МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 32

УТВЕРЖДАЮ

Руководитель направления

доц., к.т.н., доц.

(должность, уч. степень, звание)

С.В. Солёный

(инициалы, фамилия)

(подпись)

«22» июня 2023 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Электромагнитная совместимость» (Наименование дисциплины)

Код специальности	13.05.02
Наименование специальности	Специальные электромеханические системы
Наименование направленности	Электромеханические системы специальных устройств и изделий
Форма обучения	очная

Лист согласования рабочей программы дисциплины

Программу составил (а)	1	
доц., к.т.н.	4 /	В.П. Кузьменко
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
		•
Программа одобрена на заседан	нии кафедры № 32	
«24» апреля 2023 г., протокол М	№ 6	
-		
Заведующий кафедрой № 32		
	\sim 0	
лон ктн лон	all some	С.В. Солёный
ДОЦ., К.Т.Н., ДОЦ. (уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
		•
Ответственный за ОП ВО 13.05	5.02(01)	
	A. P.	
	Courte	
доц., к.т.н., доц.	Long	О.Я. Солёная
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Заместитель директора институ	ута №3 по метолинеской рабо	ote
заместитель директора институ	та жез по методической расс	ore .
		** D. D
старший преподаватель		Н.В. Решетникова
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)

Аннотация

Дисциплина «Электромагнитная совместимость» входит в образовательную программу высшего образования — программу специалитета по специальности 13.05.02 «Специальные электромеханические системы» направленности «Электромеханические системы специальных устройств и изделий». Дисциплина реализуется кафедрой «№32».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ПК-4 «Способность участвовать в эксплуатации электротехнических и электроэнергетических устройств, специальных электромеханических систем»

ПК-5 «Способность использовать технические средства для измерения и контроля основных параметров электроэнергетического и электромеханического оборудования»

Содержание дисциплины охватывает круг вопросов, связанных с изучением общих вопросов электромагнитной совместимости, источников электромагнитных помех (ЭМП) и особенностей их воздействия на электротехнические устройства, каналов и механизмов передачи ЭМП, методов и средств защиты от ЭМП, технико-экспериментального определения помехоустойчивости, принципов обеспечения электромагнитной совместимости (ЭМС), нормативной базы и стандартизации в области ЭМС.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практические занятия, самостоятельная работа обучающегося.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме зачета.

Общая трудоемкость освоения дисциплины составляет 3 зачетных единицы, 108 часов.

Язык обучения по дисциплине «русский».

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Целью дисциплины является ознакомление студентов с теоретическими и практическими положениями оценки и расчета условий электромагнитной совместимости электротехнических устройств, а также выбора способов и расчета устройств защиты от электромагнитных помех.

- 1.2. Дисциплина входит в состав части, формируемой участниками образовательных отношений, образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа)	Код и наименование	Код и наименование индикатора
компетенции	компетенции	достижения компетенции
Профессиональные компетенции	ПК-4 Способность участвовать в эксплуатации электротехнических и электроэнергетических устройств, специальных электромеханических систем	ПК-4.3.1 знает правила и нормативные документы по эксплуатации электротехнического оборудования
Профессиональные компетенции	ПК-5 Способность использовать технические средства для измерения и контроля основных параметров электроэнергетического и электромеханического оборудования	ПК-5.3.1 знает особенности эксплуатации оборудования в нормальных, аварийных и послеаварийных режимах ПК-5.У.1 умеет проводить контроль режимов работы технологического оборудования; обеспечения безопасного производства

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- Математика. Математический анализ;
- Физика;
- Электротехника;

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и могут использоваться при изучении других дисциплин:

- Технико-экономические риски при создании новой техники;
- Конструирование, расчет и проектирование электромеханических и электроэнергетических устройств;
- Надежность электромеханических и электроэнергетических систем и комплексов.

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

Вид учебной работы	Всего	Трудоемкость по семестрам №7
1	2	3
Общая трудоемкость дисциплины, 3E/ (час)	3/ 108	3/ 108
Из них часов практической подготовки	17	17
Аудиторные занятия, всего час.	34	34
в том числе:		
лекции (Л), (час)	17	17
практические/семинарские занятия (ПЗ), (час)	17	17
лабораторные работы (ЛР), (час)		
курсовой проект (работа) (КП, КР), (час)		
экзамен, (час)		
Самостоятельная работа, всего (час)	74	74
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Зачет	Зачет

Примечание: **кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Разделы, темы дисциплины	Лекции (час)	ПЗ (СЗ) (час)	ЛР (час)	КП (час)	CPC (час)
Сем	естр 7				
Раздел 1. Основные понятия электромагнитной совместимости	4	3			15
Раздел 2. Источники и приемники электромагнитных помех	2	4			15
Раздел 3. Классификация электромаг-нитных помех. Узкополосные и широко-полосные помехи. Противофазные и синфазные помехи	2	2			15
Раздел 4. Механизмы связи и методы ослабления помех. Гальваническая связь. Ёмкостная связь. Индуктивная связь. Электромагнитная связь	4	4			9
Раздел 5. Количественная оценка электромагнитной совместимости	3	4			10
Раздел 6. Нормативные документы в области электромагнитной совместимости	2	-			10
Итого в семестре:	17	17			74
Итого	17	17	0	0	74

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий.

Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Номер раздела	Название и содержание разделов и тем лекционных занятий
1	Основные понятия электромагнитной совместимости.
_	Определение понятий: электромагнитная совместимость,
	электромагнитная помеха, электромагнитная обстановка,
	источник помех, влияние помехи, допустимая помеха,
	недопустимая помеха, приемлемая помеха, приемлемая помеха,
	уровень помехи, норма на помеху.
2	Источники и приемники электромагнитных помех. Источники
_	естественного и искусственного происхождения. Функциональные
	и нефункциональные источники помех. Особенности типовых
	источников и приемников электромагнитных воздействий.
	Совместимые и несовместимые электрические устройства.
	Обратимые и необратимые нарушения работоспособности
	электрических устройств.
3	Классификация электромаг-нитных помех. Узкополосные и
	широкополосные помехи. Количественная оценка
	узкополосности. Разновидности электромагнитных помех.
	Источники узкополосных помех. Источники широкополосных
	помех. Противофазные и синфазные помехи. коэффициент
	преобразования синфазной помехи в противофазную.
	Экспериментальное определение коэффициента преобразования
	синфазной помехи в противофазную.
4	Механизмы связи и методы ослабления помех. Гальваническая
	связь. Возникновение противофазных помех в контуре с общим
	заземлением. Гальваническая связь через цепи питания.
	Гальваническая связь через контур заземления. Мероприятия для
	снижения гальванической связи. Ёмкостная связь и способы ее
	ослабления. Ёмкостная связь контуров с общим проводом системы
	опорного потенциала. Контуры с большой емкостью относительно
	земли. Мероприятия по снижению емкостного влияния.
	Индуктивная связь и способы ее ослабления. Мероприятия по
	снижению индуктивного влияния. Электромагнитная связь.
	Воздействие электромагнитного излучения. Способы защиты от
	электромагнитного поля.
5	Количественная оценка электромагнитной совместимости.
	Логарифмические относительные характеристики. Уровни помех.
	Характеристики защитного воздействия средств защиты от помех.
	Степень передачи. Помехоподавление. Коэффициент затухания.
	Коэффициент экранирования. коэффициент синфазно-
	противофазного затухания. Возможные диапазоны значений
	типовых электромагнитных помех.
6	Нормативные документы в области электромагнитной
	совместимости. Стандарты в области ЭМС: общие стандарты,

стандарты, содержащие конкретные требования к аппаратуре определенного назначения, стандарты на методы испытаний, нормы предельно допустимых уровней излучений от технических Международные средств. стандарты В области Международные организации, занимающиеся стандартизацией в области ЭМС. Международная электротехническая комиссия (МЭК). Технический Комитет МЭК ТК 77 «Электромагнитная совместимость». Международный специальный комитет по радиопомехам (CISPR). Международная конференция по большим (СИГРЭ). Международная энергетическим системам совещательная комиссия телеграфной и телефонной службы (CCITT). Международный союз по производству и распределению электроэнергии (UNIPEDE). Европейский Комитет стандартизации В области электротехники (CENELEC). Европейский Институт стандартизации области В телекоммуникаций (ETSI).

4.3. Практические (семинарские) занятия Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

№ п/п	Темы практических занятий	Формы практических занятий Семестр		Из них практической подготовки, (час)	№ раздела дисцип лины
1	Использование ЭМС-номограммы при описании импульсных помех	Практическая работа	3	3	
2	Изучение методов анализа характеристик пассивных помехоподавляющих фильтров для обеспечения электромагнитной совместимости	Практическая работа	4	4	
3	Оценка коэффициента затухания электромагнитного экрана	Практическая работа	2	2	
4	Расчет параметров контура заземления группового заземлителя	Практическая работа	4	4	
5	Расчет параметров электрического поля линии электропередачи высокого	Практическая работа	4	4	

напряжения				
Всего		17	17	

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

			Из них	$N_{\underline{0}}$
$N_{\underline{0}}$	Наименование лабораторных работ	Трудоемкость,	практической	раздела
Π/Π	паименование лаоораторных раоот	(час)	подготовки,	дисцип
			(час)	лины
	Учебным планом не п	редусмотрено		
	Всего			

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся

Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего,	Семестр 7,
Вид самостоятсявной расств	час	час
1	2	3
Изучение теоретического материала дисциплины (TO)	60	60
Курсовое проектирование (КП, КР)		
Расчетно-графические задания (РГЗ)		
Выполнение реферата (Р)		
Подготовка к текущему контролю успеваемости (ТКУ)	10	10
Домашнее задание (ДЗ)		
Контрольные работы заочников (КРЗ)		
Подготовка к промежуточной аттестации (ПА)	4	4
Всего:	74	74

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8.

Таблица 8- Перечень печатных и электронных учебных изданий

1 -	repe temb ite tarribirt it esteki perinbirt ji teeribirt it	F 3
Шифр/ URL адрес	Библиографическая ссылка	Количество экземпляров в библиотеке (кроме электронных экземпляров)
	В. П. Кузьменко, и др. Основы электромагнитной совместимости в	20

	электроэнергетике: учебметод. пособие / В. П. Кузьменко, А. П. Бобрышов, С. А. Сериков, С. В. Солёный. – СПб.: ГУАП, 2022. – 73 с.	
УДК [621.311:5 37.8] (076.5) +537.8.001. 365(075.8)	Коржов, А.В. Электромагнитная совместимость в электроэнергетике: учебное пособие для самостоятельной работы студентов / А.В. Коржов. — Челябинск: Изд-во ЮУрГУ, 2007. — 70 с.	-
УДК: 621.3 (075)	Дейс, Д.А. Электромагнитная совместимость в электроэнергетике: Учебное пособие / Д.А. Дейс. – Чита, ЧитГУ, 2008. – 171 с.	-

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационно-

телекоммуникационной сети «Интернет»

URL адрес Наименование	
https://profstandart.rosmintrud.ru	База профессиональных стандартов
https://www.elibrary.ru База методических пособий и научных статей	
https://lib.guap.ru/jirbis2/index.php	Электронная библиотека ГУАП

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

№ п/п	Наименование
	Не предусмотрено

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п		Наименование	
	Не предусмотрено		

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
2	Мультимедийная лекционная аудитория	21-18; 21-21
3	Компьютерный класс	31-04

- 10. Оценочные средства для проведения промежуточной аттестации
- 10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Зачет	Список вопросов к зачёту.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции	оценки уровня сформированности компетенции		
5-балльная шкала	Характеристика сформированных компетенций		
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий. 		
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и, по существу, излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 		
«удовлетворительно» «зачтено»	 – обучающийся усвоил только основной программный материал, по существу, излагает его, опираясь на знания только основной литературы; – допускает несущественные ошибки и неточности; – испытывает затруднения в практическом применении знаний направления; – слабо аргументирует научные положения; – затрудняется в формулировании выводов и обобщений; – частично владеет системой специализированных понятий. 		

Оценка компетенции	Vanatetanuaruura ahannurannuu ny teontratavuuni		
5-балльная шкала	Характеристика сформированных компетенций		
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 		

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	Код
J \ <u>~</u> 11/11		индикатора
	Учебным планом не предусмотрено	

Вопросы для зачета представлены в таблице 16.

Таблица 16 – Вопросы для зачета

№ п/п	Перечень вопросов для зачета	Код
	• •	индикатора
	1. Основные понятия электромагнитной совместимости.	ПК-4.3.1
	Электромагнитная совместимость. Электромагнитная	
	помеха. Электромагнитная обстановка. Источник помех.	
	Влияние помехи. Допустимая помеха. Недопустимая	
	помеха. Приемлемая помеха. Уровень помехи.	
	2. Механизмы связи источников и приемников помех.	
	3. Источники помех. Функциональные и	
	нефункциональные источники помех.	
	4. Приемники (рецепторы) электромагнитных воздействий.	
	5. Особенности планирования работ по обеспечению	
	электромагнитной совместимости.	
	6. Стандарты РФ в области электромагнитной	
	совместимости. Показатели качества электроэнергии.	
	7. Стандартизация в области электромагнитной	
	совместимости на международном уровне (МЭК, ТК77,	
	CISPR, CCITT, UNIPEDE, CENELEC, ETSI).	
	8. Количественная оценка электромагнитной	
	совместимости. Степень передачи. помехоподавление.	
	9. Измерение уровней помех в децибелах и неперах.	
	10. Классификация электромагнитных помех.	
	Узкополосные и широкополосные помехи.	
	11. Количественная оценка узкополосности. Ширина	
	полосы энергетического спектра.	
	12. Характеристика основных источников узкополосных	
	помех.	
	18. Электромагнитный импульс ядерного взрыва как	ПК-5.3.1
	источник электромагнитных помех.	
	19. Классификация электромагнитных помех.	
	Противофазные и синфазные помехи.	
	20. Преобразование синфазной помехи в противофазную.	
	Коэффициент преобразования синфазной помехи в	

противофазную.	
21. Гальваническая связь через цепи питания. Способы	
уменьшения напряжения помехи.	
22. Мероприятия для снижения гальванической связи через	
цепи питания.	
23. Гальваническая связь через контур заземления.	
Способы уменьшения гальванического влияния.	
24. Мероприятия по снижению гальванического влияния в цепях	
заземления.	
25. Ёмкостная связь и способы ее ослабления.	ПК-5.У.1
26. Ёмкостная связь в контурах с общим проводом	
системы опорного потенциала.	
27. Методы борьбы с помехами в контурах с большой	
емкостью относительно земли.	
28. Индуктивная связь и способы ее ослабления.	
29. Воздействие электромагнитного излучения. Защита от	
электромагнитных помех.	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
Учебным планом не предусмотрено	

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

№ п/п Примерный перечень вопросов для тестов	Код
1 1 1 1	индикатора
1. Выберите один правильный ответ. Что из перечисленного ниже яв	вляется ПК-4.3.1
источником электромагнитных помех (ЭМП) в электроэнергетике?	ПК-5.3.1
	ПК-5.У.1
а) Солнечное излучение	
b) Ветряные турбины	
с) Линии электропередач	
d) Ничего из перечисленного	
2. Выберите один правильный ответ. Каково назначение клетки Фар	адея?
<mark>а)</mark> Для защиты от ЭМИ	
b) Для генерирования ЭМИ	
с) Для снижения напряжения	
d) Для увеличения тока	
3. Выберите один правильный ответ. Что из перечисленного ниже яв	вляется
примером кондуктивного излучения?	
а) Радиоволны	
b) Электрические искры	
с) Помехи в линии электропередачи	
d) Молния	
4. Выберите один правильный ответ. Что из перечисленного ниже яв	вляется
примером излучения?	
а) Электрические искры	

b) Помехи на линии электропередачи
с) Разряд молнии
d) Все вышеперечисленное
5) В чем разница между электромагнитной устойчивостью (ЭМУ) и электромагнитной восприимчивостью (ЭМВ)?
 а) ЭМУ — это способность устройства противостоять электромагнитному излучению, а ЭМВ — Неспособность технического средства функционировать без ухудшения качества при наличии электромагнитных помех. б) ЭМУ — это способность устройства генерировать электромагнитное излучение, а ЭМВ — способность устройства противостоять электромагнитному
излучению. c) ЭМУ и ЭМВ — это одно и то же.
г) Ничего из вышеперечисленного.

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п			еречень контрольных работ
	Не предусмотрено		

10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

11. Методические указания для обучающихся по освоению дисциплины

11.1. Методические указания для обучающихся по освоению лекционного материала

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала производится согласно темам разделов дисциплины, представленным в таблице 4.

11.2. Методические указания для обучающихся по прохождению практических занятий

Практическое занятие является одной из основных форм организации учебного процесса, заключающаяся в выполнении обучающимися под руководством преподавателя комплекса учебных заданий с целью усвоения научно-теоретических основ учебной дисциплины, приобретения умений и навыков, опыта творческой деятельности.

Целью практического занятия для обучающегося является привитие обучающимся умений и навыков практической деятельности по изучаемой дисциплине.

Планируемые результаты при освоении обучающимся практических занятий:

- закрепление, углубление, расширение и детализация знаний при решении конкретных задач;
- развитие познавательных способностей, самостоятельности мышления, творческой активности;
- овладение новыми методами и методиками изучения конкретной учебной дисциплины;
- выработка способности логического осмысления полученных знаний для выполнения заданий;
- обеспечение рационального сочетания коллективной и индивидуальной форм обучения.

Требования к проведению практических занятий

Примерные формулировки практических заданий, в соответствии с таблицей 5.

ПЗ №1 «Использование эмс-номограммы при описании импульсных помех»

Задание: смоделировать и построить импульс напряжения, прошедшего через фильтр, переход из частотной области во временную для исходного импульса и для импульса, прошедшего через фильтр.

- 1. Получить исходные данные импульсной помехи, используя ПО MatLab или Python разработать программу обработки и реализации импульса.
- 2. Определить параметры амплитуды, длительности, времени нарастания, крутизны фронта импульса помехи после его прохождения через канал передачи. Произвести построение графика импульса в системе координат U, t.
- 3. Построить график частотной плотности распределения амплитуд импульса помехи.
- 4. Построить кусочно-линейную аппроксимацию огибающей спектральной плотности распределения амплитуд.
- 5. Построить огибающую спектральной плотности распределения амплитуд после прохождении импульса через канал передачи, имеющий амплитудно-частотную характеристику с коэффициентом затухания согласно варианту задания;
- 6. Произвести исследование влияния изменения параметров импульса помехи на вид частотной плотности распределения амплитуд.
 - 7. Сравнить полученные результаты и написать выводы.

ПЗ №2 «Пассивные помехоподавляющие фильтры»

Задание: изучить устройство и принцип работы электрических фильтров, методы анализа характеристик пассивных помехоподавляющих фильтров для обеспечения электромагнитной совместимости. Освоить моделирование амплитудно-частотных характеристик фильтра и исследовать их характеристики.

- 1. Получить исходные данные пассивного частотного фильтра. Составить принципиальную электрическую схему фильтра и обозначить на ней номиналы элементов.
- 2. Используя ПО MatLab или Python разработать программу, обеспечивающую расчет зависимости коэффициента затухания фильтра от частоты.

Построить АЧХ фильтра и произвести вывод данных на экран монитора. Рекомендуемые для расчета значения частот: 10, 100, 200, 500 Γ ц, 1, 2, 5, 10, 20, 50, 100 к Γ ц. Масштаб по оси частот – логарифмический.

- 3. По графику AЧX фильтра определить частоту среза, которая соответствует спаду AЧX на –3 дБ от максимального значения коэффициента пропускания фильтра.
- 4. Произвести расчет крутизны спада AЧX в полосе подавления и определить по нему порядок фильтра (крутизну спада AЧX определять на линейном участке АЧX в децибелах при двойном (одна октава) или десятикратном (одна декада) изменении частоты).
- 5. Определить частоты, на которых исходный синусоидальный сигнал будет ослаблен фильтром в 100 и 1000 раз.
- 6. Рассчитать и построить АЧХ при заданном изменении номиналов элементов фильтра (при заданном увеличении или уменьшении емкости С или индуктивности L согласно варианту задания).

ПЗ №3 «Оценка коэффициента затухания электромагнитного экрана»

Задание: изучить принцип действия электромагнитных экранов и основных способов расчета коэффициента затухания.

- 1. Получить исходные данные параметров плоского экрана. Составить принципиальную электрическую схему фильтра и обозначить на ней номиналы элементов.
- 2. Рассчитать характеристические сопротивления воздуха полю элементарного электрического излучателя и полю элементарного магнитного излучателя в ближней зоне на расстоянии $0.05 \cdot \lambda$ от источника помех. Определить характеристическое сопротивление воздуха для дальней зоны и характеристическое сопротивление материала экрана.
- 3. Построить зависимость характеристического сопротивления среды (воздуха) от расстояния в ближней и дальней зонах для электрической и магнитной составляющих поля
- 4. Используя метод полных сопротивлений рассчитать общие коэффициенты затухания электромагнитного экрана для электрического и магнитного полей, а также их составляющие, в ближней зоне на расстоянии, равном $0.05 \cdot \lambda$ от излучателя помех.
- 5. Рассчитать коэффициент экранирования в дальней зоне и его составляющие. Построить зависимости от частоты для общего коэффициента затухания электрического поля в ближней и дальней зонах, а также его составляющих: коэффициента затухания вследствие отражения и коэффициента затухания из-за поглощения в стенке экрана.
- 6. Определить частоты, на которых эффективность экранирования минимальна для поля ближней и дальней зоны. Определить величины напряженностей электрического и магнитного полей внутри экрана для ближней и дальней зон.
- 7. Сравнить полученные результаты и написать выводы.

ПЗ №4 «Расчет параметров контура заземления группового заземлителя»

Задание: изучить теоретическую часть принципа работы заземляющего устройства. Произвести моделирование и теоретические расчеты проводимости и сопротивления металлических частей группового заземлителя, рассчитать коэффициент использования и парциальный вклад стержней в пропускание тока. Смоделировать и построить суммарную потенциальную кривую группового заземлителя. Найти наибольшее шаговое напряжение для заданного тока I и предельный ток для заданного шагового напряжения.

- 1. Получить исходные данные для контура группового заземлителя в виде п стержней, расположенных в ряд. Рассчитать проводимости электродов, общую проводимость и сопротивление контура заземления, коэффициент использования проводимости и процентный вклад заземляющих стержней в пропускание тока.
- 2. Построить потенциальные кривые для каждого заземляющего стержня и суммарную потенциальную кривую контура заземления. Найти наибольшее шаговое напряжение для заданного тока I и предельный ток.
- 3. Построить объемный график распределения потенциала на поверхности земли и соответствующую систему эквипотенциальных линий. Построить карандашом на графике эквипотенциальных линий перпендикулярную им систему линий тока.
- 4. Произвести расчет составляющих плотности электрического тока и построения векторного поля плотности тока в вертикальной плоскости.
- 5. Согласовать с преподавателем исходные данные для контура группового заземлителя в виде п стержней, расположенных по заданному контуру.
- 6. Сравнить полученные результаты и написать выводы.

ПЗ №5 «Расчет параметров электрического поля линии электропередачи высокого напряжения»

Задание: изучить основные принципы расчета параметров электрического поля линий электропередач высокого и сверхвысокого напряжения. Произвести расчеты эквивалентного радиуса, потенциальных коэффициентов, комплексных действующих значения линейной плотности заряда. Изучить принципы построения векторных диаграмм потенциалов на поверхности эквивалентных фазных проводов и линейных плотностей заряда.

- 1. Получить исходные данные для расчета комплексных действующих значений линейной плотности заряда. Рассчитать эквивалентный радиус, расстояния, потенциальные коэффициенты,
- линейные плотности зарядов.
- 2. Произвести расчет поля, комплексных действующих значений электрического потенциала и напряжения электрического поля, по ранее рассчитанным плотностям зарядов.
- 3. Построить график действующего значения вертикальной составляющей электрического поля вблизи поверхности земли.
- 4. Произвести расчет максимумов и точек пересечения кривой с уровнями напряженности электрического поля 1 и 5 кВ/м.
- 5. Сравнить полученные результаты и написать выводы.
- 11.3. Методические указания для обучающихся по прохождению самостоятельной работы
- В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.
- В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения

и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихсяявляются:

- учебно-методический материал по дисциплине.
- 11.4. Методические указания для обучающихся по прохождению текущего контроля успеваемости

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

Текущий контроль успеваемости проводится по ответам и выполнению практических заданий, а также по тестовым вопросам на усмотрение лектора дисциплины.

Система оценок при проведении текущего контроля успеваемости осуществляется в соответствии с требованиями Положений «О текущем контроле успеваемости и промежуточной аттестации студентов ГУАП, обучающихся по программы высшего образования» и «О модульно-рейтинговой системе оценки качества учебной работы студентов в ГУАП».

Результаты текущего контроля могут учитываться при проведении промежуточной аттестации.

11.5. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

— зачет — это форма оценки знаний, полученных обучающимся в ходе изучения учебной дисциплины в целом или промежуточная (по окончании семестра) оценка знаний обучающимся по отдельным разделам дисциплины с аттестационной оценкой «зачтено» или «не зачтено».

Промежуточная аттестация проводится в форме зачета. Зачет проводится в устной форме по билетам в виде подготовки и изложения развёрнутого ответа. Вопросы к зачёту представлены в таблице 16. Время на подготовку ответа - 30 минут.

Система оценок при проведении промежуточной аттестации осуществляется в соответствии с требованиями Положений «О текущем контроле успеваемости и промежуточной аттестации студентов ГУАП, обучающихся по программы высшего образования» и «О модульно-рейтинговой системе оценки качества учебной работы студентов в ГУАП».

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой