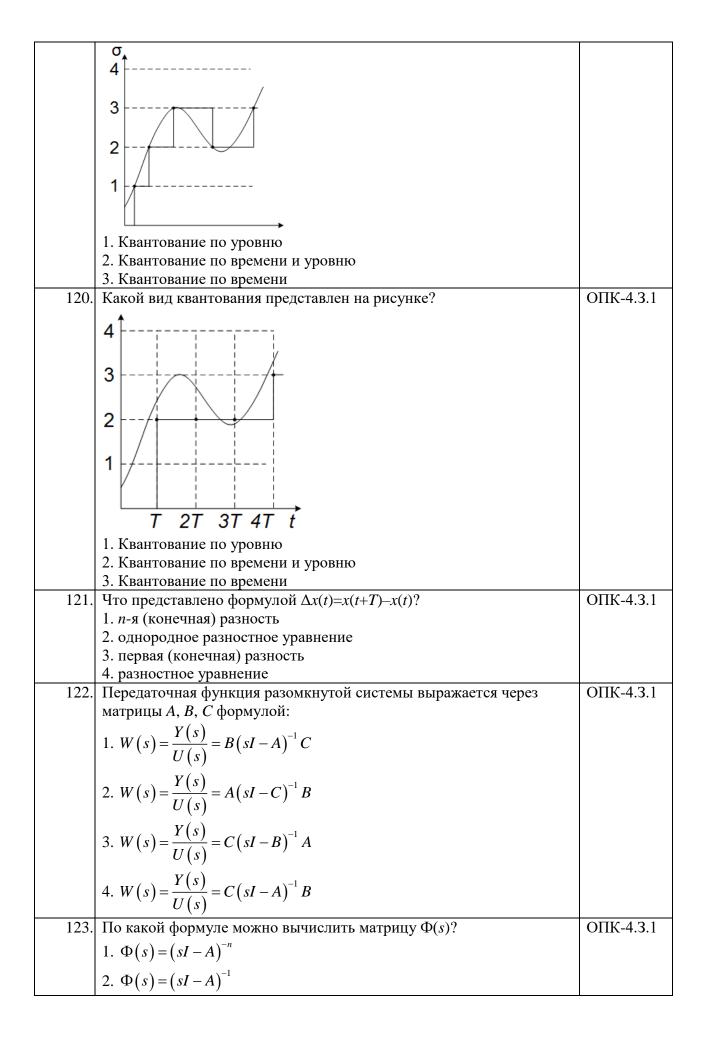
		1
	$3. W = \frac{1}{W_1} \cdot \frac{1}{W_2} \times \dots \times \frac{1}{W_n}$	
	4. $W = \frac{1}{W_1} + \frac{1}{W_2} + \ldots + \frac{1}{W_n}$	
	$W_1 = W_1 + W_2 + \cdots + W_n$	
	$5. W = W_1 + W_2 + \ldots + W_n$	
69.	Укажите формулу преобразования схемы к эквивалентному звену	ОПК-6.В.1
	$\xrightarrow{x} \swarrow_{+} \xrightarrow{W_1} \xrightarrow{y}$	
	W_2	
	W_1	
	1. $W = \frac{W_1}{1 \mp W_1 W_2}$	
	$2. W = W_1 W_2$	
	$W = W_1$	
	$3. W = \frac{W_1}{1 \pm W_1 W_2}$	
	4. $W = W_1 + W_2$	
	5. $W = W_1 - W_2$	
	6 семестр	1
70.	Что в передаточной функции	ОПК-4.3.1
	$G(z) = \frac{Y(z)}{U(z)} = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + b_3 z^{-3} + b_4 z^{-4}}{1 + a_1 z^{-1} + a_2 z^{-2} + a_3 z^{-3} + a_4 z^{-4}}$	
	обозначает оператор z^{-1} ?	
	1. Преобразование Лорана	
	2. Задержку на один такт	
	3. Преобразование Лапласа	
71.	В чем заключается функция наблюдающего устройства?	ОПК-4.3.1
	1. В восстановлении вектора состояния Y по вектору X	
	2. В наблюдении за выходом системы У	
	3. В восстановлении вектора состояния X по вектору Y	
770	4. В наблюдении за состоянием системы <i>X</i>	OFFICA D.1
72.	В чем заключается цель модального синтеза системы управления?	ОПК-4.3.1
	1. В поиске оптимального управления для перемещения системы в заданное состояние.	
	2. В обеспечении заданного расположения полюсов замкнутой	
	системы.	
	3. В обеспечении заданного состояния системы.	
	4. В обеспечении заданного расположения полюсов разомкнутой	
	системы.	
73.	Выберите верное определение критерия идентифицируемости	ОПК-4.3.1
	1. Линейная однородная система называется полностью	
	идентифицируемой по вектору состояния, если при заданном	
	векторе начальных условий X_0 матрица В может быть однозначно	
	восстановлена за конечный отрезок времени идентификации по	
	одной временной последовательности $X=X(t)$.	
	2. Линейная однородная система называется полностью	
	идентифицируемой по вектору состояния, если при заданном векторе начальных условий X_0 матрица С может быть однозначно	
	восстановлена за конечный отрезок времени идентификации по	
	восстановлена за констный отрезок времени идентификации по	

	дной временной последовательности $X=X(t)$.	
	. Линейная однородная система называется полностью	
И,	дентифицируемой по вектору состояния, если при заданном	
В	екторе начальных условий X_0 матрица параметров A может быть	
O,	днозначно восстановлена за бесконечный отрезок времени	
	дентификации по одной временной последовательности $X=X(t)$.	
	. Линейная однородная система называется полностью	
	дентифицируемой по вектору состояния, если при заданном	
	екторе начальных условий X_0 матрица параметров A может быть	
	днозначно восстановлена за конечный отрезок времени	
	днезна не весетановлена за коне нівін отрезек времени $X=X(t)$.	
	Выберите верное утверждение	ОПК-4.3.1
	. Для одной и той же системы можно предложить лишь одну	OHK-4.5.1
	ройку матриц A, B, C , которой будет соответствовать лишь одна	
_		
	подель в переменных состояния	
	. Для одной и той же системы можно предложить неограниченное	
	оличество троек матриц A, B, C , каждой из которых будет	
	оответствовать одна и та же модель в переменных состояния	
	. Для одной и той же системы можно предложить неограниченное	
	оличество троек матриц A, B, C , каждой из которых будет	
	оответствовать модель в переменных состояния	
	выберите правильную последовательность получения	ОПК-6.В.1
ка	анонической формы наблюдаемости	
1.		
1)) Выбираются матрицы L и Q .	
2) Рассчитывается матрица P , входящая в уравнение Рикатти.	
) Рассчитывается матрица обратной связи по состоянию К.	
2.		
1) Оценивается наблюдаемость системы.	
) Рассчитывается матрица преобразования Q .	
) Вычисляются матрицы А, В, С искомой формы.	
3.	,	
	Оценивается управляемость системы.	
1 1) Составляется характеристическое уравнение системы.	
) Из коэффициентов характеристического уравнения составляется	
'	татрица Т.	
) Вычисляется матрица <i>P</i> .	
) Вычисляются матрица I .) Вычисляются матрицы A, B, C искомой формы.	
		ОПК-6.В.1
	выберите правильную последовательность получения	OHK-0.D.1
	анонической формы управляемости	
1.		
) Выбираются матрицы L и Q .	
) Рассчитывается матрица <i>P</i> , входящая в уравнение Рикатти.	
) Рассчитывается матрица обратной связи по состоянию K .	
2.		
	Оценивается наблюдаемость системы.	
) Рассчитывается матрица преобразования Q .	
3) Вычисляются матрицы А, В, С искомой формы.	
3.		
1)) Оценивается управляемость системы.	
1)	•	

	матрица T .	
	4) Вычисляется матрица Р.	
	5) Вычисляются матрицы <i>A</i> , <i>B</i> , <i>C</i> искомой формы.	
77.	Выберите правильную последовательность синтеза линейного	ОПК-6.В.1
''	квадратичного регулятора	0.D.1
	1.	
	1) Выбираются матрицы L и Q .	
	2) Рассчитывается матрица <i>P</i> , входящая в уравнение Рикатти.	
	3) Рассчитывается матрица обратной связи по состоянию К.	
	2.	
	1) Оценивается наблюдаемость системы.	
	2) Рассчитывается матрица преобразования Q .	
	3) Вычисляются матрицы A, B, C искомой формы.	
	3.	
	1) Оценивается управляемость системы.	
	2) Составляется характеристическое уравнение системы.	
	3) Из коэффициентов характеристического уравнения составляется	
	матрица T .	
	4) Вычисляется матрица Р.	
	5) Вычисляются матрицы A, B, C искомой формы.	
78.	Какая система называется полностью управляемой?	ОПК-4.3.1
	1. Система, которую можно перевести из одного начального	
	состояния $X(0)$ в другое конечное $X(t)$ с помощью управления $U(t)$	
	за конечное время	
	2. Система, которую можно перевести из любого начального	
	состояния $X(0)$ в любое конечное $X(t)$ с помощью управления $U(t)$ за	
	конечное время	
	3. Система, которую нельзя перевести из любого начального	
	состояния $X(0)$ в любое конечное $X(t)$ с помощью управления $U(t)$ за	
	конечное время	
	4. Система, которую можно перевести из любого начального	
	состояния $X(0)$ в любое конечное $X(t)$ с помощью управления $U(t)$ за	
	неограниченное время	
79.	Как называется полином, обеспечивающий одинаковость всех	ОПК-4.3.1
	корней характеристического уравнения:	
	1. Аккермана	
	2. Ньютона	
	3. Баттерворта	
	4. Льюинбергера	
80.	Какая САУ называется дискретной?	ОПК-4.3.1
	1. содержащая нелинейный элемент	
	2. содержащая импульсный элемент	
	3. САУ с экстремальной характеристикой	
	4. содержащая дискретный элемент	
81.	Для наблюдаемой системы справедливо высказывание:	ОПК-4.3.1
	1. все коэффициенты матрицы A могут быть определены по	
	наблюдениям векторов X и Y	
	2. все компоненты вектора X могут быть восстановлены по	
	наблюдениям вектора У	
	3. все коэффициенты матрицы A могут быть определены по	
	наблюдениям вектора X	
	4. все компоненты вектора Y могут быть восстановлены по	

	наблюдениям вектора Х	
82.	Какие матричные преобразования называют преобразованиями	ОПК-4.3.1
02.	подобия?	
	1. Такие преобразования, которые изменяют модель состояния, но	
	не изменяют соотношение между входом и выходом.	
	2. Такие преобразования, которые не изменяют матрицу выхода С.	
	3. Такие преобразования, которые не изменяют порядок системы.	
	4. Такие преобразования, которые не изменяют модель состояния,	
	но изменяют соотношение между входом и выходом.	
83.	Задача модального управления разрешима, если	ОПК-4.3.1
	1. объект управления асимптотически устойчив	
	2. объект управления вполне управляем	
	3. объект управления устойчив по Ляпунову	
	4. объект управления вполне наблюдаем	
84.	Можно ли рассчитывать параметры наблюдателя независимо от	ОПК-4.3.1
0	параметров регулятора?	
	1. Да, но регулятор должен обладать большим быстродействием,	
	чем наблюдатель	
	2. Нет, поскольку наблюдатель является частью регулятора	
	3. Да, но наблюдатель должен обладать большим быстродействием,	
	чем регулятор	
	4. Нет, это недопустимо	
85.	Метод пространства состояния подразумевает, что состояние	ОПК-4.3.1
00.	системы это	
	1. Совокупность таких переменных, знание которых позволяет	
	описать характеристики переходного процесса в системе	
	2. Совокупность таких переменных, знание которых позволяет, при	
	известном входе и известных уравнениях динамики, описать	
	будущее состояние системы и значение ее выхода	
	3. Совокупность таких переменных, знание которых позволяет, при	
	известном выходе и известных уравнениях динамики, описать	
	прошлое состояние системы и значение ее входа	
	4. Совокупность таких переменных, знание которых позволяет	
	описать расположение корней замкнутой системы	
86.	Когда возникает необходимость использовать редуцированные	ОПК-4.3.1
	наблюдающие устройства?	
	1. Когда измерению доступна часть компонент вектора состояния	
	2. Когда необходимо оценить весь вектор состояния	
	3. Когда не выполняется критерий наблюдаемости	
	4. Когда измерению доступны все компоненты вектора состояния	
87.	Каким должно быть количество переменных состояния?	ОПК-4.3.1
07.	1. Количество зависит от критериев качества управления	
	2. Количество переменных состояния должно быть равно порядку	
	системы	
	3. Должно быть равно количеству входов объекта	
	4. Должно быть равно количеству выходов объекта	
88.	Укажите свойства модального синтеза	ОПК-4.3.1
00.	1. Система управления не требует введения дополнительных	01110-4.5.1
	корректирующих устройств, так как она уже удовлетворяет	
	ι πορροκτηργισμήτα γυτρομοτό, τακ κακ υπά γλίο γμουμοίδουμα οι	1
	требуемым показателям качества. 2. Система управления не требует введения дополнительных	

	устойчивости. 3. При управлении по состоянию не повышается порядок системы в отличие от методов последовательной коррекции. 4. Синтезированная система управления не требует проверки на устойчивость, поскольку она заранее должна обладать требуемой степенью устойчивости. 5. Синтезированная система управления требует проверки на	
	устойчивость.	
89.	Какая матрица называется матрицей входа для линейной стационарной системы, уравнения состояний которой имеют следующий общий вид:	ОПК-4.3.1
	$\begin{cases} \dot{X}(t) = AX(t) + BU(t) \\ Y(t) = CX(t) + DU(t) \end{cases}$ 1. D 2. B	
	3. C	
	4. A	
90.	Какая матрица называется матрицей выхода для линейной стационарной системы, уравнения состояний которой имеют следующий общий вид:	ОПК-4.3.1
	$\begin{cases} \dot{X}(t) = AX(t) + BU(t) \\ Y(t) = CX(t) + DU(t) \end{cases}$	
	1. D	
	1. D 2. B	
	3. C	
	4. A	
91.	Какая матрица называется матрицей коэффициентов объекта для линейной стационарной системы, уравнения состояний которой имеют следующий общий вид:	ОПК-4.3.1
	$(\dot{X}(t) = AX(t) + BU(t)$	
	$\begin{cases} \dot{X}(t) = AX(t) + BU(t) \\ Y(t) = CX(t) + DU(t) \end{cases}$	
	1. D	
	2. B	
	3. C	
	4. A	
92.	Какая матрица описывает непосредственное влияние входа на выход системы для линейной стационарной системы, уравнения состояний которой имеют следующий общий вид:	ОПК-4.3.1
	$\begin{cases} \dot{X}(t) = AX(t) + BU(t) \\ Y(t) = CX(t) + DU(t) \end{cases}$	
	1. D	
	2. B	
	3. <i>C</i>	
00	4. A	OHIC 4 D 1
93.	Как называется матрица $\Phi(t)=e^{At}$?	ОПК-4.3.1
	1. Матрица Фробениуса	
	 Матрица управляемости Переходная матрица состояния 	
1	т э. пооходная матиниа соотоны кинцоломого	1


	4. Якобиан системы			
94.	Укажите способ(ы) нахождения матричной экспоненты	ОПК-4.3.1		
	1. Непосредственное вычисление суммы ряда			
	2. Использование преобразования Лапласа			
	3. Возведение экспоненты в степень каждого элемента матрицы А			
	4. Использование преобразования Фурье			
95.	Дифференциальное уравнение системы $\ddot{y} + 5\dot{y} + 6y = 3u$, где $u - y = 3u$	ОПК-4.3.1		
	вход, у – выход. В переменных вход-состояние-выход она			
	описывается уравнениями $\dot{x} = Ax + Bu$, $y = Cx$, где матрица A имеет			
	вид:			
	$\begin{vmatrix} 1 & A = \\ 6 & 3 \end{vmatrix}$			
	$\begin{bmatrix} 2. & A = \end{bmatrix}^{0}$			
	[6 5]			
	1. $A = \begin{bmatrix} 0 & 1 \\ 6 & 3 \end{bmatrix}$ 2. $A = \begin{bmatrix} 0 & 1 \\ 6 & 5 \end{bmatrix}$ 3. $A = \begin{bmatrix} 0 & 1 \\ -5 & -9 \end{bmatrix}$ 4. $A = \begin{bmatrix} 0 & 1 \\ -6 & -5 \end{bmatrix}$			
	A.A = A.A = A.A			
	[-6 -5]			
96.	Дифференциальное уравнение системы $\ddot{y} + 5\dot{y} + 6y = 3u$, где $u -$	ОПК-6.В.1		
	вход, у – выход. В переменных вход-состояние-выход она			
	описывается уравнениями $\dot{x} = Ax + Bu$, $y = Cx$, где матрица B имеет			
	вид:			
	$1. B = \begin{bmatrix} 0 & 3 \end{bmatrix}^{T}$			
	2. $B = \begin{bmatrix} 3 & 0 \end{bmatrix}$			
	$3. B = \begin{bmatrix} 0 & 1 \end{bmatrix}^{\mathrm{T}}$			
	4. $B = \begin{bmatrix} 0 & 3 \end{bmatrix}$			
07		OFFICAD 1		
97.	Идентифицируемость системы описывается условием:	ОПК-4.3.1		
	1. $\operatorname{rank} \left[C; CA; CA^2; \dots CA^{n-1} \right]^{\mathrm{T}} = n$			
	2. $\operatorname{rank} \begin{bmatrix} A; & BA; & B^2A; & \dots & B^{n-1}A \end{bmatrix} = n$			
	3. $\operatorname{rank} \left[A; AC; AC^2; \dots AC^{n-1} \right]^{\mathrm{T}} = n$			
	4. $\operatorname{rank} [X_0; AX_0; A^2X_0; \dots A^{n-1}X_0] = n$			
	5. $\operatorname{rank} \left[B; AB; A^2B; \dots A^{n-1}B \right] = n$			
98.	Какая из следующих систем не является идентифицируемой?	ОПК-4.3.1		
	$\begin{bmatrix} 1. & A = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}; X_0 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$			
	$\begin{vmatrix} 1 & A - \\ 0 & -2 \end{vmatrix}, \begin{vmatrix} A_0 - \\ 2 \end{vmatrix}$			
	$\begin{bmatrix} 2. & A = \begin{bmatrix} 0 & 1 \\ 1 & -2 \end{bmatrix}; \ X_0 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$			
	$\begin{bmatrix} 3. & A = \begin{vmatrix} 2 & 1 \\ 2 & -2 \end{vmatrix}; X_0 = \begin{vmatrix} 1 \\ 1 \end{vmatrix}$			
	$\begin{bmatrix} 3 & \Lambda^{-} \\ 2 & -2 \end{bmatrix}, \begin{bmatrix} \Lambda_{0} & - \\ 1 \end{bmatrix}$			
	$\begin{bmatrix} \bar{0} & 1 \end{bmatrix} = \begin{bmatrix} \bar{0} \end{bmatrix}$			
	$\begin{bmatrix} 4. & A = \begin{bmatrix} 0 & 1 \\ 0 & -2 \end{bmatrix}; X_0 = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$			

$ \begin{array}{c} 1. \ A = \begin{bmatrix} 0 & 1 \\ 1 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 0 \end{bmatrix}. \\ 2. \ A = \begin{bmatrix} 0 & 1 \\ 0 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 2 \\ 2 \end{bmatrix}; \ C = \begin{bmatrix} 0 & 1 \end{bmatrix}. \\ 3. \ A = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}; \ C = \begin{bmatrix} 0 & 1 \end{bmatrix}. \\ 4. \ A = \begin{bmatrix} 2 & 1 \\ 2 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 1 \end{bmatrix}. \\ 100. \ \text{Какая из спедукопих систем не является управляемой?} \\ 1. \ A = \begin{bmatrix} 0 & 1 \\ 1 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 0 \end{bmatrix}. \\ 2. \ A = \begin{bmatrix} 0 & 1 \\ 0 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 0 \\ 2 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 1 \end{bmatrix}. \\ 3. \ A = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 1 \end{bmatrix}. \\ 4. \ A = \begin{bmatrix} 2 & 1 \\ 2 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 1 \end{bmatrix}. \\ 101. \ \text{Какая из спедукопих систем является устойчивой?} \\ 1. \ A = \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 2 \\ 2 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 1 \end{bmatrix}. \\ 2. \ A = \begin{bmatrix} 0 & 0 \\ 0 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 0 \end{bmatrix}. \\ 3. \ A = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 0 \end{bmatrix}. \\ 4. \ A = \begin{bmatrix} 3 & 0 \\ 0 & -5 \end{bmatrix}; \ B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 1 \end{bmatrix}. \\ 2. \ B & 3. \ D \\ 4. \ A & A & A & A & A & A & A & A & A & A$	99.	Какая из следующих систем не является наблюдаемой?	ОПК-6.В.1
$2.\ A = \begin{bmatrix} 0 & 1 \\ 0 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 0 \\ 2 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ $3.\ A = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}; \ C = \begin{bmatrix} 0 & 1 \end{bmatrix}.$ $4.\ A = \begin{bmatrix} 2 & 1 \\ 2 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ $100.\ \text{Какая из сисснующих систем інс являєтся управляємой?}$ $1.\ A = \begin{bmatrix} 0 & 1 \\ 1 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 0 \end{bmatrix}.$ $2.\ A = \begin{bmatrix} 0 & 1 \\ 0 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 0 \\ 2 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ $3.\ A = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}; \ C = \begin{bmatrix} 0 & 1 \end{bmatrix}.$ $4.\ A = \begin{bmatrix} 2 & 1 \\ 2 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ $101.\ \text{Какая из следующих систем является устойчивой?}$ $1.\ A = \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ $2.\ A = \begin{bmatrix} 2 & 0 \\ 0 & -4 \end{bmatrix}; \ B = \begin{bmatrix} 3 \\ 1 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 0 \end{bmatrix}.$ $3.\ A = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}; \ C = \begin{bmatrix} 0 & 1 \end{bmatrix}.$ $4.\ A = \begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ $102.\ \text{Какая матрица влияет на устойчивость системы?}$ $1.\ C$ $2.\ B$ $3.\ D$ $4.\ A$ $103.\ \text{Какая матрица при описании объекта в пространстве состояний может быть нулевой?}$ $1.\ C$ $2.\ B$ $3.\ D$ $4.\ A$ $104.\ Каково соотношение между полюсами непрерывной и дискретной системы, а \lambda_d полюса дискретной системы? OПК-4.3.1$			
$3. \ A = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}; \ C = \begin{bmatrix} 0 & 1 \end{bmatrix}.$ $4. \ A = \begin{bmatrix} 2 & 1 \\ 2 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ 100. Какая из следующих систем не является управляемой? $1. \ A = \begin{bmatrix} 0 & 1 \\ 1 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 0 \end{bmatrix}.$ $2. \ A = \begin{bmatrix} 0 & 1 \\ 0 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 0 \\ 2 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ $3. \ A = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}; \ C = \begin{bmatrix} 0 & 1 \end{bmatrix}.$ 101. Какая из следующих систем является устойчивой? $1. \ A = \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 2 \\ 2 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ $2. \ A = \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 3 \\ 2 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ $2. \ A = \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 0 \end{bmatrix}.$ $3. \ A = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 0 \end{bmatrix}.$ $4. \ A = \begin{bmatrix} 3 & 0 \\ 0 & -5 \end{bmatrix}; \ B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ 102. Какая матрица влияет на устойчивость системы? $1. \ C$ $2. \ B$ $3. \ D$ $4. \ A$ 103. Какая матрица при описании объекта в пространстве состояний может быть нулевой? $1. \ C$ $2. \ B$ $3. \ D$ $4. \ A$ 104. Каково соотпошение между полюсами пепрерывной и дискретной систем, если λ — полюса непрерывной системы, а λ_d — полюса дискретной системы? $1. \ \lambda = e^{\lambda_d T}$		1. $A = \begin{bmatrix} 1 & -2 \end{bmatrix}$; $B = \begin{bmatrix} 1 \end{bmatrix}$; $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$.	
$3. \ A = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}; \ C = \begin{bmatrix} 0 & 1 \end{bmatrix}.$ $4. \ A = \begin{bmatrix} 2 & 1 \\ 2 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ 100. Какая из следующих систем не является управляемой? $1. \ A = \begin{bmatrix} 0 & 1 \\ 1 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 0 \end{bmatrix}.$ $2. \ A = \begin{bmatrix} 0 & 1 \\ 0 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 0 \\ 2 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ $3. \ A = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}; \ C = \begin{bmatrix} 0 & 1 \end{bmatrix}.$ 101. Какая из следующих систем является устойчивой? $1. \ A = \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 2 \\ 2 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ $2. \ A = \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 3 \\ 2 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ $2. \ A = \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 0 \end{bmatrix}.$ $3. \ A = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 0 \end{bmatrix}.$ $4. \ A = \begin{bmatrix} 3 & 0 \\ 0 & -5 \end{bmatrix}; \ B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ 102. Какая матрица влияет на устойчивость системы? $1. \ C$ $2. \ B$ $3. \ D$ $4. \ A$ 103. Какая матрица при описании объекта в пространстве состояний может быть нулевой? $1. \ C$ $2. \ B$ $3. \ D$ $4. \ A$ 104. Каково соотпошение между полюсами пепрерывной и дискретной систем, если λ — полюса непрерывной системы, а λ_d — полюса дискретной системы? $1. \ \lambda = e^{\lambda_d T}$			
4. $A = \begin{bmatrix} 2 & 1 \\ 2 & -2 \end{bmatrix}; B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}; C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ 100. Какая из следующих систем не является управляемой? 1. $A = \begin{bmatrix} 0 & 1 \\ 1 & -2 \end{bmatrix}; B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}; C = \begin{bmatrix} 1 & 0 \end{bmatrix}.$ 2. $A = \begin{bmatrix} 0 & 1 \\ 0 & -2 \end{bmatrix}; B = \begin{bmatrix} 0 \\ 2 \end{bmatrix}; C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ 3. $A = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}; B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}; C = \begin{bmatrix} 0 & 1 \end{bmatrix}.$ 4. $A = \begin{bmatrix} 2 & 1 \\ 2 & -2 \end{bmatrix}; B = \begin{bmatrix} 1 \end{bmatrix}; C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ 101. Какая из следующих систем является устойчивой? 1. $A = \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}; B = \begin{bmatrix} 2 \\ 2 \end{bmatrix}; C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ 2. $A = \begin{bmatrix} 2 & 0 \\ 0 & -4 \end{bmatrix}; B = \begin{bmatrix} 3 \\ 1 \end{bmatrix}; C = \begin{bmatrix} 1 & 0 \end{bmatrix}.$ 3. $A = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}; B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}; C = \begin{bmatrix} 0 & 1 \end{bmatrix}.$ 4. $A = \begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix}; B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}; C = \begin{bmatrix} 0 & 1 \end{bmatrix}.$ 102. Какая матрина влияет на устойчивость системы? 1. C 2. B 3. D 4. A 103. Какая матрина при описании объекта в пространстве состояний может быть нулевой? 1. C 2. B 3. D 4. A 104. Каково соотношение между полюсами непрерывной и дискретной систем, если λ — полюса непрерывной системы, а λ_d — полюса дискретной системы? 1. $\lambda = e^{\lambda_d T}$		2. $A = \begin{bmatrix} 0 & -2 \end{bmatrix}$; $B = \begin{bmatrix} 2 \end{bmatrix}$; $C = \begin{bmatrix} 1 & 1 \end{bmatrix}$.	
4. $A = \begin{bmatrix} 2 & 1 \\ 2 & -2 \end{bmatrix}; B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}; C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ 100. Какая из следующих систем не является управляемой? 1. $A = \begin{bmatrix} 0 & 1 \\ 1 & -2 \end{bmatrix}; B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}; C = \begin{bmatrix} 1 & 0 \end{bmatrix}.$ 2. $A = \begin{bmatrix} 0 & 1 \\ 0 & -2 \end{bmatrix}; B = \begin{bmatrix} 0 \\ 2 \end{bmatrix}; C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ 3. $A = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}; B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}; C = \begin{bmatrix} 0 & 1 \end{bmatrix}.$ 4. $A = \begin{bmatrix} 2 & 1 \\ 2 & -2 \end{bmatrix}; B = \begin{bmatrix} 1 \end{bmatrix}; C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ 101. Какая из следующих систем является устойчивой? 1. $A = \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}; B = \begin{bmatrix} 2 \\ 2 \end{bmatrix}; C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ 2. $A = \begin{bmatrix} 2 & 0 \\ 0 & -4 \end{bmatrix}; B = \begin{bmatrix} 3 \\ 1 \end{bmatrix}; C = \begin{bmatrix} 1 & 0 \end{bmatrix}.$ 3. $A = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}; B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}; C = \begin{bmatrix} 0 & 1 \end{bmatrix}.$ 4. $A = \begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix}; B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}; C = \begin{bmatrix} 0 & 1 \end{bmatrix}.$ 102. Какая матрина влияет на устойчивость системы? 1. C 2. B 3. D 4. A 103. Какая матрина при описании объекта в пространстве состояний может быть нулевой? 1. C 2. B 3. D 4. A 104. Каково соотношение между полюсами непрерывной и дискретной систем, если λ — полюса непрерывной системы, а λ_d — полюса дискретной системы? 1. $\lambda = e^{\lambda_d T}$		$\begin{bmatrix} 2 & A & \begin{bmatrix} -2 & 0 \end{bmatrix}, P & \begin{bmatrix} 1 \end{bmatrix}, C & \begin{bmatrix} 1 \end{bmatrix}$	
100. Какая из следующих систем не является управляемой? 1. $A = \begin{bmatrix} 0 & 1 \\ 1 & -2 \end{bmatrix}; B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}; C = \begin{bmatrix} 1 & 0 \end{bmatrix}.$ 2. $A = \begin{bmatrix} 0 & 1 \\ 0 & -2 \end{bmatrix}; B = \begin{bmatrix} 0 \\ 2 \end{bmatrix}; C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ 3. $A = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}; B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}; C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ 101. Какая из следующих систем является устойчивой? 1. $A = \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}; B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}; C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ 2. $A = \begin{bmatrix} 2 & 0 \\ 0 & -4 \end{bmatrix}; B = \begin{bmatrix} 3 \\ 1 \end{bmatrix}; C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ 2. $A = \begin{bmatrix} -2 & 0 \\ 0 & -4 \end{bmatrix}; B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}; C = \begin{bmatrix} 1 & 0 \end{bmatrix}.$ 3. $A = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}; B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}; C = \begin{bmatrix} 1 & 0 \end{bmatrix}.$ 4. $A = \begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix}; B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}; C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ 102. Какая матрица влияет на устойчивость системы? 1. C 2. B 3. D 4. A 103. Какая матрица при описании объекта в пространстве состояний может быть нулевой? 1. C 2. B 3. D 4. A 104. Каково соотношение между полюсами непрерывной и дискретной системь, если λ — полюса непрерывной системы, а λ_d — полюса дискретной системы? 1. $\lambda = e^{\lambda_d}$		3. $A = \begin{bmatrix} 0 & -2 \end{bmatrix}$, $B = \begin{bmatrix} 2 \end{bmatrix}$, $C = \begin{bmatrix} 0 & 1 \end{bmatrix}$.	
100. Какая из следующих систем не является управляемой? 1. $A = \begin{bmatrix} 0 & 1 \\ 1 & -2 \end{bmatrix}; B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}; C = \begin{bmatrix} 1 & 0 \end{bmatrix}.$ 2. $A = \begin{bmatrix} 0 & 1 \\ 0 & -2 \end{bmatrix}; B = \begin{bmatrix} 0 \\ 2 \end{bmatrix}; C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ 3. $A = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}; B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}; C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ 101. Какая из следующих систем является устойчивой? 1. $A = \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}; B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}; C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ 2. $A = \begin{bmatrix} 2 & 0 \\ 0 & -4 \end{bmatrix}; B = \begin{bmatrix} 3 \\ 1 \end{bmatrix}; C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ 2. $A = \begin{bmatrix} -2 & 0 \\ 0 & -4 \end{bmatrix}; B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}; C = \begin{bmatrix} 1 & 0 \end{bmatrix}.$ 3. $A = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}; B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}; C = \begin{bmatrix} 1 & 0 \end{bmatrix}.$ 4. $A = \begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix}; B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}; C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ 102. Какая матрица влияет на устойчивость системы? 1. C 2. B 3. D 4. A 103. Какая матрица при описании объекта в пространстве состояний может быть нулевой? 1. C 2. B 3. D 4. A 104. Каково соотношение между полюсами непрерывной и дискретной системь, если λ — полюса непрерывной системы, а λ_d — полюса дискретной системы? 1. $\lambda = e^{\lambda_d}$		$A = \begin{bmatrix} 2 & 1 \end{bmatrix} \cdot B = \begin{bmatrix} 1 \end{bmatrix} \cdot C = \begin{bmatrix} 1 & 1 \end{bmatrix}$	
$1. \ A = \begin{bmatrix} 0 & 1 \\ 1 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 0 \end{bmatrix}.$ $2. \ A = \begin{bmatrix} 0 & 1 \\ 0 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 0 \\ 2 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ $3. \ A = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ $4. \ A = \begin{bmatrix} 2 & 1 \\ 2 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ $101. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		$\begin{bmatrix} 2 & -2 \end{bmatrix}$, $B = \begin{bmatrix} 1 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 1 \end{bmatrix}$.	
			ОПК-6.В.1
$3. \ A = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}; \ C = \begin{bmatrix} 0 & 1 \end{bmatrix}.$ $4. \ A = \begin{bmatrix} 2 & 1 \\ 2 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ 101. Какая из следующих систем является устойчивой? $1. \ A = \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 2 \\ 2 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ $2. \ A = \begin{bmatrix} 2 & 0 \\ 0 & -4 \end{bmatrix}; \ B = \begin{bmatrix} 3 \\ 1 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 0 \end{bmatrix}.$ $3. \ A = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}; \ C = \begin{bmatrix} 0 & 1 \end{bmatrix}.$ 102. Какая матрица влияет на устойчивость системы? $1. \ C$ $2. \ B$ $3. \ D$ $4. \ A$ 103. Какая матрица при описании объекта в пространстве состояний может быть нулевой? $1. \ C$ $2. \ B$ $3. \ D$ $4. \ A$ 104. Каково соотношение между полюсами непрерывной и дискретной системы, а λ_d — полюса дискретной системы? $1. \ A = e^{\lambda_d T}$		1. $A = \begin{bmatrix} 0 & 1 \\ 1 & -2 \end{bmatrix}; B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}; C = \begin{bmatrix} 1 & 0 \end{bmatrix}.$	
$3. \ A = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}; \ C = \begin{bmatrix} 0 & 1 \end{bmatrix}.$ $4. \ A = \begin{bmatrix} 2 & 1 \\ 2 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ 101. Какая из следующих систем является устойчивой? $1. \ A = \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 2 \\ 2 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ $2. \ A = \begin{bmatrix} 2 & 0 \\ 0 & -4 \end{bmatrix}; \ B = \begin{bmatrix} 3 \\ 1 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 0 \end{bmatrix}.$ $3. \ A = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}; \ C = \begin{bmatrix} 0 & 1 \end{bmatrix}.$ 102. Какая матрица влияет на устойчивость системы? $1. \ C$ $2. \ B$ $3. \ D$ $4. \ A$ 103. Какая матрица при описании объекта в пространстве состояний может быть нулевой? $1. \ C$ $2. \ B$ $3. \ D$ $4. \ A$ 104. Каково соотношение между полюсами непрерывной и дискретной системы, а λ_d — полюса дискретной системы? $1. \ A = e^{\lambda_d T}$		$\begin{bmatrix} 0 & 1 \end{bmatrix}$, $P = \begin{bmatrix} 0 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 1 \end{bmatrix}$	
$4. \ A = \begin{bmatrix} 2 & 1 \\ 2 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ $101. \ \text{Какая из следующих систем является устойчивой?}$ $1. \ A = \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 2 \\ 2 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ $2. \ A = \begin{bmatrix} 2 & 0 \\ 0 & -4 \end{bmatrix}; \ B = \begin{bmatrix} 3 \\ 1 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 0 \end{bmatrix}.$ $3. \ A = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}; \ C = \begin{bmatrix} 0 & 1 \end{bmatrix}.$ $4. \ A = \begin{bmatrix} 3 & 0 \\ 0 & -5 \end{bmatrix}; \ B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ $102. \ \text{Какая матрица влияет на устойчивость системы?}$ $1. \ C$ $2. \ B$ $3. \ D$ $4. \ A$ $103. \ \text{Какая матрица при описании объекта в пространстве состояний может быть нулевой?}$ $1. \ C$ $2. \ B$ $3. \ D$ $4. \ A$ $104. \ \text{Каково соотношение между полюсами непрерывной и дискретной систем, если \lambda — полюса непрерывной системы, а \lambda_d — полюса дискретной системы? 1. \ \lambda = e^{\lambda_s T}$		$\begin{bmatrix} 2 & A - \begin{bmatrix} 0 & -2 \end{bmatrix}, B - \begin{bmatrix} 2 \end{bmatrix}, C - \begin{bmatrix} 1 & 1 \end{bmatrix}.$	
$4. \ A = \begin{bmatrix} 2 & 1 \\ 2 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ $101. \ \text{Какая из следующих систем является устойчивой?}$ $1. \ A = \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 2 \\ 2 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ $2. \ A = \begin{bmatrix} 2 & 0 \\ 0 & -4 \end{bmatrix}; \ B = \begin{bmatrix} 3 \\ 1 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 0 \end{bmatrix}.$ $3. \ A = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}; \ C = \begin{bmatrix} 0 & 1 \end{bmatrix}.$ $4. \ A = \begin{bmatrix} 3 & 0 \\ 0 & -5 \end{bmatrix}; \ B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ $102. \ \text{Какая матрица влияет на устойчивость системы?}$ $1. \ C$ $2. \ B$ $3. \ D$ $4. \ A$ $103. \ \text{Какая матрица при описании объекта в пространстве состояний может быть нулевой?}$ $1. \ C$ $2. \ B$ $3. \ D$ $4. \ A$ $104. \ \text{Каково соотношение между полюсами непрерывной и дискретной систем, если \lambda — полюса непрерывной системы, а \lambda_d — полюса дискретной системы? 1. \ \lambda = e^{\lambda_s T}$		$A = \begin{bmatrix} -2 & 0 \\ 0 & B = \begin{bmatrix} 1 \\ 0 & 1 \end{bmatrix}$	
101. Какая из следующих систем является устойчивой? 1. $A = \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}; B = \begin{bmatrix} 2 \\ 2 \end{bmatrix}; C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ 2. $A = \begin{bmatrix} 2 & 0 \\ 0 & -4 \end{bmatrix}; B = \begin{bmatrix} 3 \\ 1 \end{bmatrix}; C = \begin{bmatrix} 1 & 0 \end{bmatrix}.$ 3. $A = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}; B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}; C = \begin{bmatrix} 0 & 1 \end{bmatrix}.$ 102. Какая матрица влияет на устойчивость системы? 1. C 2. B 3. D 4. A 103. Какая матрица при описании объекта в пространстве состояний может быть нулевой? 1. C 2. B 3. D 4. A 104. Каково соотношение между полюсами непрерывной и дискретной систем, если λ — полюса непрерывной системы, а λ_d — полюса дискретной системы? 1. $\lambda = e^{\lambda_d T}$			
101. Какая из следующих систем является устойчивой? 1. $A = \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}; B = \begin{bmatrix} 2 \\ 2 \end{bmatrix}; C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ 2. $A = \begin{bmatrix} 2 & 0 \\ 0 & -4 \end{bmatrix}; B = \begin{bmatrix} 3 \\ 1 \end{bmatrix}; C = \begin{bmatrix} 1 & 0 \end{bmatrix}.$ 3. $A = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}; B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}; C = \begin{bmatrix} 0 & 1 \end{bmatrix}.$ 102. Какая матрица влияет на устойчивость системы? 1. C 2. B 3. D 4. A 103. Какая матрица при описании объекта в пространстве состояний может быть нулевой? 1. C 2. B 3. D 4. A 104. Каково соотношение между полюсами непрерывной и дискретной систем, если λ — полюса непрерывной системы, а λ_d — полюса дискретной системы? 1. $\lambda = e^{\lambda_d T}$		4. $A = \begin{bmatrix} 2 & 1 \\ & & \end{bmatrix}$; $B = \begin{bmatrix} 1 \\ & \end{bmatrix}$; $C = \begin{bmatrix} 1 & 1 \end{bmatrix}$.	
$ \begin{array}{c} 1. \ A = \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 2 \\ 2 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 1 \end{bmatrix}. \\ 2. \ A = \begin{bmatrix} 2 & 0 \\ 0 & -4 \end{bmatrix}; \ B = \begin{bmatrix} 3 \\ 1 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 0 \end{bmatrix}. \\ 3. \ A = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}; \ C = \begin{bmatrix} 0 & 1 \end{bmatrix}. \\ 4. \ A = \begin{bmatrix} 3 & 0 \\ 0 & -5 \end{bmatrix}; \ B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 1 \end{bmatrix}. \\ 102. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	101		OHII (D 1
$2. \ A = \begin{bmatrix} 2 & 0 \\ 0 & -4 \end{bmatrix}; \ B = \begin{bmatrix} 3 \\ 1 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 0 \end{bmatrix}.$ $3. \ A = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}; \ B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}; \ C = \begin{bmatrix} 0 & 1 \end{bmatrix}.$ $4. \ A = \begin{bmatrix} 3 & 0 \\ 0 & -5 \end{bmatrix}; \ B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ 102. Какая матрица влияет на устойчивость системы? $1. \ C$ $2. \ B$ $3. \ D$ $4. \ A$ 103. Какая матрица при описании объекта в пространстве состояний может быть нулевой? $1. \ C$ $2. \ B$ $3. \ D$ $4. \ A$ 104. Каково соотношение между полюсами непрерывной и дискретной систем, если λ – полюса непрерывной системы, а λ_d – полюса дискретной системы? $1. \ \lambda = e^{\lambda_d T}$	101.		OHK-6.B.1
3. $A = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}; B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}; C = \begin{bmatrix} 0 & 1 \end{bmatrix}.$ 4. $A = \begin{bmatrix} 3 & 0 \\ 0 & -5 \end{bmatrix}; B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}; C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ 102. Какая матрица влияет на устойчивость системы? 1. C 2. B 3. D 4. A 103. Какая матрица при описании объекта в пространстве состояний может быть нулевой? 1. C 2. B 3. D 4. A 104. Каково соотношение между полюсами непрерывной и дискретной систем, если λ — полюса непрерывной системы, а λ_d — полюса дискретной системы? 1. $\lambda = e^{\lambda_d T}$		1. $A = \begin{vmatrix} 1 & 0 \\ 0 & -2 \end{vmatrix}$; $B = \begin{vmatrix} 2 \\ 2 \end{vmatrix}$; $C = \begin{bmatrix} 1 & 1 \end{bmatrix}$.	
3. $A = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}; B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}; C = \begin{bmatrix} 0 & 1 \end{bmatrix}.$ 4. $A = \begin{bmatrix} 3 & 0 \\ 0 & -5 \end{bmatrix}; B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}; C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ 102. Какая матрица влияет на устойчивость системы? 1. C 2. B 3. D 4. A 103. Какая матрица при описании объекта в пространстве состояний может быть нулевой? 1. C 2. B 3. D 4. A 104. Каково соотношение между полюсами непрерывной и дискретной систем, если λ — полюса непрерывной системы, а λ_d — полюса дискретной системы? 1. $\lambda = e^{\lambda_d T}$		2. $A = \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix}$; $B = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$; $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$.	
4. $A = \begin{bmatrix} 3 & 0 \\ 0 & -5 \end{bmatrix}; B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}; C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$ 102. Какая матрица влияет на устойчивость системы? 1. C 2. B 3. D 4. A 103. Какая матрица при описании объекта в пространстве состояний может быть нулевой? 1. C 2. B 3. D 4. A 104. Каково соотношение между полюсами непрерывной и дискретной систем, если λ – полюса непрерывной системы, а λ_d – полюса дискретной системы? 1. $\lambda = e^{\lambda_d T}$			
102. Какая матрица влияет на устойчивость системы? 1. C 2. B 3. D 4. A 103. Какая матрица при описании объекта в пространстве состояний может быть нулевой? 1. C 2. B 3. D 4. A 104. Каково соотношение между полюсами непрерывной и дискретной систем, если λ – полюса непрерывной системы, а λ_d – полюса дискретной системы? 1. $\lambda = e^{\lambda_d T}$		3. $A = \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}$; $B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$; $C = \begin{bmatrix} 0 & 1 \end{bmatrix}$.	
102. Какая матрица влияет на устойчивость системы? 1. C 2. B 3. D 4. A 103. Какая матрица при описании объекта в пространстве состояний может быть нулевой? 1. C 2. B 3. D 4. A 104. Каково соотношение между полюсами непрерывной и дискретной систем, если λ – полюса непрерывной системы, а λ_d – полюса дискретной системы? 1. $\lambda = e^{\lambda_d T}$		$A = \begin{bmatrix} 3 & 0 \end{bmatrix}$ $B = \begin{bmatrix} 1 \end{bmatrix}$ $C = \begin{bmatrix} 1 & 1 \end{bmatrix}$	
1. C 2. B 3. D 4. A 103. Какая матрица при описании объекта в пространстве состояний может быть нулевой? 1. C 2. B 3. D 4. A 104. Каково соотношение между полюсами непрерывной и дискретной систем, если λ — полюса непрерывной системы, а λ_d — полюса дискретной системы? 1. $\lambda = e^{\lambda_d T}$			
2. B 3. D 4. A 103. Какая матрица при описании объекта в пространстве состояний может быть нулевой? 1. C 2. B 3. D 4. A 104. Каково соотношение между полюсами непрерывной и дискретной систем, если λ – полюса непрерывной системы, а λ_d – полюса дискретной системы? 1. $\lambda = e^{\lambda_d T}$	102.	÷ · · · · · · · · · · · · · · · · · · ·	ОПК-4.3.1
$3. \ D$ $4. \ A$ $103. \ $ Какая матрица при описании объекта в пространстве состояний может быть нулевой? $1. \ C$ $2. \ B$ $3. \ D$ $4. \ A$ $104. \ $ Каково соотношение между полюсами непрерывной и дискретной систем, если λ — полюса непрерывной системы, а λ_d — полюса дискретной системы? $1. \ \lambda = e^{\lambda_d T}$			
103. Какая матрица при описании объекта в пространстве состояний может быть нулевой? 1. C 2. B 3. D 4. A 104. Каково соотношение между полюсами непрерывной и дискретной систем, если λ – полюса непрерывной системы, а λ_d – полюса дискретной системы? 1. $\lambda = e^{\lambda_d T}$			
может быть нулевой? 1. C 2. B 3. D 4. A 104. Каково соотношение между полюсами непрерывной и дискретной систем, если λ — полюса непрерывной системы, а λ_d — полюса дискретной системы? 1. $\lambda = e^{\lambda_d T}$			
1. C 2. B 3. D 4. A 104. Каково соотношение между полюсами непрерывной и дискретной систем, если λ – полюса непрерывной системы, а λ_d – полюса дискретной системы? 1. $\lambda = e^{\lambda_d T}$	103.		ОПК-4.3.1
2. B 3. D 4. A 104. Каково соотношение между полюсами непрерывной и дискретной систем, если λ – полюса непрерывной системы, а λ_d – полюса дискретной системы? 1. $\lambda = e^{\lambda_d T}$			
4. A 104. Каково соотношение между полюсами непрерывной и дискретной систем, если λ – полюса непрерывной системы, а λ_d – полюса дискретной системы? 1. $\lambda = e^{\lambda_d T}$			
104. Каково соотношение между полюсами непрерывной и дискретной систем, если λ — полюса непрерывной системы, а λ_d — полюса дискретной системы? 1. $\lambda = e^{\lambda_d T}$			
систем, если λ — полюса непрерывной системы, а λ_d — полюса дискретной системы? 1. $\lambda = e^{\lambda_d T}$	104		ОПК 4 2 1
дискретной системы? 1. $\lambda = e^{\lambda_d T}$	104.	· · · · · · · · · · · · · · · · · · ·	O11N-4.3.1
1. $\lambda = e^{\lambda_d T}$			
$2. \ \lambda_d = e^{\lambda(T+t)}$ $3. \ \lambda_d = e^{\lambda T+t}$		1. $\lambda = e^{\lambda_d T}$	
3. $\lambda_d = e^{\lambda T + t}$		$2. \ \lambda_d = e^{\lambda(T+t)}$	
		3. $\lambda_d = e^{\lambda T + t}$	

$ \begin{array}{c} 5. \ \lambda = e^{\lambda_2 T^{+1}} \\ \hline 105. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		4. $\lambda_d = e^{\lambda T}$			
105. Какой вид имеет матрица B в канонической форме управляемости для объекта 3-го порядка? 1. $B = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$ 2. $B = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ 3. $B = \begin{bmatrix} 0 & 0 & \frac{1}{a_n} \end{bmatrix}$ 4. $B = \begin{bmatrix} 0 & 0 & \frac{1}{a_n} \end{bmatrix}$ 106. Какой вид имеет матрица A в жордановой форме для объекта 3-го порядка? ОПК-6.В.1 1. $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -\frac{a_0}{a_3} - \frac{a_1}{a_3} - \frac{a_2}{a_3} \end{bmatrix}$ 2. $A = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}$ 3. $A = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}$ 3. $A = \begin{bmatrix} 0 & 0 - a_0 \\ 1 & 0 - a_1 \\ 0 & 1 & -a_2 \end{bmatrix}$ 107. Какой вид имеет матрица A в канонической форме наблюдаемости для объекта 3-го порядка? ОПК-6.В.1 1. $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -\frac{a_0}{a_3} - \frac{a_1}{a_3} - \frac{a_2}{a_3} \end{bmatrix}$					
$ \begin{array}{c} 1. \ B = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^{\mathrm{T}} \\ 2. \ B = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \\ 3. \ B = \begin{bmatrix} 0 & 0 & \frac{1}{a_n} \end{bmatrix}^{\mathrm{T}} \\ 4. \ B = \begin{bmatrix} 0 & 0 & \frac{1}{a_n} \end{bmatrix} \\ \end{array} $ $ \begin{array}{c} 4. \ B = \begin{bmatrix} 0 & 0 & \frac{1}{a_n} \end{bmatrix} \\ 106. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	105.	Какой вид имеет матрица B в канонической форме управляемости	ОПК-6.В.1		
$ 2. \ B = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} $ $ 3. \ B = \begin{bmatrix} 0 & 0 & \frac{1}{a_n} \end{bmatrix}^{T} $ $ 4. \ B = \begin{bmatrix} 0 & 0 & \frac{1}{a_n} \end{bmatrix} $ $ 4. \ B = \begin{bmatrix} 0 & 0 & \frac{1}{a_n} \end{bmatrix} $ $ 106. \ \text{Какой вид имеет матрица } A \text{ в жордановой форме для объекта 3-го порядка?} $ $ 1. \ A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -\frac{a_0}{a_3} & -\frac{a_1}{a_3} & -\frac{a_2}{a_3} \end{bmatrix} $ $ 2. \ A = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} $ $ 3. \ A = \begin{bmatrix} 0 & 0 & -a_0 \\ 1 & 0 & -a_1 \\ 0 & 1 & -a_2 \end{bmatrix} $ $ 107. \ \text{Какой вид имеет матрица } A \text{ в канонической форме наблюдаемости } $ $ 1. \ A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -\frac{a_0}{a_3} & -\frac{a_1}{a_3} & -\frac{a_2}{a_3} \end{bmatrix} $ $ 001K-6.B.1 $					
106. Какой вид имеет матрица A в жордановой форме для объекта 3-го порядка? 1. $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -\frac{a_0}{a_3} & -\frac{a_1}{a_3} & -\frac{a_2}{a_3} \end{bmatrix}$ 2. $A = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}$ 3. $A = \begin{bmatrix} 0 & 0 & -a_0 \\ 1 & 0 & -a_1 \\ 0 & 1 & -a_2 \end{bmatrix}$ 107. Какой вид имеет матрица A в канонической форме наблюдаемости для объекта 3-го порядка? 1. $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -\frac{a_0}{a_3} & -\frac{a_1}{a_3} & -\frac{a_2}{a_3} \end{bmatrix}$		$3. B = \begin{bmatrix} 0 & 0 & \frac{1}{a_n} \end{bmatrix}^T$			
порядка? $1. \ A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -\frac{a_0}{a_3} - \frac{a_1}{a_3} - \frac{a_2}{a_3} \end{bmatrix}$ $2. \ A = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}$ $3. \ A = \begin{bmatrix} 0 & 0 & -a_0 \\ 1 & 0 & -a_1 \\ 0 & 1 & -a_2 \end{bmatrix}$ $107. \ \ \text{Какой вид имеет матрица } A \text{ в канонической форме наблюдаемости}$ $\text{для объекта 3-го порядка?}$ $1. \ A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -\frac{a_0}{a_3} - \frac{a_1}{a_3} - \frac{a_2}{a_3} \end{bmatrix}$		$4. B = \begin{bmatrix} 0 & 0 & \frac{1}{a_n} \end{bmatrix}$			
$ \begin{array}{c} 1. \ A = \begin{bmatrix} \ 0 & 1 & 0 \ 0 & 0 & 1 \ \\ -\frac{a_0}{a_3} & -\frac{a_1}{a_3} & -\frac{a_2}{a_3} \end{bmatrix} \\ 2. \ A = \begin{bmatrix} \lambda_1 & 0 & 0 \ 0 & \lambda_2 & 0 \ 0 & 0 & \lambda_3 \end{bmatrix} \\ 3. \ A = \begin{bmatrix} 0 & 0 & -a_0 \ 1 & 0 & -a_1 \ 0 & 1 & -a_2 \end{bmatrix} \\ \hline 107. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	106.	Какой вид имеет матрица A в жордановой форме для объекта 3-го порядка?	ОПК-6.В.1		
		1. $A = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$			
		0 0 1			
		$\begin{bmatrix} \underline{a_0} & \underline{a_1} & \underline{a_2} \end{bmatrix}$			
$egin{align*} 3. \ A = egin{bmatrix} 0 & 0 & -a_0 \\ 1 & 0 & -a_1 \\ 0 & 1 & -a_2 \end{bmatrix} \ & 107. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		$\begin{bmatrix} a_3 & a_3 & a_3 \end{bmatrix}$			
$egin{align*} 3. \ A = egin{bmatrix} 0 & 0 & -a_0 \\ 1 & 0 & -a_1 \\ 0 & 1 & -a_2 \end{bmatrix} \ & 107. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		$\begin{bmatrix} \lambda_1 & 0 & 0 \end{bmatrix}$			
$egin{align*} 3. \ A = egin{bmatrix} 0 & 0 & -a_0 \\ 1 & 0 & -a_1 \\ 0 & 1 & -a_2 \end{bmatrix} \ & 107. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		$2. A = \begin{bmatrix} 0 & \lambda_2 & 0 \\ 0 & \lambda_2 & 1 \end{bmatrix}$			
107. Какой вид имеет матрица A в канонической форме наблюдаемости для объекта 3-го порядка? 1. $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -\frac{a_0}{a_3} & -\frac{a_1}{a_3} & -\frac{a_2}{a_3} \end{bmatrix}$		$\begin{bmatrix} 0 & 0 & \lambda_3 \end{bmatrix}$			
107. Какой вид имеет матрица A в канонической форме наблюдаемости для объекта 3-го порядка? 1. $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -\frac{a_0}{a_3} & -\frac{a_1}{a_3} & -\frac{a_2}{a_3} \end{bmatrix}$		$\begin{bmatrix} 0 & 0 & -a_0 \\ 1 & 0 & a_0 \end{bmatrix}$			
107. Какой вид имеет матрица A в канонической форме наблюдаемости для объекта 3-го порядка? 1. $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -\frac{a_0}{a_3} & -\frac{a_1}{a_3} & -\frac{a_2}{a_3} \end{bmatrix}$		3. $A = \begin{bmatrix} 1 & 0 & -a_1 \\ 0 & 1 & -a_2 \end{bmatrix}$			
для объекта 3-го порядка? 1. $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -\frac{a_0}{a_3} & -\frac{a_1}{a_3} & -\frac{a_2}{a_3} \end{bmatrix}$	107.	23	ОПК-6.В.1		
$\begin{bmatrix} 0 & 0 & 1 \\ -\frac{a_0}{a_3} & -\frac{a_1}{a_3} & -\frac{a_2}{a_3} \end{bmatrix}$		для объекта 3-го порядка?			
$\left[-\frac{a_0}{a_3} -\frac{a_1}{a_3} -\frac{a_2}{a_3} \right]$					
		$\left -\frac{a_0}{a} - \frac{a_1}{a} - \frac{a_2}{a} \right $			
$2. A = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \end{bmatrix}$					
		$A = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \end{bmatrix}$			
$\begin{vmatrix} 0 & 0 & \lambda_3 \end{vmatrix}$		$\begin{bmatrix} 0 & 0 & \lambda_3 \\ 0 & 0 & \lambda_3 \end{bmatrix}$			
$\begin{bmatrix} 0 & 0 & -a_0 \end{bmatrix}$		$\begin{bmatrix} 0 & 0 & -a_0 \end{bmatrix}$			
$3. A = \begin{bmatrix} 0 & 0 & -a_0 \\ 1 & 0 & -a_1 \end{bmatrix}$		3. $A = \begin{bmatrix} 1 & 0 & -a_1 \end{bmatrix}$			
$\begin{bmatrix} 0 & 1 & -a_2 \end{bmatrix}$		$\begin{bmatrix} 0 & 1 & -a_2 \end{bmatrix}$			
108. Какой вид имеет матрица A в канонической форме управляемости ОПК-6.В.1	108.		ОПК-6.В.1		
для объекта 3-го порядка? 1. $A = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$					
$\begin{vmatrix} a_0 & a_1 & a_2 \end{vmatrix}$		$\begin{bmatrix} a_0 & a_1 & a_2 \end{bmatrix}$			
$\begin{bmatrix} 0 & 0 & 1 \\ -\frac{a_0}{a_3} & -\frac{a_1}{a_3} & -\frac{a_2}{a_3} \end{bmatrix}$		$\begin{bmatrix} -\frac{0}{a_3} & -\frac{1}{a_3} & -\frac{2}{a_3} \end{bmatrix}$			

	Γ ₄	
	$\begin{bmatrix} \lambda_1 & 0 & 0 \end{bmatrix}$	
	2. $A = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}$	
	$\begin{bmatrix} 0 & 0 & \lambda_3 \end{bmatrix}$	
	$\begin{bmatrix} 0 & 0 & -a \end{bmatrix}$	
	3. $A = \begin{bmatrix} 0 & 0 & -a_0 \\ 1 & 0 & -a_1 \\ 0 & 1 & -a_2 \end{bmatrix}$	
	3. $A = \begin{bmatrix} 1 & 0 & -a_1 \end{bmatrix}$	
	$\begin{bmatrix} 0 & 1 & -a_2 \end{bmatrix}$	
109.	Модальные характеристики системы – это	ОПК-4.3.1
	1. Совокупность собственных значений α_i и собственных векторов	
	X_i	
	2. Составляющая решения дифференциального уравнения,	
	соответствующая конкретному полюсу	
	3. Каждое произведение вида $\dot{x}(t) = Ax(t)$	
	4. Каждое произведение вида $u_i(t) = e^{\alpha_i t} X_i$	
110.	Наблюдаемость системы описывается условием:	ОПК-4.3.1
	1. $\operatorname{rank} \left[C; CA; CA^2; \dots CA^{n-1} \right]^{\mathrm{T}} = n$	
	2. $\operatorname{rank} \begin{bmatrix} A; & BA; & B^2A; & \dots & B^{n-1}A \end{bmatrix} = n$	
	3. $\operatorname{rank} \left[A; AC; AC^2; \dots AC^{n-1} \right]^{\mathrm{T}} = n$	
	4. $\operatorname{rank} [X_0; AX_0; A^2X_0; \dots A^{n-1}X_0] = n$	
	5. $\operatorname{rank} \begin{bmatrix} B; & AB; & A^2B; & \dots & A^{n-1}B \end{bmatrix} = n$	
111.		ОПК-4.3.1
	1. Если линейная динамическая система является управляемой, то	
	линейная обратная связь может быть выбрана таким образом, что	
	матрица $(A-C*K)$ будет иметь желаемый спектр (желаемое	
	расположение полюсов замкнутой системы).	
	2. Если линейная динамическая система является наблюдаемой, то	
	линейная обратная связь может быть выбрана таким образом, что	
	матрица $(A-B*K)$ будет иметь желаемый спектр (желаемое	
	расположение полюсов замкнутой системы). 3. Если линейная динамическая система является управляемой, то	
	линейная обратная связь может быть выбрана таким образом, что	
	матрица A будет иметь желаемый спектр (желаемое расположение	
	полюсов замкнутой системы).	
	4. Если линейная динамическая система является управляемой, то	
	линейная обратная связь может быть выбрана таким образом, что	
	матрица $(A-B*K)$ будет иметь желаемый спектр (желаемое	
	расположение полюсов замкнутой системы).	
112.	Наблюдаемость системы, описываемой	ОПК-4.3.1
	$\int X(t) = AX(t) + BU(t),$	
	уравнениями $\begin{cases} \dot{X}\left(t\right) = AX\left(t\right) + BU\left(t\right), \\ Y\left(t\right) = CX\left(t\right) + DU\left(t\right), \end{cases}$	
	определяется матрицами:	
	1. D и В	
	2. A u B	
	3. A и D	
112	4. A u C	ОПИ 4 2 1
113.	Управляемость системы, описываемой	ОПК-4.3.1

	уравнениями $\begin{cases} \dot{X}\left(t\right) = AX\left(t\right) + BU\left(t\right), \\ Y\left(t\right) = CX\left(t\right) + DU\left(t\right), \end{cases}$	
	Y(t) = CX(t) + DU(t),	
	определяется матрицами:	
	1. D и В	
	2. А и В	
	3. A u D	
114	4. A и C	OHIC 4 D 1
114.	Что называется модой?	ОПК-4.3.1
	1. Совокупность собственных значений α_i и собственных векторов X_i	
	2. Составляющая решения дифференциального уравнения,	
	соответствующая конкретному полюсу	
	3. Каждое произведение вида $\dot{x}(t) = Ax(t)$	
	4. Каждое произведение вида $u_i(t) = e^{\alpha_i t} X_i$	
115.	· ·	ОПК-4.3.1
	1. разностное уравнение	
	2. однородное разностное уравнение	
	3. первая (конечная) разность	
	4. <i>п</i> -я (конечная) разность	
116.	Что НЕ изменяют преобразования подобия?	ОПК-4.3.1
	1. Матрицу $A.$	
	2. Матрицы <i>B</i> и <i>C</i> .	
	3. Вектор состояния.	
117	4. Корни характеристического уравнения.	ОПК-4.3.1
117.	Укажите условие идентифицируемости скалярной системы 2-го порядка:	OHK-4.5.1
	•	
	1. $ X_0 AX_0 = 0$	
	$2. X_0 AX_0 \neq 0$	
	3. $ X_0 AX_0 > 0$	
	4. $ X_0 AX_0 < 0$	
118.	Какой вид квантования представлен на рисунке?	ОПК-4.3.1
	$x(t)_{\uparrow}$	
	T $2T$ $3T$ $4T$ t	
	1. Квантование по уровню	
	2. Квантование по времени и уровню	
	3. Квантование по времени	
119.	Какой вид квантования представлен на рисунке?	ОПК-4.3.1

		 		
	$3. \Phi(s) = (sA - B)^{-1}$			
	4. $\Phi(s) = (sI - 1)^{-1}$			
124.	Решением какого уравнения являются полюса системы?	ОПК-4.3.1		
	1. $\det(\lambda I - E) = 0$			
	$2. \det(\lambda E + A) = 0$			
	3. $\det(\lambda E - A) = 0$			
	4. $\det(\lambda A - E) = 0$			
125.	Система дифференциальных уравнений	ОПК-4.3.1		
	$\dot{x}_1 = x_2$			
	$\begin{cases} \dot{x}_2 = -13x_1 - x_2 + 20x_3 \\ \dot{x}_3 = -2x_1 - 0.01x_3 + 2u \end{cases}$			
	записанная в векторно-матричной форме $x = Ax + Bu$, в главной			
	диагонали матрицы A имеет элементы			
	1. 1, -1, 0			
	2. 0, -13, -2			
	3. 0, 20, -0.01			
	4. 0, -1, -0.01			
126.	Система описывается векторно-матричным дифференциальным	ОПК-4.3.1		
	уравнением $x = Ax + Bu$. Ее устойчивость определяется получаемыми			
	из матрицы A : 1. критическими числами			
	2. передаточными числами			
	3. сингулярными числами			
	4. собственными числами			
127.	Укажите условие наблюдаемости скалярной системы 2-го порядка:	ОПК-4.3.1		
	1. C CA = 0			
	$2. C CA \neq 0$			
	3. $\begin{vmatrix} C \\ CA \end{vmatrix} \neq 0$			
	CA			
	$A \cdot \begin{vmatrix} C \\ A \end{vmatrix} = 0$			
	$\begin{vmatrix} 4 & CA \end{vmatrix} = 0$			
128.	Укажите условие управляемости скалярной системы 2-го порядка:	ОПК-4.3.1		
	1. $ B AB < 0$			
	$2. BAB \neq 0$			
	3. $ BAB > 0$			
129	4. B AB = 0 Управляемость системы описывается условием:	ОПК-4.3.1		
127.	1. $\operatorname{rank} \begin{bmatrix} C; & CA^2; & \dots & CA^{n-1} \end{bmatrix}^T = n$	01110 1.0.1		
	2. $\operatorname{rank} \left[A; BA; B^2A; \dots B^{n-1}A \right] = n$			
	3. $\operatorname{rank} \left[A; AC; AC^2; \dots AC^{n-1} \right]^{\mathrm{T}} = n$			
	4. $\operatorname{rank} \left[X_0; AX_0; A^2X_0; \dots A^{n-1}X_0 \right] = n$			
	5. $\operatorname{rank} \begin{bmatrix} B; & AB; & A^2B; & \dots & A^{n-1}B \end{bmatrix} = n$			
	[D, Idin [D, ID, ID, A D] - h			

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п	Перечень контрольных работ
	Не предусмотрено

- 10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.
 - 11. Методические указания для обучающихся по освоению дисциплины
- 11.1. Методические указания для обучающихся по освоению лекционного материала.

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- Методы и средства ТАУ, связь с задачами реального мира;
- Разделы ТАУ, классификация решаемых задач и соответствующих им моделей;
- Классическая ТАУ, использование аппарата передаточных функций;
- Современная ТАУ, методы линейной алгебры;
- Нелинейные системы, особенности описания, методы анализа и синтеза.

11.2. Методические указания для обучающихся по прохождению практических занятий

Практическое занятие является одной из основных форм организации учебного процесса, заключающаяся в выполнении обучающимися под руководством преподавателя

комплекса учебных заданий с целью усвоения научно-теоретических основ учебной дисциплины, приобретения умений и навыков, опыта творческой деятельности.

Целью практического занятия для обучающегося является привитие обучающимся умений и навыков практической деятельности по изучаемой дисциплине.

Планируемые результаты при освоении обучающимся практических занятий:

- закрепление, углубление, расширение и детализация знаний при решении конкретных задач;
- развитие познавательных способностей, самостоятельности мышления творческой активности;
- овладение новыми методами и методиками изучения конкретной учебной дисциплины;
- выработка способности логического осмысления полученных знаний для выполнения заданий;
- обеспечение рационального сочетания коллективной и индивидуальной форм обучения.

Требования к проведению практических занятий

Методические указания и требования к проведению практических занятий приведены в следующих источниках:

1. Теория автоматического управления : практикум. ч. 1 / М. В. Бураков ; С.-Петерб. гос. ун-т аэрокосм. приборостроения. - Электрон. текстовые дан. - СПб. : Изд-во ГУАП, 2016. - 76 с.

Теория автоматического управления : практикум. ч. 2 / M. В. Бураков ; С.-Петерб. гос. ун-т аэрокосм. приборостроения. - Электрон. текстовые дан. - СПб. : Изд-во ГУАП, 2017. - 67 с.

11.3. Методические указания для обучающихся по выполнению лабораторных работ

В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задания и требования к проведению лабораторных работ приведены в следующих источниках:

- 1. Теория автоматического управления : методические указания к выполнению лабораторных работ № 1-9 / С.-Петерб. гос. ун-т аэрокосм. приборостроения ; сост.: М. В. Бураков, Т. Г. Полякова, А. В. Подзорова. СПб. : Изд-во ГУАП, 2006. 62 с.
- 2. Теория автоматического управления : методические указания по выполнению лабораторных работ № 1 4 / С.-Петерб. гос. ун-т аэрокосм.

приборостроения ; сост. М. В. Бураков. - Электрон. текстовые дан. - СПб. : Изд-во ГУАП, 2016. - 26 с.

3. Теория автоматического управления. Нелинейные системы : методические указания к выполнению лабораторных работ / С.-Петерб. гос. ун-т аэрокосм. приборостроения ; сост. М. В. Бураков. - Электрон. текстовые дан. - СПб. : Изд-во ГУАП, 2018. - 48 с.

Структура и форма отчета о лабораторной работе

Отчет о лабораторной работе имеет форму гипертекстового документа, содержащего задание на лабораторную работу, краткие теоретические сведения по теме работы, описание схем и алгоритмов, использованных при выполнении работы, результаты вычислительных экспериментов в виде графиков (диаграмм), а также выводы по итогам проделанной работы.

Требования к оформлению отчета о лабораторной работе

Отчет должен содержать титульный лист, а его содержание должно быть оформлено согласно Γ OCT 7.32-2017.

Нормативная документация, необходимая для оформления, приведена на электронном ресурсе ГУАП: https://guap.ru/standart/doc

11.4. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихся являются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ (для обучающихся по заочной форме обучения).
- 11.5. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости студентов проводится путем мониторинга результатов выполнения лабораторных работ, контрольным вопросами на защите практических и лабораторных работ, путем получения обратной связи во время проведения лекций.

Своевременная сдача отчетов по лабораторным и практическим заданиям и положительный результат на защите этих работ может учитываться при проведении промежуточной аттестации.

11.6. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

— экзамен — форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Промежуточная аттестация проводится по ФОС, приведенному в п.10.3 данной рабочей программы дисциплины.

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой