МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 1

УТВЕРЖДАЮ

Руководитель направления

доц.,к.т.н.,доц.

(должность, уч. степень, звание)

С.В. Солёный

(инициалы, фамилия)

(подпись)

«23» _июня__ 2022 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Прикладная механика» (Наименование дисциплины)

Код направления подготовки/ специальности	13.03.02	
Наименование направления подготовки/ специальности	Электроэнергетика и электротехника	
Наименование направленности	Цифровая энергетика	
Форма обучения	очная	

Лист согласования рабочей программы дисциплины

Программу составил (а)	PI-	
Доцент, к.т.н. (должность, уч. степень, звание)	23.05.22 (подпись, дата)	Е.Э. Аман (инициалы, фамилия)
Программа одобрена на заседа «23» мая 2022 г, протокол № 3аведующий кафедрой № 1		
д.фм.н.,доц.	23.05.22	А.О. Смирнов
(уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Ответственный за ОП ВО 13.0 доц., к.т.н., доц. (должность, уч. степень, звание)	3.02(03) (подпись, дата)	О.Я. Солёная (инициалы, фамилия)
Заместитель директора инстит	ута №3 по методической рабо	те
		Н.В. Решетникова
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)

Аннотация

Дисциплина «Прикладная механика» входит в образовательную программу высшего образования — программу бакалавриата по направлению подготовки/ специальности 13.03.02 «Электроэнергетика и электротехника» направленности «Цифровая энергетика». Дисциплина реализуется кафедрой «№1».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ОПК-3 «Способен применять соответствующий физико-математический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач»

ОПК-5 «Способен использовать свойства конструкционных и электротехнических материалов в расчетах параметров и режимов объектов профессиональной деятельности»

Содержание дисциплины охватывает круг вопросов, связанных с решением профессиональных задач расчета, проектирования и конструирования механических и электромеханических элементов и устройств.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, самостоятельная работа обучающегося.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 3 зачетных единицы, 108 часов.

Язык обучения по дисциплине «русский »

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Целью преподавания дисциплины «Прикладная механика» является освоение студентами инструментов, необходимых для оптимального построения структурных и кинематических схем механизмов, основ расчета на прочность и жесткость деталей, узлов и механизмов, основ проектирования механических и электромеханических элементов и устройств.

- 1.2. Дисциплина входит в состав обязательной части образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа)	Код и наименование	Код и наименование индикатора
компетенции	компетенции	достижения компетенции
Общепрофессиональные компетенции	ОПК-3 Способен применять соответствующий физико-математический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач	ОПК-3.Д.4 демонстрирует знание элементарных основ оптики, квантовой механики и атомной физики ОПК-3.Д.5 демонстрирует понимание физических явлений и умеет применять физические законы механики, молекулярной физики, термодинамики, электричества и магнетизма для решения типовых задач
Общепрофессиональные компетенции	ОПК-5 Способен использовать свойства конструкционных и электротехнических материалов в расчетах параметров и режимов объектов профессиональной деятельности	ОПК-5.Д.3 выполняет электромагнитные, тепловые и вибрационные исследования для определения запаса прочности и усталости материалов

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- «Математика. Аналитическая геометрия и линейная алгебра»,
- «Математика. Математический анализ»,
- «Теоретическая механика»

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и могут использоваться при изучении других дисциплин:

- «Электротехника».

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

Вид учебной работы	Всего	Трудоемкость по семестрам №4	
1	2	3	
Общая трудоемкость дисциплины, 3E/ (час)	3/ 108	3/ 108	
Из них часов практической подготовки			
Аудиторные занятия, всего час.	51	51	
в том числе:			
лекции (Л), (час)	34	34	
практические/семинарские занятия (ПЗ), (час)			
лабораторные работы (ЛР), (час)	17	17	
курсовой проект (работа) (КП, КР), (час)			
экзамен, (час)	27	27	
Самостоятельная работа, всего (час)	30	30	
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Экз.	Экз.	

Примечание: **кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

таолица эт азделы, темы диециплины, их труд	LOCIIII OCI				
Разделы, темы дисциплины	Лекции (час)	ПЗ (СЗ) (час)	ЛР (час)	КП (час)	СРС (час)
Сем	естр 4	, ,			` , ,
Раздел 1. Основные положения кинематического и силового анализа и синтеза механизмов,	6		2		6
используемых в электромеханических системах Тема 1.1. Тема 1.2. Тема 1.3.	2 2 2		2		2 2 2
Раздел 2. Оценка и обеспечение прочности и жесткости элементов и механизмов, используемых в	8		9		12
электромеханических системах Тема 2.1. Тема 2.2. Тема 2.3. Тема 2.4.	2 2 2 2		3 3 3		3 3 3 3
Раздел 3. Типовые детали и узлы механизмов, используемых в электромеханических системах	10		3		6
Тема 3.1. Тема 3.2.	5 5		1,5 1,5		3

Раздел 4. Проектирование типовых механизмов,	10		3		6
используемых в электромеханических системах					
Тема 4.1.	5		1,5		3
Тема 4.2.	5		1,5		3
Итого в семестре:	34		17		30
Итого	34	0	17	0	30

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Таблица 4 – Содержание разделов и тем лекционного цикла					
Номер раздела	Название и содержание разделов и тем лекционных занятий				
Раздел 1. Основные положения кинематического и силового анализа и синтеза механизмов,					
используемых в электромеханических системах					
Тема 1.1.	Кинематика: задание движения, скорости и ускорения центра				
	тяжести твердого тела. Виды движения твердого тела				
	(поступательное, вращение вокруг неподвижной оси, плоское).				
Тема 1.2.	Понятие о числе степеней свободы и степени подвижности				
	механизма. Формулы Чебышева и Малышева.				
Тема 1.3.	Структурный, кинематический и силовой анализ и синтез механизмов.				
Раздел 2. Оценка и	обеспечение прочности и жесткости элементов и механизмов,				
	пользуемых в электромеханических системах				
Тема 2.1.	Основные требования, предъявляемые к конструкциям деталей				
	механизмов. Основные показатели надежности изделий.				
	Механика материалов. Основные понятия оценки прочности и				
	жесткости элементов конструкций. Устойчивость элементов				
	конструкций. Силы внешние и внутренние. Проверка прочности				
	элементов конструкций при действии статических и				
	динамических нагрузок. Метод сечений.				
Тема 2.2.	Виды деформаций и напряжений. Методы определения				
	деформаций элементов конструкций. Линейное (одноосное),				
	плоское и объемное напряженные состояния. Обобщенный закон				
	Гука.				
Тема 2.3.	Расчеты на прочность и жесткость элементов конструкций при				
	осевом растяжении (сжатии). Температурные и монтажные				
	напряжения. Особенности расчета соединений деталей на сдвиг.				
	Особенности работы элементов конструкций в условиях				
	кручения и изгиба, расчеты на прочность и жесткость.				
Тема 2.4.	Оценка работоспособности элементов конструкций в общем				
	случае комплексных воздействий внешних силовых факторов: а)				
	косой изгиб, б) изгиб с кручением. Внецентренное растяжение				
	(сжатие). Оценка прочности элементов конструкций при сложном				
	напряженном состоянии. Контактные напряжения. Особенности				
	расчета пластин и оболочек.				
Раздел 3. Типовые детали и узлы механизмов, используемых в электромеханических					
системах					

Тема 3.1.	Валы и оси. Общие сведения и классификация. Конструкция валов и осей, расчеты на прочность и жесткость. Выбор материалов. Типовые соединения деталей. Конструкции, особенности применения. Муфты электромеханических и механических приводов. Корпусные детали механизмов. Упругие элементы.
Тема 3.2.	Трение в кинематических парах. Опоры с трением скольжения и качения. Конструкции подшипниковых узлов.
Раздел 4. Проект	гирование типовых механизмов, используемых в электромеханических системах
Тема 4.1.	Классификация типовых механизмов. Рекомендации к применению, исходя из требуемых показателей точности и надежности. Зубчатые передачи с неподвижными осями. Особенности проектирования, кинематические, силовые и геометрические параметры. Червячные передачи. Особенности кинематического и силового расчета. Анализ точности зубчатых передач. Методы повышения точности. Влияние технологических и конструктивных факторов на собственную вибрацию и резонансные режимы работы механизмов.
Тема 4.2.	Эпициклические (планетарные) и волновые механизмы. Особенности проектирования, кинематические, силовые и геометрические параметры. Фрикционные передачи и передачи с гибкой связью. Основные характеристики. Винтовые механизмы.

4.3. Практические (семинарские) занятия Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

				Из них	$N_{\underline{0}}$
$N_{\underline{0}}$	Темы практических	Формы практических	Трудоемкость,	практической	раздела
Π/Π	занятий	занятий	(час)	подготовки,	дисцип
				(час)	лины
	Учебным планом не предусмотрено				
	Всег	0			

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

			Из них	$\mathcal{N}_{\underline{0}}$
$N_{\underline{0}}$	Наименование лабораторных работ	Трудоемкость,	практической	раздела
Π/Π	паименование лаоораторных раоот	(час)	подготовки,	дисцип
			(час)	лины
	Семестр 4	4		
1	Исследование структуры и конструкции	2		1
	механизмов приборов			
2	Определение механических характеристик	3		2
	материала при растяжении			
3	Исследование деформации изгиба	3		2
	консольного стержня			

4	Определение модуля сдвига при кручении	3	2
5	Исследование трения в подшипниках	1,5	3
	качения		
6	Исследование точности зубчатого	1,5	3
	механизма		
7	Исследование КПД винтовых механизмов	1,5	4
8	Исследование ременных передач	1,5	4
	Всего	17	

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего,	Семестр 4,
Вид самостоятельной расоты	час	час
1	2	3
Изучение теоретического материала	20	20
дисциплины (ТО)	20	20
Курсовое проектирование (КП, КР)		
Расчетно-графические задания (РГЗ)		
Выполнение реферата (Р)		
Подготовка к текущему контролю	5	5
успеваемости (ТКУ)	7	3
Домашнее задание (ДЗ)		
Контрольные работы заочников (КРЗ)		
Подготовка к промежуточной	5	5
аттестации (ПА)	3	3
Всего:	30	30

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8. Таблица 8— Перечень печатных и электронных учебных изланий

	то теретень не изных и электронных у теоных издани	
Шифр/ URL адрес	Библиографическая ссылка	Количество экземпляров в библиотеке (кроме электронных экземпляров)
	Бусыгин, А. М. Прикладная механика: учебник / А. М. Бусыгин. — Москва: МИСИС, 2019. — 156 с. — ISBN 978-5-907226-17-3. — Текст: электронный // Лань: электронно-библиотечная система. — URL: Режим доступа: https://e.lanbook.com/book/128996	
	Степин, П. А. Сопротивление материалов: учебник/ П. А. Степин. – 13-е изд., стер. – СПб.: Лань, 2014 -	

320 с Режим доступа:	
https://e.lanbook.com/book/3179#autho	<u>rs</u>
Загл. с экрана	
Сопротивление материалов: учебн	ик/ Схиртладзе
<u>А.Г.</u> , Чеканин А.В., Волков В.В.	
- М.:КУРС, ИНФРА-М, 2018 192 с.	-
- Режим доступа:	
https://znanium.com/read?id=303322	
Загл. с экрана	
Теория механизмов и машин (про	ректирование и
1 1 1	их элементов):
учебник. /Соболев А.Н., Некрасов А	.Я., Схиртладзе
А.Г М.:КУРС, НИЦ ИНФРА-М,	2016 256 c
Режим доступа:	
http://znanium.com/catalog.php?item=b	ooksearch&code
Загл. с экрана	
Прикладная механика (основы	структурного,
кинематического и динамичес	
механизмов):учебник/Соболев А.Н.,	
<u>Схиртладзе А.Г.</u> ,Бровкина Ю.И.	- М.:КУРС,
ИНФРА-М, 2017 160 с	
Режим доступа:	
https://znanium.com/read?id=18015	
Загл. с экрана	
Жуков, В.А. Детали машин	
конструирования: Основы расчета и	±. ±.
соединений и передач: учебное пос	
	ктрон. дан
М.:ИНФРА-М,2015 416 с Режим д	•
http://znanium.com/bookread2.php?boo	<u>sk=501585</u> Загл.
с экрана	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационнот телекоммуникационной сети «Интернет»

URL адрес	Наименование
http://www.emomi.com/	Образование механика
https://e.lanbook.com/	ЭБС «Лань»

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

№ п/п	Наименование
	Не предусмотрено

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п		Наименование
	Не предусмотрено	

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

таолица 12	- состав материально-технической базы	
№ п/п	Наименование составной части материально- технической базы	Номер аудитории (при необходимости)
1	Лекционная аудитория – укомплектована	Фонд
	специализированной (учебной) мебелью, набором	лекционных
	демонстрационного оборудования и учебно-наглядными	аудиторий ГУАП
	пособиями, обеспечивающими тематические	J 1
	иллюстрации, соответствующие рабочим учебным	
	программам дисциплин (модулей).	
2	Аудитории для проведения лабораторных занятий –	Фонд аудиторий
	укомплектованы специализированной (учебной)	ГУАП для
	мебелью, техническими средствами обучения,	проведения
	служащими для представления учебной информации. В	лабораторных
	лаборатории исследования механических элементов	занятий (ул.
	приборов (ауд. 11-05) имеются следующие	Гастелло 15, ауд.
	лабораторные установки: разрывная машина ИМ-4Р;	11-05, 12-06)
	лабораторная установка для измерения прогиба	
	консольного стержня; лабораторная установка для	
	определения момента трения в подшипниках качения;	
	установка для определения модуля сдвига, главных	
	напряжений при кручении и совместном действии	
	изгиба и кручения ТМт11M-14M.	
	В лаборатории исследования кинематических и	
	точностных характеристик приборов (ауд. 12-06)	
	имеются следующие лабораторные установки:	
	автоматизированный лабораторный комплекс «Детали	
	машин. Передачи редукторные»; лабораторная	
	установка для экспериментального исследования	
	винтового механизма; лабораторная установка для	
	исследования точности зубчатого механизма;	
	лабораторная установка для исследования ременных	
2	передач.	ж v
3	Помещение для самостоятельной работы –	Фонд аудиторий
	укомплектовано специализированной (учебной)	ГУАП
	мебелью, оснащено компьютерной техникой с	
	возможностью подключения к сети "Интернет" и	
	обеспечено доступом в электронную информационно-	

	образовательную среду организации.	
4	Учебная аудитория для текущего контроля и	Фонд аудиторий
	промежуточной аттестации – укомплектована	ГУАП
	специализированной (учебной) мебелью, техническими	(ул. Гастелло 15,
	средствами обучения, служащими для представления	ауд. 11-05, 12-06)
	учебной информации.	

- 10. Оценочные средства для проведения промежуточной аттестации
- 10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Экзамен	Список вопросов к экзамену;
	Тесты.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

таолица 14 Критерии	оценки уровня сформированности компетенций		
Оценка компетенции	Характеристика сформированных компетенций		
5-балльная шкала			
«отлично» «зачтено»	 – обучающийся глубоко и всесторонне усвоил программный материал; – уверенно, логично, последовательно и грамотно его излагает; – опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; – умело обосновывает и аргументирует выдвигаемые им идеи; – делает выводы и обобщения; – свободно владеет системой специализированных понятий. 		
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 		
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий. 		

Оценка компетенции	Характеристика сформированных компетенций	
5-балльная шкала		
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 	

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	Код	
		индикатора	
1	Конструкция валов и осей, расчеты на прочность и жесткость. Выбор материалов	ОПК-3.Д.4	
2	Типовые соединения деталей. Конструкции, особенности применения.		
3	Муфты электромеханических и механических приводов. Критерии выбора и расчета.		
4	Трение в кинематических парах (сухое и жидкостное).		
5	Выбор материала деталей подшипниковых узлов. Расчет на прочность элементов конструкции. Назначение и виды смазок подшипников качения.		
6	Влияние технологических и конструктивных факторов на собственную вибрацию и резонансные режимы работы механизмов.	ОПК-3.Д.5	
7	Подшипники скольжения, выбор материала, расчет на прочность конструкции подшипниковых узлов.		
8	Цилиндрические передачи (прямозубые и косозубые). Особенности кинематического и силового расчета. Расчет геометрических параметров.		
9	Червячные передачи. Особенности кинематического и силового расчета. Расчет геометрических параметров.		
10	Конические передачи. Особенности кинематического и силового расчета. Расчет геометрических параметров.		
11	Анализ точности зубчатых передач. Методы повышения точности.	ОПК-5.Д.3	
12	Условия эксплуатации механизмов. Основные требования, предъявляемые к конструкциям деталей механизмов.		
13	Надежность механизмов. Основные показатели надежности изделий.		
14	Типовые конструкции зубчатых колес. Расчет геометрических параметров зубчатых колес.		
15	Расчет на прочность модуля зубчатой передачи (цилиндрической и конической).		
16	Фрикционные передачи и передачи с гибкой связью. Основные характеристики. Кинематические, силовые и геометрические параметры.	ОПК-3.Д.4	
17	Винтовые механизмы. Особенности проектирования. Основные характеристики. Кинематические, силовые и геометрические		

	параметры.	
18	Простейшие схемы планетарных механизмов, образование сложных редукторов силового привода. Особенности	
	сложных редукторов силового привода. Особенности проектирования.	
19	Обобщенные алгоритмы проектирования механизмов привода.	
20	Выбор материала деталей подшипниковых узлов. Расчет на	
	прочность элементов конструкции. Назначение и виды смазок	
	подшипников качения.	

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16.

Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код индикатора
	Учебным планом не предусмотрено	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

№ п/п	Примерный перечень вопросов для тестов	Код индикатора
1	Один из лучших материалов для вкладышей подшипников	ОПК-3.Д.4
	скольжения баббит является	
	древесиной	
	 сплавом на основе чугуна и стали 	
	 сплавом на основе свинца и олова 	
	– порошком	
2	Сила прижатия колес фрикционной передачи увеличена в два раза.	
	Напряжения в контакте изменятся так	
	увеличатся в 1,44 раза	
	увеличатся в 2 раза	
	не изменятся	
	уменьшатся в 1,44 раза	
3	Оси валов должны пересекаться под прямым углом, а скорости	ОПК-5.Д.3
	вращения должны соотноситься как 2:1. Следует использовать	
	передачу	
	– планетарную	
	– коническую	
	– волновую	
	– червячную	
4	В червячном редукторе передача с однозаходным червяком	ОПК-3.Д.4
	заменена на передачу с двухзаходным червяком, скорость вращения	
	вала колеса, при неизменной скорости вращения червяка,	
	уменьшится вдвое	

_		
	увеличится вдвое	
	увеличится втрое	
	не изменится	
5	Круглая гладкая ось постоянного поперечного сечения диаметром $d=100$ мм нагружена изгибающим моментом $M=10000$ Нм. Если предел текучести материала $\sigma_{\rm T}=200$ Мпа, то ее запас прочности равен -3	ОПК-3.Д.5
	- 4	
	- 1,5	
	- 2	
6	Предел текучести материала сварной конструкции $\sigma_{\rm T}$ =210Мпа.	ОПК-5.Д.3
	Если сварка автоматическая, то допускаемое напряжение для	
	расчета на растяжение рекомендуется назначить	
	— 140 MПа	
	– 210 MПa	
	– 280 MПa	
	– 70 МПа	
7	Концентраторы напряжений при работе вала	ОПК-3.Д.4
	снижают вибрации	
	 повышают статическую прочность 	
	 снижают сопротивление усталости 	
	 повышают допускаемые напряжения 	
8	Подшипник скольжения, в котором подъемная сила в масляном	ОПК-3.Д.5
	слое возникает в результате относительного движения рабочих	
	поверхностей, является	
	 гидродинамическим 	
	 гидростатическим 	
	 полужидкостным 	
9	— полустатическим — полустатическим	ОПИ 5 П 2
9	Передачами, к основным характеристикам которых относятся высокая нагрузочная способность, большая долговечность и	ОПК-5.Д.3
	надежность, высокий КПД, постоянство передаточного отношения	
	являются	
	– червячные	
	– зубчатые	
	– цепные	
	– фрикционные	
10	Степень подвижности плоского механизма определяется по	ОПК-3.Д.4
	формуле Чебышева	
	$-W=3n-2P_5-1P_4$	
	$-W=3n-2P_5+1P_4$	
	$-W=6n-2P_5-1P_4$	
	$-W=6n+2P_5-1P_4$	

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п	•	Пе	еречень контрольных работ
	Не предусмотрено)	

10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

11. Методические указания для обучающихся по освоению дисциплины

11.1. Методические указания для обучающихся по освоению лекционного материала

Основное назначение лекционного материала – логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- Соответствует темам лекций п.4.2
- 11.2. Методические указания для обучающихся по выполнению лабораторных работ

В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;

- получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задание и требования к проведению лабораторных работ

Лабораторные работы по дисциплине «Прикладная механика» проводятся в лабораториях кафедры № 1 (ауд. 11-05, 12-06). Для проведения лабораторных работ используются лабораторные установки, позволяющие выполнять экспериментальные исследования по всем основным разделам дисциплины «Прикладная механика».

Цель лабораторных работ – исследование кинематических и силовых параметров механизмов, механических характеристик материалов, изучение стандартов и нормалей, регламентирующих механические испытания элементов конструкций, кинематическую точность, а также получение навыков обработки экспериментальных данных с использованием современных информационных технологий.

Порядок проведения лабораторной работы:

- 1. Вводная часть
- получение обучающимся допуска к работе (устный опрос)
- получение обучающимся задания
- сообщение преподавателем указаний к работе (описание лабораторной установки, напоминание о порядке выполнения работы и исследуемых параметрах, показ способов выполнения отдельных операций, предупреждение о возможных ошибках)
 - 2. Основная часть
 - выполнение обучающимся поставленной в ходе эксперимента задачи
- сообщение преподавателем (в случае необходимости) дополнительных указаний (повторный показ или разъяснение исполнительских действий)
 - 3. Заключительная часть
- В заключительной части студент должен продемонстрировать полученные результаты преподавателю.

Структура и форма отчета о лабораторной работе

Отчет о лабораторной работе должен содержать следующие разделы:

- цель лабораторной работы
- формулировка задания
- основная часть (должна содержать описание лабораторной установки, необходимые таблицы, графики, экспериментальные данные и результаты расчетов)
 - вывод (описываются итоги работы, проводится анализ полученных результатов)

Требования к оформлению отчета о лабораторной работе

Требования к оформлению отчета о лабораторной работе изложены в действующем стандарте ГОСТ 7.32-2001 «Отчет о научно-исследовательской работе. Структура и правила оформления», который можно найти в Интернете на сайте ГУАП http://guap.ru/guap/standart/titl_main.shtml

Учебно-методическая литература:

- 1. М55 Механические испытания элементов приборов: лабораторный практикум/С.-Петерб. гос. ун-т аэрокосм. приборостроения; сост. Д. Ю. Ершов, О.В. Опалихина. СПб.:Изд-во ГУАП, 2010. 71 с. Имеются экземпляры в отделах: фонд учебного корпуса Гастелло (59), студ. отдел (БМ) (21), чит. зал ГС (1).
- 2. 531 И 88 Исследование качества механизмов приборов: лабораторный практикум / А.И. Скалон, И.Н. Лукьяненко, О.В. Опалихина и др.; С.-Петерб. гос. ун-т аэрокосм. приборостроения. СПб.: Изд-во ГУАП, 2015. 75 с. Имеются экземпляры в отделах: фонд учебного корпуса Гастелло (70), студ. отдел (БМ) (10).

На лабораторных занятиях осуществляется текущий контроль результатов изучения дисциплины «Прикладная механика»

11.3. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихсяявляются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ (для обучающихся по заочной форме обучения).
- В ходе выполнения самостоятельной работы обучающийся изучает теоретический материал дисциплины, выполняет отчеты по лабораторным работам, размещенные в личном кабинете: http://pro.guap.ru/exters/
- 11.4. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания процесса освоения дисциплины.

Текущий контроль успеваемости проводится в форме суммарного оценивания для определения фиксированного уровня усвоения содержания лекционного материала по итогам изучения разделов дисциплины.

Вариантом текущего контроля успеваемости по дисциплине «Прикладная механика» может быть письменное тестирование, а так же тестирование с системе LMS.

11.5. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

— экзамен — форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Вариантом промежуточной аттестации наряду с устными экзаменом и зачетом по прикладной механике может быть письменное тестирование.

Система оценок при проведении промежуточной аттестации осуществляется в соответствии с требованиями Положений «О текущем контроле успеваемости и промежуточной аттестации студентов ГУАП, обучающихся по программам высшего образования» и «О модульно-рейтинговой системе оценки качества учебной работы студентов в ГУАП».

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой