МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 11

УТВЕРЖДАЮ Ответственный за образовательную

доц.,к.т.н.,доц.

программу

(должность, уч. степень, звание)

В.В. Перлюк (инициалы, фамилия) (подпись) « 19 » 06_ 2024 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Проектная деятельность» (Наименование дисциплины)

Код направления подготовки/ специальности	12.03.01	
Наименование направления подготовки/ специальности	Приборостроение	
Наименование направленности	Авиационные приборы и измерительно-вычислительные комплексы	
Форма обучения	заочная	
Год приема	2023	

Лист согласования рабочей программы дисциплины

Программу составил (а)						
ДОЦ.,К.Т.Н.,ДОЦ. (должность, уч. степень, звание)	19.06.2024	В.В. Перлюк				
,						
Программа одобрена на заседа	нии кафедры № 11					
«_19_»06 2024 г., пр	ротокол № _9					
Заведующий кафедрой № 11						
д.т.н.,доц.	19.06.2024	Н.Н. Майоров				
(уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)				
Заместитель директора института №1 по методической работе						
доц.,к.т.н.	19.06.2024	В.Е. Таратун				
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)				

Аннотация

Дисциплина «Проектная деятельность» входит в образовательную программу высшего образования — программу бакалавриата по направлению подготовки/ специальности 12.03.01 «Приборостроение» направленности «Авиационные приборы и измерительно-вычислительные комплексы». Дисциплина реализуется кафедрой «№11».

Дисциплина не является обязательной при освоении обучающимся образовательной программы и направлена на углубленное формирование следующих компетенций:

ПК-1 «Способность применять методы анализа и синтеза измерительных и управляющих систем, систем контроля параметров при проектировании и конструировании, приборов и комплексов»

ПК-2 «Способность применять современные электротехнические изделия, средства электроники и микропроцессорной техники, включая программное обеспечение, в разрабатываемых измерительных и управляющих системах, системах контроля параметров»

ПК-4 «Способность разрабатывать и согласовывать исходные данные при проектировании (разработке) комплекса бортового оборудования и его подсистем авиационных и космических летательных аппаратов, определять режимы функционирования бортового оборудования»

ПК-6 «Готовность использовать знание основных методов искусственного интеллекта в последующей профессиональной деятельности»

Содержание дисциплины охватывает круг вопросов, связанных с практическим закреплением знаний и навыков проектной деятельности на примере конкретных примеров из аэрокосмической сферы. В задачи дисциплины входит изучение методологии проектной деятельности, отработка этапов проектного цикла, разработка и реализация проектов, связанных с аэрокосмическим приборостроением, овладение навыками презентации и защиты проекта, развитие критического мышления и умения оценивать результаты проектаПреподавание дисциплины предусматривает следующие формы организации учебного процесса: практические занятия, самостоятельная работа обучающегося.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме дифференцированного зачета.

Общая трудоемкость освоения дисциплины составляет 6 зачетных единиц, 216 часов.

Язык обучения по дисциплине «русский».

1. Перечень планируемых результатов обучения по дисциплине

- 1.1. Целью преподавания дисциплины является развитие навыков проектного мышления и практического применения полученных знаний в области аэрокосмического приборостроения, формирование умений и навыков организации, планирования, выполнения и защиты проектов, развитие навыков командной работы и коммуникации, приобретение опыта работы с современными инструментами и технологиями проектирования, привитие навыков анализа и решения проблем, характерных для аэрокосмической отрасли. Дисциплина должна обеспечить предоставление возможности обучающимся развить и продемонстрировать навыки в области навыками работы оформления проектной документации, для публичного представления результатов решения конкретной задачи проекта или проекта в целом.
- 1.2. Дисциплина является факультативной дисциплиной по направлению образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа) компетенции	Код и наименование компетенции	Код и наименование индикатора достижения компетенции
Профессиональные компетенции	ПК-1 Способность применять методы анализа и синтеза измерительных и управляющих систем, систем контроля параметров при проектировании и конструировании, приборов и комплексов	ПК-1.В.1 владеть навыками определения показателей качества функционирования измерительных и управляющих систем, систем контроля параметров
Профессиональные компетенции	ПК-2 Способность применять современные электротехнические изделия, средства электроники и микропроцессорной техники, включая программное обеспечение, в разрабатываемых измерительных и управляющих системах, системах контроля	ПК-2.3.1 знать возможности современных электротехнических изделий, средств электроники и микропроцессорной техники с целью применения в составе приборов и комплексов ПК-2.3.2 знать технологии обработки и представления информации с использованием средств вычислительной техники, в том числе на основе искусственного интеллекта ПК-2.У.1 уметь разрабатывать структурные и принципиальные схемы узлов измерительновычислительных комплексов авиационных и космических летательных аппаратов ПК-2.В.1 владеть навыками разработки программного обеспечения измерительных, управляющих и контролирующих систем авиационных и космических летательных

	параметров	аппаратов
Профессиональные компетенции	ПК-4 Способность разрабатывать и согласовывать исходные данные при проектировании (разработке) комплекса бортового оборудования и его подсистем авиационных и космических летательных аппаратов, определять режимы функционирования бортового оборудования	ПК-4.3.1 знать технические характеристики и принципы работы систем бортового оборудования, основные характеристики авиационных и космических летательных аппаратов, основы эргономики, включая формы и виды индикации, основы проектирования конструкций бортового оборудования
Профессиональные компетенции	ПК-6 Готовность использовать знание основных методов искусственного интеллекта в последующей профессиональной деятельности	ПК-6.3.3 знать постановку проблем математического и информационного моделирования сложных систем ПК-6.У.1 уметь работать на современной вычислительной технике ПК-6.У.2 уметь разрабатывать информационное и техническое обеспечение интеллектуальных систем обработки информации и управления

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- «Компьютерные технологии в приборостроении»,
- «Инженерная графика»,
- «Основы проектной деятельности»,
- «Высшая математика и методы анализа».

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и могут использоваться при изучении других дисциплин:

- «Основы проектирования информационно-вычислительных комплексов»,
- «Моделирование процессов и систем»,
- «Инженерия космических систем».

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

Вид учебной работы	Всего	Трудоемкость по семестрам

		№6	№8
1	2	3	4
Общая трудоемкость дисциплины, 3E/ (час)	6/216	3/ 108	3/ 108
Из них часов практической подготовки	8	4	4
Аудиторные занятия, всего час.	8	4	4
в том числе:			
лекции (Л), (час)			
практические/семинарские занятия (ПЗ), (час)	8	4	4
лабораторные работы (ЛР), (час)			
курсовой проект (работа) (КП, КР), (час)			
экзамен, (час)			
Самостоятельная работа, всего (час)	208	104	104
Вид промежуточной аттестации: зачет,	Зачет,		Дифф. Зач.
дифф. зачет, экзамен (Зачет, Дифф. зач,	Дифф.	Зачет	
Экз.**)	Зач.		

Примечание: ** кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Разделы, темы дисциплины	Лекции (час)	ПЗ (СЗ) (час)	ЛР (час)	КП (час)	CPC (час)
Сем	естр 6				
Раздел 1.		2			52
Раздел 2.		2			52
Итого в семестре:		4			104
Семест	p 8				
Раздел 3.		2			40
Раздел 4.		1			40
Раздел 5.		1			24
Итого в семестре:		4			104
Итого	0	4	0	0	208

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Номер раздела	Название и содержание разделов и тем лекционных занятий
	Учебным планом не предусмотрено

4.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

1400	Таолица 3 – практические занятия и их трудосыкость					
				Из них	$N_{\underline{0}}$	
No	Темы практических	Формы практических	Трудоемкость,	практической	раздела	
Π/Π	занятий	занятий	(час)	подготовки,	дисцип-	
				(час)	ЛИНЫ	
		Семестр 6				
1	Анализ реальных	Семинар	2	2	1	
	проектов в					
	аэрокосмической					
	отрасли.					
2	Процесс разработки	Имитационное	2	2	2	
	нового типа датчика	занятие				
	для самолета и					
	космического					
	аппарата					
		Семестр 8				
3	Разработка	Групповая дискуссия	2	2	3-5	
	системы обработки					
	данных с бортовых					
	сенсоров.					
4	Проект как объект	Деловая учебная игра	2	2	4,5	
	управления.	•				
	Жизненный цикл					
	проекта					
	Bcer	0	8			

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

			Из них	$N_{\underline{0}}$
$N_{\underline{0}}$	Наименование паборатории у работ	Трудоемкость,	практической	раздела
п/п Наименование лабораторных работ	(час)	подготовки,	дисцип-	
			(час)	лины
	Учебным планом не п	редусмотрено		
	Всего			

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся

Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы

1	2	3	4
Изучение теоретического материала			
дисциплины (ТО)			
Курсовое проектирование (КП, КР)			
Расчетно-графические задания (РГЗ)			
Выполнение реферата (Р)			
Подготовка к текущему контролю		1	4
успеваемости (ТКУ)		+	4
Домашнее задание (ДЗ)			
Контрольные работы заочников (КРЗ)		90	90
Подготовка к промежуточной		10	10
аттестации (ПА)		10	10
Всего:	208	104	104

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий

Перечень печатных и электронных учебных изданий приведен в таблице 8.

Таблица 8- Перечень печатных и электронных учебных изданий

		Количество
Шифр/ URL адрес	Библиографическая ссылка	экземпляров
		в библиотеке
		(кроме
		электронных
		экземпляров)
https://www.	Основы проектной деятельности : метод. указания /	
omgtu.ru/general	Минобрнауки России, Ом. гос. техн. ун-т; сост.: А. И.	
_information	Блесман, К. Н. Полещенко, Н. А. Семенюк, А. А.	
/faculties/	Теплоухов. – Омск : Изд-во ОмГТУ, 2021 –	
radio_engineering		
_department/		
department_of_		
quot_physics_quot/		
lib_pfys/280402		
-280302/		
Osn_proekt_		
deyat.pdf?ysclid=l		
e18w0on9r840940312		
http://www.	Управление проектами с использованием Microsoft	
iprbookshop.ru/	Project : учебное пособие / Т. С. Васючкова, М. А.	
89480.html.	Держо, Н. А. Иванчева, Т. П. Пухначева. — 3-е изд. —	
	Москва, Саратов : Интернет-Университет	
	Информационных Технологий (ИНТУИТ), Ай Пи Ар	
	Медиа, 2020 — 147 с. — ISBN 978-5-4497-0361-3. —	
	1 ,, ,	

	Текст : электронный // Электронно-библиотечная
	система IPR BOOKS :
H-78	Управление проектами для профессионалов:
	Руководство по подготовке к сдаче сертификационного
	экзамена: Пер. с англ. / М. В. Ньюэлл ; пер. : А. К.
	Казаков 3-е изд М. : КУДИЦ-ОБРАЗ, 2006 416 с. :
P-54	Управление проектами: Учебное пособие для вузов /
	М. В. Романова М.: ФОРУМ, 2007; М.: Инфра-М,
	2007 253[2] c. :
Б-167	Математические основы управления проектами:
	учебное пособие для вузов / С. А. Баркалов [и др.]; ред.
	В. Н. Бурков М.: Высшая школа, 2005 421[3] с.
3-89	Земсков, Ю. П. Основы проектной деятельности: учеб.
	пособие / Ю. П. Земсков, Е. В. Асмолова. – Санкт-
	Петербург : Лань, 2019. – 184 с. :ил. – ISBN 978-5-8114-
	4395-6

7. Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет»

URL адрес	Наименование
https://ozon	Проектный менеджмент: базовый курс: учебник / под ред.
st.cdn.ngenix.net	С. А. Полевого. – Москва : КНОРУС, 2018. – 192 с.
/multimedia/1024347401.pdf	
(дата обращения:	
24.10.2019)	
URL:	Яковлева, Н. Ф. Проектная деятельность в образовательном
http://www.lmp69.ru/wp	учреждении: учеб. пособие / Н. Ф. Яковлева. – 2-е изд., стер.
content/uploads/2019/10/	– Москва : ФЛИНТА, 2014. – 144 c.
uchebnik-k-raspechatke-	
10-klass.pdf (дата обраще-	
ния: 24.10.2019).	
- URL:	Мозгалева, П. И. Введение в проектную деятельность:
http://portal.tpu.ru/SHARED	метод. указания к дисциплине «Введение в проектную
/m/MPI/-	деятельность» для студентов 1-го курса, обучающихся по
Teaching/Tab/mu.pdf (дата	дополнительной образовательной программе «Элитное
обращения: 25.10.2019)	техническое образование». – Томск : Изд-во Том. политех.
	Ун-та, 2013. – 61 c.

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

№ п/п	Наименование
	Не предусмотрено

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п	Наименование
	Не предусмотрено

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Специализированная лаборатория "Проектирования малых	Ауд. 12-14, БМ 67а
	космических аппаратов"	ГУАП
2	Мультимедийная учебная аудитория "Автоматизации	Ауд. 12-07 БМ 67а
	научных исследований"	ГУАП
3	Специализированная лаборатория «Инженерия	Ауд. 12-07 БМ 67а
	космических систем»	ГУАП

10. Оценочные средства для проведения промежуточной аттестации

10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Дифференцированный зачёт	Список вопросов;
	Тесты

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

	Jr Trr r
Оценка компетенции	Характеристика сформированных компетенций

5-балльная шкала	
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий.
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий.
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий.
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений.

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	Код индикатора
	Учебным планом не предусмотрено	

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16. Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код
3 (2 11/11	лере тепь вопросов (зада т) для за тета / длифе. за тета	
	Вопросы по индивидуальному проекты	
1	Опишите свой проект, его цели, задачи, используемые	ПК-1.В.1
	методы, результаты и выявленные проблемы.	ПК-2.3.1
2	Как Вы оцениваете эффективность выбранных Вами	ПК-2.3.2
	методов проектного управления в рамках данного проекта?	ПК-2.У.1
3	Какие изменения в проекте были внесены и почему?	ПК-2.В.1
	Какие риски были предвидены и как они были учтены?	ПК-4.3.1

	T
Теоретические вопросы по курсу	ПК-6.3.3
1. Что такое проектная деятельность? Какие ключевые	ПК-6.У.1
этапы и стадии включает в себя проект?	ПК-6.У.2
2. Опишите основные принципы проектного управления.	
Какие методы используются для планирования и контроля	
проекта?	
3. Что такое SWOT-анализ? Как он используется в	
проектах аэрокосмического приборостроения?	
4. Какие типы рисков могут возникнуть в проектах	
аэрокосмического приборостроения? Как их можно	
идентифицировать и минимизировать?	
5. Как оценивается экономическая эффективность проекта	
в аэрокосмической отрасли? Какие показатели	
используются?	
6. Что такое жизненный цикл продукта (ЖЦП) и как он	
связан с проектной деятельностью в аэрокосмическом	
приборостроении?	
7. Какие методы управления конфликтами применяются в проектах, и как они могут быть использованы в условиях	
ограниченных ресурсов и высокой сложности?	
8. Что такое Agile-методология и как она может быть	
применена в проектах разработки аэрокосмических	
приборов?	
9. Какие инструменты и технологии используются для	
управления проектами в аэрокосмическом	
приборостроении?	
10. Опишите процесс создания технического задания на	
проект аэрокосмического прибора. Какие ключевые	
требования должны быть отражены?	
Прикладные вопросы по курсу	
11. Какие специфические требования к разработке	
аэрокосмических приборов существуют (например, по	
надежности, точности, массе, габаритам, ресурсу)?	
12. Какие факторы окружающей среды (температура,	
вибрация, радиация) влияют на проектирование	
аэрокосмических приборов и как эти факторы	
учитываются?	
13. Как выбирается оптимальная система измерений для	
конкретной задачи в аэрокосмическом приборостроении?	
14. Что такое метрологическое обеспечение	
аэрокосмического прибора и как оно гарантирует его	
точность?	
15. Опишите основные этапы разработки и тестирования	
аэрокосмических приборов. Какие методы тестирования	
применяются?	
16. Как обеспечивается безопасность аэрокосмических	
приборов и систем?	
17. Какие нормативные документы и стандарты	
применяются в проектировании и производстве	
аэрокосмических приборов?	
18. Какие типы систем управления и связи применяются в	

современных аэрокосмических приборах? 19. Как обеспечивается совместимость аэрокосмических приборов с другими системами космического аппарата? 20. Какие технологии 3D-моделирования и виртуального прототипирования используются в разработке аэрокосмических приборов?	
Дополнительные вопросы: * Какие современные тенденции влияют на развитие аэрокосмического приборостроения? * Как Вы видите будущее аэрокосмического приборостроения?	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

таолица то – примерный перечень вопросов для тестов					
№ п/п	Примерный перечень вопросов для тестов	Код			
		индикатора			
		ПК-1.В.1			
	Раздел 1: Основы проектной деятельности	ПК-2.3.1			
		ПК-2.3.2			
	* Вопрос 1 (Теория): Что такое проектная деятельность и каковы ее	ПК-2.У.1			
	основные этапы?	ПК-2.В.1			
	* Вопрос 2 (Теория): Какие ключевые характеристики отличают	ПК-4.3.1			
	проектные работы от других видов деятельности?	ПК-6.3.3			
	* Вопрос 3 (Теория): Опишите роль и функции менеджера проекта в	ПК-6.У.1			
	аэрокосмическом приборостроении.	ПК-6.У.2			
	* Вопрос 4 (Практика): Как определить потребность в новом приборном комплексе для конкретной аэрокосмической задачи?				
	*Вопрос 5 (Практика): Какие методы анализа рисков и				
	возможностей применяются на этапе планирования проекта?				
	* Вопрос 6 (Теория): Что такое SWOT-анализ и как он используется				
	в проектной деятельности? Приведите пример.				
	* Вопрос 7 (Теория): Объясните принципы управления временем и				
	ресурсами в проекте.				
	* Вопрос 8 (Практика): Как составить реалистичный план работ				
	проекта с учетом временных ограничений и ресурсов?				
	* Вопрос 9 (Теория): Какие типы проектных организаций				
	(матричные, функциональные и др.) наиболее подходят для				
	аэрокосмического приборостроения и почему?				
	* Вопрос 10 (Теория): Что такое "критический путь" в проекте и как				
	он влияет на сроки выполнения?				
1	±				

Раздел 2: Аэрокосмическое приборостроение

- * Вопрос 11 (Теория): Какие основные типы сенсоров используются в аэрокосмических приборах?
- * Вопрос 12 (Теория): Опишите принципы работы и области применения конкретного типа датчиков (например, акселерометров, гироскопов, фотоприемников).
- * Вопрос 13 (Практика): Как выбрать подходящий сенсор для конкретной задачи, учитывая его технические характеристики?
- * Вопрос 14 (Теория): Какие требования к точности и надежности предъявляются к приборам в аэрокосмической отрасли?
- * Вопрос 15 (Практика): Опишите процесс разработки и испытаний прототипа прибора.
- * Вопрос 16 (Теория): Какие факторы влияют на выбор материалов для изготовления аэрокосмических приборов?
- * Вопрос 17 (Практика): Как учесть ограничения по весу и габаритам при проектировании прибора?
- * Вопрос 18 (Теория): Какие стандарты и нормативы необходимо учитывать при разработке аэрокосмических приборов?
- * Вопрос 19 (Практика): Представьте пример проектирования прибора для решения конкретной задачи (например, мониторинг параметров полета).

Раздел 3: Коммуникация и управление проектом

- * Вопрос 20 (Теория): Какие методы коммуникации наиболее эффективны в проектной группе?
- * Вопрос 21 (Практика): Как организовать эффективное взаимодействие между участниками проекта (инженеры, заказчики, поставщики)?
- * Вопрос 22 (Теория): Какие инструменты управления проектом (например, Gantt-диаграммы, PERT-диаграммы) наиболее подходят для аэрокосмического приборостроения?
- * Вопрос 23 (Практика): Как отслеживать и контролировать выполнение проекта?
- * Вопрос 24 (Теория): Какие методы разрешения конфликтов эффективны в проектной команде?

Раздел 4: Этические аспекты и устойчивое развитие

- * Вопрос 25 (Теория): Какие этические принципы необходимо учитывать при проектировании и производстве аэрокосмических приборов?
- * Вопрос 26 (Теория): Как можно интегрировать принципы устойчивого развития в проектную деятельность?

Примечания:

Вопросы должны быть сформулированы ясно и лаконично.
Некоторые вопросы могут быть с вариантами ответов (выбор правильного ответа, множественный выбор).
Некоторые вопросы могут быть открытыми (требующие развернутого ответа).
Для каждого раздела можно добавить дополнительные вопросы, специфичные для конкретного материала курса.
В вопросы можно включать примеры реальных проектов и залач.

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п	Перечень контрольных работ
	Эффекты и индикаторы успешности реализации проекта

10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

- 11. Методические указания для обучающихся по освоению дисциплины
- 11.1. Методические указания для обучающихся по освоению лекционного материала (не предусмотрено учебным планом по данной дисциплине)
- 11.2. Методические указания для обучающихся по участию в семинарах (не предусмотрено учебным планом по данной дисциплине)
- 11.3. Методические указания для обучающихся по прохождению практических занятий

Практическое занятие является одной из основных форм организации учебного процесса, заключающаяся в выполнении обучающимися под руководством преподавателя комплекса учебных заданий с целью усвоения научно-теоретических основ учебной дисциплины, приобретения умений и навыков, опыта творческой деятельности.

Целью практического занятия для обучающегося является привитие обучающемся умений и навыков практической деятельности по изучаемой дисциплине.

Планируемые результаты при освоении обучающемся практических занятий:

- □ закрепление, углубление, расширение и детализация знаний при решении конкретных задач;
 - развитие познавательных способностей, самостоятельности мышления, творческой активности;
 - овладение новыми методами и методиками изучения конкретной учебной дисциплины;

- выработка способности логического осмысления полученных знаний для выполнения заданий;
- обеспечение рационального сочетания коллективной и индивидуальной форм обучения.

Требования к проведению практических занятий.

Практические занятия направлены на формирование у студентов профессиональных и практических умений, необходимых для изучения последующих учебных дисциплин: выполнять определенные действия, операции, необходимые последующей профессиональной деятельности (в процессе учебной и производственной практики, написания выпускной квалификационной работы). Наряду с формированием умений и навыков в процессе практических занятий обобщаются, систематизируются, углубляются и конкретизируются теоретические знания, вырабатывается способность и готовность использовать теоретические знания на практике, развиваются интеллектуальные умения. При выборе содержания и объема практических занятий следует исходить из сложности учебного материала для усвоения, из внутрипредметных и межпредметных связей, из значимости изучаемых теоретических положений для предстоящей профессиональной деятельности, из того, какое место занимает конкретная работа в процессе формирования целостного представления о содержании учебной дисциплины.

11.4. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихся являются учебно-методический материал по дисциплине.

Примеры проектных задач:

- Высокоточная система измерения запаса топлива для перспективного беспилотного летательного аппарата самолетного типа
- Атмосферный радиозонд в формате Cansat для контроля параметров воздушной среды средних и малых высот
- Бортовой приборный модуль взаимной ориентации микроспутников Cubesa в составе низкоорбитальной группировки
- Блок управления удаленными устройствами замкнутой экосистемы из браузера
- Автоматизированная система тестирования приборного оборудования микроспутника Cubesat
- Автоматическая система управления положением солнечной батареи для эффективного заряда аккумуляторов автономных устройств

- Автономная система навигации беспилотного дирижабля
- 11.5. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

Методы текущего контроля выбираются преподавателем самостоятельно исходя из специфики дисциплины.

Возможные методы текущего контроля обучающихся:

- устный опрос на занятиях;
- систематическая проверка выполнения индивидуальных заданий;
- защита отчетов по лабораторным работам;
- проведение контрольных работ;
- тестирование;
- контроль самостоятельных работ (в письменной или устной формах);
- контроль выполнения индивидуального задания на практику;
- контроль курсового проектирования и выполнения курсовых работ;
- иные виды, определяемые преподавателем.

В течение семестра обучающийся оформляет отчетные материалы в соответствии с установленными требованиями и методами проведения текущего контроля, и преподаватель оценивает представленные материалы.

При подведении итогов текущего контроля успеваемости в ведомость обучающимся выставляются аттестационные оценки: «аттестован», «не аттестован». Система и возможные критерии оценки учитывает знания, умения, навыки и (или) опыт деятельности, характеризующие этапы формирования компетенций дисциплины. Результаты текущего контроля должны учитываться при промежуточной аттестации.

11.6. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

- зачет это форма оценки знаний, полученных обучающимся в ходе изучения учебной дисциплины в целом или промежуточная (по окончании семестра) оценка знаний обучающимся по отдельным разделам дисциплины с аттестационной оценкой «зачтено» или «не зачтено».
- дифференцированный зачет это форма оценки знаний, полученных обучающимся при изучении дисциплины, при выполнении курсовых проектов, курсовых работ, научно-исследовательских работ и прохождении практик с аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Результаты промежуточной аттестации заносятся деканатами в журнал учета промежуточной аттестации, учебную карточку и автоматизированную информационную систему ГУАП.

Аттестационные оценки по факультативным дисциплинам вносятся в зачèтную книжку, ведомость, учебную карточку, АИС ГУАП и, по согласованию с обучающимся, в приложение к документу о высшем образовании и о квалификации.

После прохождения промежуточной аттестации обучающийся обязан предоставить в деканат зачетную книжку, полностью заполненную преподавателем.

По результатам успешного прохождения промежуточной аттестации обучающимися и выполнения учебного плана на соответствующем курсе, деканаты готовят проект приказа о переводе обучающихся с курса на курс.

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой