МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 43

УТВЕРЖДАЮ Руководитель направления

доц., к.т.н., доц.

(должность, уч. степень, звание)

В.А. Матьяш

(подпись)

(инициалы, фамилия)

«15» июня 2022 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Программирование встроенных приложений» (Наименование дисциплины)

Код направления подготовки/ специальности	02.03.03
Наименование направления подготовки/ специальности	Математическое обеспечение и администрирование информационных систем
Наименование направленности	Системный анализ в информационных технологиях
Форма обучения	очная

Лист согласования рабочей программы дисциплины

Программу составил (а)		
ДОЦ., К.Т.Н. (должность, уч. степень, звание)	15.06.2022 (подпись, дата)	А.А. Попов (инициалы, фамилия)
Программа одобрена на заседа	ании кафедры № 43	
«15» июня 2022 г., протокол М	© 07/2022	
Заведующий кафедрой № 43 д.т.н.,проф. (уч. степень, звание)		М.Ю. Охтилев (инициалы, фамилия)
Ответственный за ОП ВО 02.0 старший преподаватель (должность, уч. степень, звание)	3.03(02) 15.06.2022 (подпись, дата)	А.А. Фоменкова (инициалы, фамилия)
доц.,к.т.н.,доц.	тута №4 по м етодической работо	А.А. Ключарев
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)

Аннотация

Дисциплина «Программирование встроенных приложений» входит в образовательную программу высшего образования — программу бакалавриата по направлению подготовки/ специальности 02.03.03 «Математическое обеспечение и администрирование информационных систем» направленности «Системный анализ в информационных технологиях». Дисциплина реализуется кафедрой «№43».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ПК-3 «Способен использовать знания направлений развития компьютеров с традиционной (нетрадиционной) архитектурой; современных системных программных средств; операционных систем, операционных и сетевых оболочек, сервисных программ; тенденции развития функций и архитектур проблемно ориентированных программных систем и комплексов в профессиональной деятельности»

Содержание дисциплины охватывает круг вопросов, связанных с изучением организации программного обеспечения встраиваемых систем, получением знаний, о структуре, функциях и основах программирования микроконтроллеров.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, самостоятельная работа обучающегося, курсовое проектирование.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 7 зачетных единиц, 252 часа.

Язык обучения по дисциплине «русский».

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Целью изучения дисциплины является получение обучающимися необходимых навыков в области архитектуры и программного обеспечения встроенных систем, получением знаний, о структуре, функциях и основах программирования микроконтроллеров, позволяющих решать вопросы анализа функционирования и обоснования требований к архитектуре и программному обеспечению встраиваемых систем.

- 1.2. Дисциплина входит в состав части, формируемой участниками образовательных отношений, образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа) компетенции	Код и наименование компетенции	Код и наименование индикатора достижения компетенции
Профессиональные компетенции	ПК-3 Способен использовать знания направлений развития компьютеров с традиционной (нетрадиционной) архитектурой; современных системных программных средств; операционных и сетевых оболочек, сервисных программ; тенденции развития функций и архитектур проблемно ориентированных программных систем и комплексов в профессиональной деятельности	ПК-3.3.1 знает направления развития компьютеров с традиционной и нетрадиционной архитектурой ПК-3.У.1 умеет анализировать тенденции развития функций и архитектур проблемноориентированных программных систем и комплексов в профессиональной деятельности ПК-3.У.2 умеет использовать в профессиональной деятельности современные системные программные средства, операционные системы и оболочки, сервисные программы ПК-3.В.1 владеет навыками программирования компьютеров с различной современной архитектурой

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- «Информатика»,
- «Дискретная математика»,
- «Основы программирования»,
- «Алгоритмы и структуры данных»,
- «Архитектура ЭВМ и систем».

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и могут использоваться при изучении других дисциплин:

- «Программирование мобильных устройств»,
- «Операционные системы».

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

Day awa ƙasay na ƙaray	Всего	Трудоемкость по семестрам		
Вид учебной работы	bcero	№6	№7	
1	2	3	4	
Общая трудоемкость дисциплины, 3E/ (час)	7/ 252	5/ 180	2/ 72	
Из них часов практической подготовки	51	34	17	
Аудиторные занятия, всего час.	85	68	17	
в том числе:				
лекции (Л), (час)	34	34		
практические/семинарские занятия (ПЗ),				
(час)				
лабораторные работы (ЛР), (час)	34	34		
курсовой проект (работа) (КП, КР), (час)	17		17	
экзамен, (час)	36	36		
Самостоятельная работа, всего (час)	131	76	55	
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Экз.,	Экз.		

Примечание: **кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Разделы, темы дисциплины	Лекции (час)	ПЗ (СЗ) (час)	ЛР (час)	КП (час)	CPC (час)
Cen	иестр 6				
Раздел 1. Архитектура встроенных систем. Тема 1.1. Основные понятия и принципы построения встроенных систем. Тема 1.2. Организация и принципы работы RISC-процессоров.	10		8		18

Раздел 2. Принципы программирования встроенных приложений. Тема 2.1. Принципы программного управления подсистемами микроконтроллера. Тема 2.2. Методы передачи данных. Организация интерфейсов. Тема 2.3. Аналого-цифровые и цифроаналоговые преобразователи.	20		22		48
Раздел 3. Принципы разработки приложений для встроенных систем. Тема 3.1. Основные подходы к программированию встроенных систем.	4		4		10
Итого в семестре:	34		34		76
Семестр	7				
Выполнение курсового проекта				17	55
Итого в семестре:				17	55
Итого	34	0	34	17	131

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Номер	Название и содержание разделов и тем лекционных занятий				
раздела	пазвание и содержание разделов и тем лекционных занятии				
1	Архитектура встроенных систем.				
	Гема 1.1. Основные понятия и принципы построения встроенных систем.				
	Лекция №1. Общие понятия проектирования и программирования встроенных				
	систем. Понятие программного управления. Системы автоматического				
	управления. Встраиваемые системы. Проектирование встраиваемых систем.				
	Микроконтроллеры (МК).				
	Тема 1.2. Организация и принципы работы RISC-процессоров.				
	Лекция №2. Организация взаимодействия банка регистров с операционным				
	устройством (ОУ) в RISC-процессоре. Структурная схема ОУ, принцип				
	кодирования операций. Принципы взаимодействия процессора с памятью.				
	Форматы команд.				
	Лекция №3. Формирование архитектуры системы команд. Дешифратор команд.				
	Принцип совмещения операций академика С.А. Лебедева.				
	Лекция №4. Элементы архитектуры процессоров ARM Cortex-M. Режимы				
	работы и состояния. Программная модель. Модель памяти. Система команд.				
	Методы адресации.				
	Лекция №5. Номенклатура МК STM32. Структурная схема STM32F3x,				
	STM32F1x, назначение подсистем. Стандарт CMSIS. Стандарт вызова процедур				
	для архитектуры ARM (AAPCS).				

2 Принципы программирования встроенных приложений.

Тема 2.1. Принципы программного управления подсистемами микроконтроллера.

Лекция №6. Классификация памяти. Основные характеристики памяти.

Сегментация памяти. Подсистема тактирования и сброса МК STM32F3x (RCC).

Назначение, структурная схема, регистры управления подсистемой.

Лекция №7. Понятие дискретных цифровых сигналов, логических

входов/выходов. Основные схемы организации линий порта ввода/вывода (GPIO). Регистры управления GPIO.

Лекция №8. Организация системы прерываний. Контроллер вложенных векторных прерываний (NVIC). Регистры настройки NVIC.

Лекция №9. Диаграмма работы системы прерываний NVIC. Расширенный контроллер прерываний и событий EXTI, блок-схема, назначение. Регистры EXTI. Порядок настройки внешнего прерывания. Системный таймер SYSTICK.

Лекция №10. Понятие таймера на основе счётчика. Принцип работы простого таймера, таймера общего назначения. Каскадирование таймеров.

Лекция №11. Структурная схема таймера с расширенным функционалом.

Понятие ШИМ. Энкодер. Стандартная библиотека периферии. Низкоуровневые драйверы периферии библиотеки HAL LL.

Тема 2.2. Методы передачи данных. Организация интерфейсов.

Лекция №12. Спецификации ARM AMBA. Шина периферии APB.

Высокопроизводительная шина АНВ. Организация прямого доступа к памяти, контроллер DMA.

Лекция №13. Принцип работы жидкокристаллического экрана. Шинный интерфейс Intel 8080. Методы передачи данных. Понятие интерфейса.

Контроллер UART, сигнальные линии, формат кадра, детали приёма/передачи данных.

Лекция №14. Интерфейс I2C, подключение к шине, физический протокол.

Интерфейс SPI. Понятие дифференциального сигнала. Интерфейс CAN.

Тема 2.3. Аналого-цифровые и цифро-аналоговые преобразователи.

Лекция №15. Материализация информации. Аналогово-кодовое кодирование, этапы преобразования. Параметры АЦП. Аналого-цифровые и цифроаналоговые преобразователи, принцип работы.

3 Принципы разработки приложений для встроенных систем.

Тема 3.1. Основные подходы к программированию встроенных систем. Лекция №16. Принципы автоматного программирования. Понятие программного конечного автомата, сообщения, виртуальные таймеры. Понятие мультизадачной системы, встраиваемой операционной системы (ОС), процесса (задачи). Планирование задач, реентерабельность.

Лекция №17. Понятие ядра встраиваемой ОС и его функции. ОС реального времени CMSIS-RTOS RTX.

4.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

				Из них	$N_{\underline{0}}$
$N_{\underline{0}}$	Темы практических	Формы практических	Трудоемкость,	практической	раздела
п/п	занятий	занятий	(час)	подготовки,	дисцип
				(час)	лины
		едусмотрено			
	Всег				

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

	пица о Упасораторивае запитни и их грудоеми		Из них	$N_{\underline{0}}$
No	Havraga payya ya banazanyi ya na baz	Трудоемкость,	практической	раздела
Π/Π	Наименование лабораторных работ	(час)	подготовки,	дисцип
			(час)	лины
	Семестр	6		
1	Вводное занятие, инструктаж по технике	6	6	1
	безопасности. Изучение цифрового			
	осциллографа и отладочного комплекта.			
	Установка, настройка и порядок работы с			
	интегрированной средой разработки MDK			
	Keil µVision, изучение средств отладки.			
2	Изучение основных принципов разработки	4	4	1,2
	и отладки программ микроконтроллера			
	(МК) в интегрированной среде разработки			
	Keil.			
3	Изучение принципов программной	4	4	2
	настройки подсистемы сброса и			
	тактирования МК.			
4	Изучение принципов программной	4	4	2
	настройки подсистемы прерываний МК.			
5	Изучение принципов программной	6	6	2
	настройки таймеров микроконтроллера.			
6	Изучение принципов программной	4	4	2
	настройки универсального асинхронного			
	приёмопередатчика (UART), протокола			
	последовательной связи (I2C), сопряжение			
	МК с жидкокристаллическим экраном.			
7	Изучение принципов программной	6	6	2,3
	настройки аналого-цифрового и цифро-			
	аналогового преобразователей.			
	Применение операционной системы			
	CMSIS-RTOS RTX.			
	Всего	34	34	

4.5. Курсовое проектирование/ выполнение курсовой работы

Цель курсового проекта: получение практических навыков программирования основных элементов встраиваемых приложений в ходе разработки конкретного прототипа устройства.

Часов практической подготовки: 17. Примерные темы заданий на курсовой проект приведены в разделе 10 РПД.

4.6. Самостоятельная работа обучающихся Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

таолица / Виды самостоятельной работы и се трудосикость				
Вид самостоятельной работы	Всего, час	Семестр 6, час	Семестр 7, час	
1	2	3	4	
Изучение теоретического материала дисциплины (TO)	36	36		
Курсовое проектирование (КП, КР)	55		55	
Расчетно-графические задания (РГЗ)				
Выполнение реферата (Р)				
Подготовка к текущему контролю успеваемости (ТКУ)	28	28		
Домашнее задание (ДЗ)				
Контрольные работы заочников (КРЗ)				
Подготовка к промежуточной аттестации (ПА)	12	12		
Всего:	131	76	55	

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8.

Таблица 8- Перечень печатных и электронных учебных изданий

		Количество
		экземпляров
Шифр/	Библиографическая ссылка	в библиотеке
URL адрес	виолиографическая ссылка	(кроме
		электронных
		экземпляров)
https://urait.ru/bc	Огородников, И. Н. Микропроцессорная техника:	
ode/453337	введение в Cortex-M3: учебное пособие для вузов / И.	
	Н. Огородников. — Москва: Издательство Юрайт, 2020.	
	— 116 с. — (Высшее образование). — ISBN 978-5-534-	
	08420-7. — Текст: электронный // ЭБС Юрайт. — URL:	
	https://urait.ru/bcode/453337	

https://e.lanbook.	Джозеф, Ю. Ядро Cortex-М3 компании ARM. Полное	
com/book/69941	руководство: руководство / Ю. Джозеф; перевод с	
	английского А. В. Евстифеева. — Москва: ДМК Пресс,	
	2012. — 552 с. — ISBN 978-5-97060-307-9. — Текст:	
	электронный // Лань: электронно-библиотечная система.	
	— URL: https://e.lanbook.com/book/69941	
https://znanium.c	Барретт, С. Ф. Встраиваемые системы. Проектирование	
om/catalog/produ	приложений на микроконтроллерах семейства 68НС12 /	
ct/406520	HCS12 с применением языка С [Электронный ресурс] /	
	С. Ф. Барретт, Д. Дж. Пак Москва: ДМК пресс, 2010	
	640 с ISBN 5-9706-0034-2 Текст: электронный	
	URL: https://znanium.com/catalog/product/406520	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет»

Testekommyninkuthonnion eern wintepher//			
URL адрес	Наименование		
http://www.keil.com/demo/	Keil MDK-ARM Development Software		
	(бесплатная версия)		
https://www.keil.com/dd2/stmicroelectronics/stm32f	Пакет Keil.STM32F1xx_DFP.2.3.0.pack		
103c8/			
https://www.keil.com/dd2/stmicroelectronics/stm32f	Пакет Keil.STM32F3xx_DFP.2.1.0.pack		
303vctx/			
https://www.st.com/en/microcontrollers-	Перечень документации на		
microprocessors/stm32f303vc.html#documentation	микроконтроллер STM32F303VC		
https://www.st.com/en/microcontrollers-	Перечень документации на		
microprocessors/stm32f103c8.html#documentation	микроконтроллер STM32F103C8		

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

Ī	№ п/п	Наименование
ĺ	1	Операционная система Microsoft Windows
ĺ	2	Keil MDK-ARM Development Software (бесплатная версия)

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине.

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п	Наименование
	Не предусмотрено

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Мультимедийная лекционная аудитория	
2	Специализированная лаборатория «Микропроцессорных систем»	
3	Отладочный комплект Open32F3-D	

- 10. Оценочные средства для проведения промежуточной аттестации
- 10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Экзамен	Список вопросов к экзамену;
	Задачи;
	Тесты.
Выполнение курсового проекта	Экспертная оценка на основе требований к
	содержанию курсового проекта.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 - Критерии оценки уровня сформированности компетенций

Оценка компетенции	Vanaratanuatiura ahan umanauu w waxuutatauuu
5-балльная шкала	Характеристика сформированных компетенций
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий.

Оценка компетенции	Vanastanistatista ahan umanasuu va kantistasuusi	
5-балльная шкала	Характеристика сформированных компетенций	
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 	
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий. 	
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 	

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

No	Перечень вопросов (задач) для экзамена	
Π/Π	перечень вопросов (задач) для экзамена	индикатора
1.	Понятие программного управления. Принципы программного	ПК-3.3.1
	управления. Система автоматического управления. Понятие	
	встраиваемой системы. Типы встраиваемых систем и их характерные	
	отличия от остальных систем.	
2.	Общая формулировка задачи проектирования встроенной системы.	ПК-3.3.1
	Проблемы при проектировании встроенных приложений. Структура	
	процесса проектирования встраиваемой системы. Понятие	
	микроконтроллера (МК) и его место среди вычислителей.	
	Классификационные признаки. Семейства МК. Маршрут создания ПО	
	MK.	
3.	Понятия: архитектура вычислительной системы, процессора,	ПК-3.3.1
	тактирования. Гарвардская архитектура с редуцированной системой	
	команд (RISC). Принципы построения архитектуры RISC процессора,	
	основные элементы процессора и их взаимодействие.	
4.	Понятие архитектура системы команд. Форматы команд. Общая схема	ПК-3.3.1
	работы RISC процессора при взаимодействии с памятью. Принцип	
	совмещения операций академика С.А. Лебедева. Понятие критического	
	пути выполнения команды. Назначение основных стадий конвейера	
	RISC процессора.	

5.	Элементы архитектуры процессоров с точки зрения программиста. Процессор Cortex-M3/4, блок-схема процессора, конвейер команд. Понятие, арифметика с насыщением.	ПК-3.У.1
6.	Программная модель процессора Cortex-M3/4. Режимы работы и состояния процессора Cortex-M3/4.	ПК-3.В.1
7.	Модель памяти процессора Cortex-M3/4. Карта памяти STM32F303xC, STM32F103x.Основные шины процессора. Адресация с прямым и обратным порядком байт.	ПК-3.В.1
8.	Виды адресации. Способы адресации процессора Cortex-M3/4. Блоксхема МК STM32F303xC, STM32F103x. Назначение подсистем МК.	ПК-3.В.1
9.	Стандартизация восприятия адресации. Стандарт CMSIS. Типы данных, определенные стандартом. Область стандартизации. Уровни абстракции. Компоненты CMSIS в проекте, их структура и назначение.	ПК-3.3.1
10.	Иерархия организации памяти. Основные шины и сигналы управления памятью. Классификация памяти. Характеристики памяти. Сегментация памяти, основные сегменты.	ПК-3.3.1
11.	Подсистема сброса и тактирования. Понятие HSI, HSE, LSI, LSE, PLL, SYSCLK, HCLK их назначение. Назначение генератора опорной частоты с фазовой автоподстройкой частоты.	ПК-3.В.1
12.	Подсистема сброса и тактирования. Общая схема настройки PLLCLK, SYSCLK, HCLK. Поля управляющих регистров, используемые для настройки. Структурная схема сброса МК. Назначение и принцип работы системы сброса.	ПК-3.В.1
13.	Дискретные электрические сигналы. Понятие логических входов/выходов. Порты и сигнальные линии. Двухтактный выход. Структурная схема, принцип функционирования, достоинства, недостатки.	ПК-3.3.1
14.	Однотактный выход с пассивной нагрузкой. Схема, принцип функционирования, достоинства, недостатки. Состояние линий низкое (Low), высокое (High), конфликта (X), плавающее (Z). Принцип использования Z состояния выхода с открытым стоком. Подтягивающие резисторы и их назначение.	ПК-3.3.1
15.	Структурная схема бита порта ввода/вывода МК STM32. Принцип настройки и работы схемы. Триггер Шмидта.	ПК-3.В.1
16.	Режимы работы линий порта ввода/вывода МК STM32 и регистры их настройки.	ПК-3.В.1
17.	Система прерываний. Определения: прерывания, запроса прерывания, обработчика прерывания, вектор прерывания, приоритет прерывания, события, исключения. Виды прерываний. Издержки в организации системы прерываний. Системные исключения ARM Cortex_M3/4. Внешние прерывания. Принцип настройки прерываний.	ПК-3.3.1
18.	Контроллер вложенных векторных прерываний (NVIC). Регистры разрешения и запрещения прерываний NVIC. Регистры установки/сброса признака отложенного прерывания NVIC. Активное состояние. Взаимосвязь таблицы векторов прерываний с номерами прерываний.	ПК-3.В.1
19.	Уровни приоритета, группировка приоритетов, регистры настройки. Базовые средства конфигурации прерываний библиотеки CMSIS. Программные прерывания.	ПК-3.В.1
20.	Системный таймер, принцип работы. Регистры системного таймера.	ПК-3.В.1

21.	Расширенный контроллер прерываний и событий EXTI. Блок схема, назначение, принцип работы. Регистры расширенного контроллера прерываний и событий. Порядок настройки внешнего прерывания с входа ПВВ.	ПК-3.В.1
22.	Понятие таймера. Виды таймеров, основные модули, принцип работы, место в системе. Блок-схема базового таймера STM32Fx, основные регистры.	ПК-3.3.1
23.	Блок-схема таймера общего назначения STM32Fx, основные модули и их назначение. Соединение таймеров в каскадном режиме, таблица межсоединений таймеров.	ПК-3.В.1
24.	Блок-схема таймера с расширенным функционалом STM32Fx. Принцип работы. Режимы работы.	ПК-3.В.1
25.	Понятие широтно-импульсной модуляции сигнала (ШИМ). Работа таймера в режиме ШИМ. Назначение энкодера, принцип действия при измерении линейных и вращательных перемещений.	ПК-3.3.1
26.	Иерархия библиотек STM32. Стандартная библиотека периферии. Понятие слоя аппаратных абстракций (HAL). Низкоуровневые драйверы библиотеки HAL (LL). Структура, порядок работы.	ПК-3.У.2
27.	Спецификации ARM AMBA. Используемые термины при рассмотрении шин. Обозначение сигналов на временных диаграммах. Назначение шины периферии APB. Назначение высокопроизводительной шины AHB. Блок-схема шины AHB. Принципиальные различия в построении шин APB и AHB.	ПК-3.В.1
28.	Блок-схема шины периферии APB. Сигналы шины APB. Диаграмма состояний шины APB. Временная диаграмма транзакции чтения.	ПК-3.В.1
29.	Структурная схема и принцип работы жидкокристаллических экранов. Понятие GRAM. Стандарт протокола параллельной шины Intel 8080. Блок схема контроллера ILI9325. Принцип настройки контроллера. Регистры настройки. Временные диаграммы чтения/записи данных в контроллер. Формат РСХ.	ПК-3.3.1
30.	Контроллер прямого доступа к памяти DMA. Блок-схема, режимы работы, регистры настройки контроллера.	ПК-3.В.1
31.	Понятие интерфейса. Асинхронный и синхронный режим передачи данных. Режимы передачи параллельного кода со стробированием, с квитированием.	ПК-3.3.1
32.	Универсальный асинхронный приёмопередатчик (UART). Принцип работы передатчика, приёмника UART. Формат байта данных UART. Основные регистры управления.	ПК-3.В.1
33.	Интерфейс I2C, схема подключения к шине, протокол шины. Блок схема модуля I2C в STM32, регистры настройки работы модуля.	ПК-3.В.1
34.	Интерфейс SPI, схема подключения к шине, протокол шины. Понятие «дифференциальный сигнал». САN интерфейс, общие сведения.	ПК-3.В.1
35.	Методологическая схема формирования и материализации информации. Квантование информации. Методы дискретизации сигналов. Выводы теоремы Котельникова В.А. для функций с ограниченным спектром.	ПК-3.3.1
36.	Аналогово-кодовое кодирование сигналов. Статические параметры АЦП. Структурная схема и принцип работы ЦАП.	ПК-3.3.1
37.	Классификация АЦП. Структурная схема и принцип работы параллельного АЦП.	ПК-3.3.1
38.	Структурная схема и принцип работы: АЦП последовательного приближения.	ПК-3.3.1

		,
39.	Автоматное программирование. Понятие программного конечного автомата. Виртуальные таймеры. Сообщения. Принципы автоматного	ПК-3.У.1
	программирования.	
40.	Операционные системы реального времени. Понятие задачи, виды задач	ПК-3.В.1
10.	ОС. Планирование задач и их состояния. Потоки. Функции ОС, понятие	11K 3.D.1
	ядра. Блок управления задачей – назначение, структура.	
	Реентерабельный код.	
41.	Каков результат выполнения следующего кода:	ПК-3.У.2
41.	typedef unsigned int uint32 t;	11K-3.3.2
	int main(){ *(v::+22 +*)(0::40021018) - 0::00000010.	
	* $(uint32_t^*)(0x40021018) = 0x00000010;$	
	(uint32_t)(0x40011004)&= 0xFF0FFFFF;	
	(uint32_t)(0x40011004) = 0x00200000;	
	for(;;){	
	(uint32_t)(0x40011010) = 0x00002000;	
	(uint32_t)(0x40011014) = 0x00002000;}}	
	Разъяснить результаты выполнения каждой строчки кода.	
42.	Написать программу опроса каждую секунду состояния линии РА0 и	ПК-3.У.2
	вывода результата в окно отладчика.	
43.	Рассчитать коэффициенты настройки подсистемы тактирования и	ПК-3.У.2
	базового таймера ТIМх для настройки прерывания от таймера каждые 3	
	минуты.	
44.	Рассчитать коэффициенты настройки таймера с расширенным	ПК-3.У.2
	функционалом ТІМх для настройки ШИМ сигнала частотой 720 Гц и	
	коэффициентом заполнения kw=0,235. Частота тактирования таймера	
	$FCK_INT = FCK_PSC = 144 M\Gamma$ ц.	
45.	Аналитическая функция аналогового сигнала: e(t)=5*sin(2*pi*t)	ПК-3.У.2
	(считать в радианах). Осуществить его аналогово-кодовое кодирование	
	на отрезке [0;1] секунд, частота дискретизации 5 Гц, величина кванта по	
	уровню 0.2 В. Разрядную сетку и способ кодирования в ней выбрать	
	самостоятельно. Результат записать в виде таблицы: первый столбец	
	аналоговое значение, второй – цифровой код, третий - погрешность	
	квантования.	
		l .

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16.

Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код индикатора
	Учебным планом не предусмотрено	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
1.	Калькулятор арифметических операций.
2.	Логический двоичный калькулятор
3.	Калькулятор графиков степенных функций.
4.	Цифровой самописец.
5.	Выносной пульт контроля.

6.	Часы.
7.	Сторожевой пульт.
8.	Генератор ШИМ звуковой частоты.
9.	Таймер обратного отсчёта.
10.	Транслятор числа в код Морзе.
11.	Генератор сигнала.
12.	Генератор прямоугольных импульсов.
13.	Гирлянда из 8-ми светодиодов. Управление движением огоньков.

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

No.	лица 10—Примерный перечень вопросов для тестов		
п/п	Примерный перечень вопросов для тестов	Код индикатора	
1.	Понятие программного управления.	ПК-3.3.1	
2.	Принципы программного управления.	ПК-3.3.1	
3.	Различия микроконтроллеров по набору инструкций.	ПК-3.3.1	
4.	Характерные черты процессоров с RISC-архитектурой.	ПК-3.3.1	
5.	Этапы конвейера ARMv7.	ПК-3.В.1	
6.	Модель процессора с точки зрения программиста.	ПК-3.3.1	
7.	Функции кнопок в режиме отладки.	ПК-3.В.1	
8.	Типы памяти SRAM и DRAM.	ПК-3.3.1	
9.	Особенности чтения/записи флэш-памяти.	ПК-3.3.1	
10.	Разделы адресного пространства микроконтроллеров ARM Cortex-M.	ПК-3.В.1	
11.	Понятие «точка входа» («Entry point») в приложении.	ПК-3.В.1	
12.	Влияние уровней оптимизации при компиляции.	ПК-3.3.1	
13.	Размещение компилятором переменных разного типа.	ПК-3.3.1	
14.	Размер разных типов данных в архитектуре ARM.	ПК-3.В.1	
15.	Понятие операнда.	ПК-3.3.1	
16.	Регистровая память микроконтроллеров ARM Cortex-M, назначение.	ПК-3.В.1	
17.	Назначение регистра счётчика команд.	ПК-3.3.1	
18.	Назначение регистра указателя стека.	ПК-3.3.1	
19.	Назначение регистра состояния программы.	ПК-3.3.1	
20.	Расположение стека и "heap" в памяти.	ПК-3.3.1	
21.	Назначение флагов регистра состояния программы.	ПК-3.3.1	
22.	Понятие кварцевого резонатора, тактового генератора HSE	ПК-3.3.1	
23.	Понятие ФАПЧ (PLL), назначение.	ПК-3.3.1	
24.	Назначение HSE, HSI, MCO, LSE, LSI.	ПК-3.В.1	
25.	Внутренние нагрузочные резисторы Pull-up (down) микроконтроллера, назначение.	ПК-3.В.1	
26.	Назначение триггера Шмитта.	ПК-3.3.1	
27.	Расстановка приоритетов прерываний по умолчанию после сброса МК.		
28.	Возможности системы прерываний МК по настройки внешних	ПК-3.3.1	
20	прерываний.	THE 2 D 1	
29.	Временные характеристики системы прерываний МК.	ПК-3.3.1	
30.	Регистры МК управления системой прерываний, разрешения,	ПК-3.В.1	
2.1	запрещения, маскирования, приоритета, группировки приоритетов.	ПК 2 В 1	
31.	Состояния прерывания и порядок его изменения.	ПК-3.В.1	
32.	Функции CMSIS управления системой прерываний.	ПК-3.В.1	

33.	Системный таймера (SYSTICK), назначение, разрядность, направление	ПК-3.В.1
	счёта.	
34.	Назначение таймеров, типы таймеров в МК.	ПК-3.В.1
35.	Принцип организации работы базового таймера, основные регистры.	ПК-3.В.1
36.	Принцип организации работы канала захвата-сравнения таймера	ПК-3.В.1
	общего назначения, основные регистры.	
37.	Расчёта значения частоты тактирования таймера в зависимости от	ПК-3.У.2
	настроек регистров подсистемы тактирования.	
38.	Расчёта значения регистра авто-перезагрузки таймера в зависимости от	ПК-3.У.2
	частоты тактирования, значений предделителей и частоты события.	
39.	Виды интерфейсов периферийных устройств.	ПК-3.3.1
40.	Организация интерфейса USART.	ПК-3.В.1
41.	Организация интерфейса I ² C.	ПК-3.В.1
42.	Организация интерфейса SPI.	ПК-3.В.1

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п	•	Пе	еречень контрольных работ
	Не предусмотрено		

- 10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.
 - 11. Методические указания для обучающихся по освоению дисциплины
- 11.1. Методические указания для обучающихся по освоению лекционного материала.

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов.

11.2. Методические указания для обучающихся по выполнению лабораторных работ.

В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задание и требования к проведению лабораторных работ

Приведены на сервере кафедры 43 в разделе .../Методическое обеспечение кафедры 43/Программирование встроенных приложений/

Структура и форма отчета о лабораторной работе

Приведены на сервере кафедры 43 в разделе .../Методическое обеспечение кафедры 43/Программирование встроенных приложений/

Требования к оформлению отчета о лабораторной работе

Приведены на сервере кафедры 43 в разделе .../Методическое обеспечение кафедры 43/Программирование встроенных приложений/

11.3. Методические указания для обучающихся по прохождению курсового проектирования/выполнения курсовой работы.

Курсовой проект/ работа проводится с целью формирования у обучающихся опыта комплексного решения конкретных задач профессиональной деятельности.

Курсовой проект/ работа позволяет обучающемуся:

- применить полученные знания, умения и практический опыт при решении комплексных задач, в соответствии с основными видами профессиональной деятельности по направлению 02.03.03;
- приобрести опыт аналитической, расчётной, конструкторской работы и сформировать соответствующие умения;
- сформировать умения работы со специальной литературой, справочной, нормативной и правовой документацией и иными информационными источниками;
- сформировать умения формулировать логически обоснованные выводы,
 предложения и рекомендации по результатам выполнения работы;
- развить системное мышление, творческую инициативу, самостоятельность, организованность и ответственность за принимаемые решения;
- сформировать навыки планомерной регулярной работы над решением поставленных задач.

Структура пояснительной записки курсового проекта/ работы

Приведены на сервере кафедры 43 в разделе .../Методическое обеспечение кафедры 43/Программирование встроенных приложений/

Требования к оформлению пояснительной записки курсового проекта/ работы

Приведены на сервере кафедры 43 в разделе .../Методическое обеспечение кафедры 43/Программирование встроенных приложений/

11.4. Методические указания для обучающихся по прохождению самостоятельной работы.

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихся, являются учебно-методические материалы по дисциплине приведенные на сервере кафедры 43 в разделе .../Методическое обеспечение кафедры 43/Программирование встроенных приложений/

11.5. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

Текущий контроль проводится в течение семестра по итогам выполнения студентами лабораторных занятий в виде защиты. Защита лабораторной работы происходит после ее выполнения на основе электронного отчета, который должен содержать основные структурные элементы: название, тему, цель, задачи, расчетные формулы, код программы, осциллограммы сигналов.

«Отлично» ставится, если студент демонстрирует знания о методах содержания, обобщения и систематизации приведенного в отчете материала на уровне 90-100%

«Хорошо» - если студент демонстрирует знания о методах получения, обобщения и систематизации приведенного в отчете материала на уровне 75-90%;

«Удовлетворительно» - если студент демонстрирует знания о методах получения, обобщение и систематизации приведенного в отчете материала на уровне 50-75%;

«Неудовлетворительно» - если студент не знает о методах получения, обобщения и систематизации более половины приведенного в отчете материала.

Результаты текущего контроля успеваемости отражаются в личном кабинете в автоматизированной информационной системе.

Низкие результаты текущего контроля (оценка «удовлетворительно» и ниже) при проведении промежуточной аттестации позволяют экзаменатору задавать дополнительные вопросы по теме лабораторных занятий, а также помимо теоретических вопросов предлагать другие задания.

11.6. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

— экзамен — форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой