МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССНЙСКОЙ ФЕДЕРАЦИИ федеральное государственное загономное образования посменое учреждение высшего "САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 6

УТВЕРЖДАЮ

Руководитель образовательной программы

BOIL KTH

(ASSESSED NOTIONAL PROPERTY)

Н.Ю. Ефремов

Заместитель директора института ФПТИ по методической работе

19-02-2025 Н.Ю. Ефремов (инициалы, фаналия)

« 19 » фекраля 2025 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Физико-химические измерении» (Манистрацие медетини)

Год присма	Фирми обучения	Наименование направлениюсти	Плименование направления	Кол направления подготовког/
2023	RESIDEN	Цифраная метрология и стандартизация	Стандаргизация и метрология	27 03 01

Causer-Herepöypr - 2025

Лист согласования рабочей программы дисциплины

плини кафедра № 6 од № 10-02/2025 19-02-2025 В.В.Оврепилов (поливек, дата)	рограмма одобрена на тасединия кафедра. «19» февраля 2025 г., протокод № 10-02/20; авслующий кафедрой № 6 ——————————————————————————————————
---	---

Аннотация

Дисциплина «Физико-химические измерения» входит в образовательную программу высшего образования — программу бакалавриата по направлению подготовки/ специальности 27.03.01 «Стандартизация и метрология» направленности «Цифровая метрология и стандартизация». Дисциплина реализуется кафедрой «№ПК1».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ПК-1 «Способен проводить анализ состояния метрологического обеспечения в подразделении метрологической службы организации»

 Π K-2 «Способен обновлять базу рабочих эталонов и средств измерительной техники и проводить их аттестацию»

ПК-3 «Способен осуществлять работы по выявлению и предотвращению несоответствий продукции предъявляемым требованиям»

Содержание дисциплины охватывает круг вопросов, связанных с формированием у обучающихся профессиональных компетенций в соответствии с требованиями федерального государственного образовательного стандарта высшего образования (далее – Φ ГОС ВО) по направлению подготовки 27.03.01 Стандартизация и метрология, определяющих готовность и способность будущих выпускников к овладению и использованию действенных знаний по фундаментальным вопросам количественного химического анализа, вопросам применения для количественного химического анализа физико-химических (инструментальных) методов анализа для обнаружения, разделения и определения химических элементов и их соединений, а также установления химического строения веществ в научной и производственной практике бакалавров, направленных на приобретение значимого опыта индивидуальной и совместной деятельности при решении задач, в том числе, с использованием электронных образовательных изданий и ресурсов.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практические занятия, самостоятельная работа обучающегося.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме зачета.

Общая трудоемкость освоения дисциплины составляет 3 зачетных единицы, 108 часов.

Язык обучения по дисциплине «русский»

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Целью дисциплины является формирование у студентов знаний, умений и навыков в области физико-химических измерений: технической документации, измерительного оборудования и оснастки, специализированного программного обеспечения. Кроме того, целью дисциплины является получение практических навыков в вопросах выбора методов и средств измерений, разработки стратегии измерений и измерительных программ для контроля состава и свойств веществ, порядка подготовки и проведения измерений с использованием различных контрольно-измерительных средств / измерительных машин.

- 1.2. Дисциплина входит в состав части, формируемой участниками образовательных отношений, образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

таолица т – перечен	ть компетенции и инди	каторов их достижения
Категория (группа) компетенции	Код и наименование компетенции	Код и наименование индикатора достижения компетенции
Профессиональные компетенции	ПК-1 Способен проводить анализ состояния метрологического обеспечения в подразделении метрологической службы организации	ПК-1.3.4 знать конструктивные особенности и принципы работы средств измерения, технологические возможности в области применения средств измерения ПК-1.У.1 уметь определять необходимость разработки нормативных документов ПК-1.У.3 уметь устанавливать оптимальные нормы точности измерений и достоверности контроля с учетом ошибок 1-го и 2-го рода
Профессиональные компетенции	ПК-2 Способен обновлять базу рабочих эталонов и средств измерительной техники и проводить их аттестацию	ПК-2.В.1 владеть навыками контроля соответствия рабочих эталонов, средств поверки и калибровки требованиям, указанным в нормативных документах, средств поверки и калибровки, подбора и приобретения рабочих эталонов, средств поверки и калибровки
Профессиональные компетенции	ПК-3 Способен осуществлять работы по выявлению и предотвращению несоответствий продукции предъявляемым требованиям	ПК-3.3.2 знать документы по стандартизации и методические документы, регламентирующие вопросы управления качеством, вопросы делопроизводства, качества продукции, качества сырья, качества материалов ПК-3.3.3 знать физические принципы работы, возможности и области применения методов и средств измерений ПК-3.3.4 знать методики контроля испытания продукции

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- «Инженерная и компьютерная графика»;
- «Информатика»;
- «Электротехника»;
- «Математика. Теория вероятностей и математическая статистика»;

«Физика».

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и могут использоваться при изучении других дисциплин:

- «Метрологическая экспертиза»,
- «Прикладная метрология»,
- «Метрологическое обеспечение жизненного цикла продукции».

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

		Трудоемкость по
Вид учебной работы	Всего	семестрам
		№6
1	2	3
Общая трудоемкость дисциплины, ЗЕ/ (час)	3/ 108	3/ 108
Из них часов практической подготовки	34	34
Аудиторные занятия, всего час.	51	51
в том числе:		
лекции (Л), (час)	17	17
практические/семинарские занятия (ПЗ),	2.4	24
(час)	34	34
лабораторные работы (ЛР), (час)		
курсовой проект (работа) (КП, КР), (час)		
экзамен, (час)		
Самостоятельная работа, всего (час)	57	57
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Зачет	Зачет

Примечание: **кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Разделы, темы дисциплины	Лекции (час)	ПЗ (СЗ) (час)	ЛР (час)	КП (час)	СРС (час)
Семестр 6					
Раздел 1. Задачи курса, термины и определения. Основные направления физико-химических исследований Тема 1.1. Краткий очерк развития физико-химических измерений. Тема 1.2. Основные понятия термины и определения Тема 1.3. Элементный анализ. Функциональный анализ. Молекулярный анализ. Фазовый анализ.	3	6			12

Раздел 2. Особенности физико-химических	4	8			16
методов измерений.	4	0			10
Тема 2.1 Понятие единичного определения. Тема 2.2.Основные критерии выбора метода					
1 1					
измерений.					
Тема 2.3 Связь свойства веществ и материалов					
с их химическим строением и составом.					
Тема 2.4. Принципы построения схем					
приборов для физико-химических измерений					
Тема 2.5. Виды функциональных					
зависимостей при построении измерительного					
эксперимента					
Раздел 3. Методы измерений на основе	8	16			16
изменения оптических характеристик					
Тема 3.1.Оптическая плотность и					
светопропускание. Коэффициент поглощения					
света.					
Тема 3.2.Рефрактометрия					
Тема 3.3. Измерение на основе спектральных					
характеристик излучения и поглощения.					
Тема 3.4. Измерение на основе					
интерференционных характеристик					
излучения.					
Раздел 4. Методы измерения на основе	2	4			13
изменения электрических характеристик					13
Тема 4.1.Связь концентрации растворов					
электролита с их электрической					
проводимостью.					
Проводимостью. Тема 4.2 Основные понятия и принцип					
кондуктометрического метода измерений.					
•					
Прямая кондуктометрия и					
кондуктометрическое титрование	1.7	2.4			
Итого в семестре:	17	34			57
Итого	17	34	0	0	57

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Номер раздела	Название и содержание разделов и тем лекционных занятий		
Раздел 1. Задачи курса,	Тема 1.1. Краткий очерк развития физико-химических		
термины и определения.	измерений.		
Основные направления	Тема 1.2. Основные понятия термины и определения		
физико-химических	Тема 1.3. Элементный анализ. Функциональный анализ.		
исследований	Молекулярный анализ. Фазовый анализ.		
Раздел 2. Особенности	Тема 2.1 Понятие единичного определения.		
физико-химических	Тема 2.2.Основные критерии выбора метода измерений.		
методов измерений.	Тема 2.3 Связь свойства веществ и материалов с их		
	химическим строением и составом.		
	Тема 2.4. Принципы построения схем приборов для физико-		

	химических измерений Тема 2.5. Виды функциональных зависимостей при построении измерительного эксперимента
Раздел 3. Методы измерений на основе изменения оптических характеристик .	Тема 3.1.Оптическая плотность и светопропускание. Коэффициент поглощения света. Тема 3.2.Рефрактометрия Тема 3.3. Измерение на основе спектральных характеристик излучения и поглощения. Тема 3.4. Измерение на основе интерференционных характеристик излучения
Раздел 4. Методы измерения на основе изменения электрических характеристик	Тема 4.1.Связь концентрации растворов электролита с их электрической проводимостью. Тема 4.2 Основные понятия и принцип кондуктометрического метода измерений. Прямая кондуктометрия и кондуктометрическое титрование

4.3. Практические (семинарские) занятия Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

№ п/п	Темы практических занятий	Формы практических занятий	Трудоемкость, (час)	Из них практической подготовки, (час)	№ раздела дисцип лины		
	Семестр 6						
1	Вводное занятие. Основные термины и определения	Разбор дополнительного материала, дискуссия	2	1	1		
2	Определение произведения растворимости раствора заданного вещества. Ионное произведение воды. Закон эквивалентов.	Разбор дополнительного материала, дискуссия	4	4	1		
3	Методы определения количества примеси.	Разбор дополнительного материала, дискуссия	8	8	2		
4	Основное фотометрическое соотношение, закон Бугера-Ламберта- Бера, формулы Френеля	Разбор дополнительного материала, дискуссия	4	4	3		
5	Оптическая плотность Метод градуировочных характеристик	Разбор дополнительного материала, дискуссия	4	4	3		
6	Закон синусов, полное	Разбор дополнительного	4	4	3		

	внутреннее отражение, рефрактометрия	материала, дискуссия			
7	Интерференция. Принцип построения интерферометров.	Разбор дополнительного материала, дискуссия	4	4	3
8	Эквивалентной и удельная электропроводности. Определение точки эквивалентности по заданным электрическим характеристикам	Разбор дополнительного материала, дискуссия	4	4	4
	Всего		34		

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

			Из них	$\mathcal{N}_{\underline{0}}$
$N_{\underline{0}}$	Наименование лабораторных работ	Трудоемкость,	практической	раздела
Π/Π	п/п	(час)	подготовки,	дисцип
			(час)	лины
	Учебным планом не пр			
	Всего			

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся

Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего,	Семестр 6,
Вид самостоятельной раооты	час	час
1	2	3
Изучение теоретического материала дисциплины (TO)	20	20
Подготовка к текущему контролю успеваемости (ТКУ)	20	20
Подготовка к промежуточной аттестации (ПА)	17	17
Всего:	57	57

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8.

Таблица 8– Перечень печатных и электронных учебных изданий

		Количество
		экземпляров в
Шифр/		библиотеке
**	Библиографическая ссылка	
URL адрес		(кроме
		электронных
		экземпляров)
http://znanium.com/catalog/product/77	Пелевин, В. Ф. Метрология и	
<u>4201</u> (дата обращения: 30.03 2023). –	средства измерений: учеб.	
Режим доступа: для авториз.	пособие	
пользователей	/ В.Ф. Пелевин. – Минск:	
	ИНФРА-М, 2017. – 273 с.	
	- ISBN 978-5-16-006769-8	
https://znanium.com/catalog/document?id	Кирилов, В.И. Метрологическое	
=372654 (дата обращения: 30.03 2023)—	обеспечение технических систем:	
<u>—372034</u> (дата обращения. 30.03 2023)— Режим доступа: для авториз.	учебник / В.И. Кирилов. –	
пользователей.		
пользователеи.	Москва : Инфра-М, 2017. – 3424 с	
	. – ISBN 978-5-16-006770-4	
https://e.lanbook.com/book/112073	Кирилловский, В.К.	
(дата обращения: 30.06 2023	Современные оптические	
(дата обращения: 30:00 2023	исследования и измерения.	
	ГЭлектронный ресурс] —	
	Электрон. дан. — СПб. : Лань, 2021. — 304 с. —	
1 (81)	ISBN: 978-5-8114-0989-1-	
<u>http://lib.sgugit.ru</u> – Загл. с экрана.	Метрологический контроль	
	качества нефти и нефтепродуктов	
	[Электронный ресурс] : учеб.	
	пособие /Г.В. Шувалов, И.В.	
	Минин, О.В. Минин, СГУГиТ. –	
	Новосибирск : СГУГиТ, 2015. –	
	170 c. –	
	Метрологический контроль	
	качества нефти и нефтепродуктов	
	[Текст] : учеб. пособие / Г.В.	
	Шувалов, И.В. Минин, О.В.	
	Минин, СГУГиТ. –	
	Новосибирск : СГУГиТ, 2015. –	
	170 с.	
	Физико-химические измерения	
	[Текст] : уч метод. пособие Г. В.	
	Шувалов Г. В. Симонова, Н. А.	
	Вихарева. СГУГиТ. –	
	Новосибирск : СГУГиТ, 2021. –	
	61 c.	
	01 6.	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9. Таблица 9 – Перечень электронных образовательных ресурсов информационно-

телекоммуникационной сети «Интернет»

URL адрес	Наименование
https://worldskills.ru/	Сайт Агенства развития
	профессий и навыков
https://www.vniiftri.ru/	Эталоны Всероссийского НИИ физико-
	технических
	радиоизмерений
https://docs.cntd.ru/document/1200166732	Электронный фонд нормативной информации
	«Техэксперт»

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

	отпщи	10 Hepe temb in or puniminate occurrential
N:	о п/п	Наименование
		Не предусмотрено

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п	Наименование
	Не предусмотрено

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Мультимедийная лекционная аудитория	
2	Лаборатории СГУГиТ	550, 549

10. Оценочные средства для проведения промежуточной аттестации

10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Зачет	Список вопросов;
	Тесты;
	Задачи.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная

шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции	Vanaymanyamuna ahana munapayun ni yaa matayuniyi
5-балльная шкала	Характеристика сформированных компетенций
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий.
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий.
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий.
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений.

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	Код индикатора
	Учебным планом не предусмотрено	

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16. Таблица 16 — Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код	
J 12 11/11	перечень вопросов (задач) для зачета / дифф. зачета	индикатора	
1	Назовите области применения физико-химических	ПК-1.3.4	
	методов измерений?	ПК-1.У.1.	
		ПК-1.У.3.	
		ПК-2.В.1.	
		ПК-3.3.2.	
		ПК-3.3.3	
		ПК-3.3.4.	

2	Каковы особенности измерений физико-химических	ПК-1.3.4
	характеристик?	ПК-1.У.1.
		ПК-1.У.3.
		ПК-2.В.1.
		ПК-3.3.2.
		ПК-3.3.3
		ПК-3.3.4.
3	Что такое закон эквивалентов и его применение для	ПК-1.3.4
	измерений	ПК-1.У.1.
		ПК-1.У.3.
		ПК-2.В.1.
		ПК-3.3.2.
		ПК-3.3.3
		ПК-3.3.4.
4	Как формируются спектральные характеристики	ПК-1.3.4
	вещества?	ПК-1.У.1.
	'	ПК-1.У.3.
		ПК-2.В.1.
		ПК-3.3.2.
		ПК-3.3.3
		ПК-3.3.4.
5	Down wheete AV were yet wower away by wette deriving week	ПК-3.3.4.
3	Роль и место ФX методов измерений в метрологическом	
	обеспечении?	ПК-1.У.1.
		ПК-1.У.3.
		ПК-2.В.1.
		ПК-3.3.2.
		ПК-3.3.3
		ПК-3.3.4.
6	Что называется измерением?	ПК-1.3.4
		ПК-1.У.1.
		ПК-1.У.3.
		ПК-2.В.1.
		ПК-3.3.2.
		ПК-3.3.3
		ПК-3.3.4.
7	Классификация ФХМА?	ПК-1.3.4
	•	ПК-1.У.1.
		ПК-1.У.3.
		ПК-2.В.1.
		ПК-3.3.2.
		ПК-3.3.3
		ПК-3.3.4.
8	Как определить точку эквивалентности?	ПК-1.3.4
	<u>F</u> - <u>C</u> , s	ПК-1.У.1.
		ПК-1.У.3.
		ПК-1.9.3. ПК-2.В.1.
		ПК-2.В.1.
		ПК-3.3.2.
		ПК-3.3.4.

9	Основы оптических методов анализа	ПК-1.3.4
		ПК-1.У.1.
		ПК-1.У.3.
		ПК-2.В.1.
		ПК-3.3.2.
		ПК-3.3.3
		ПК-3.3.4.
10	Метод калибровочного графика	ПК-1.3.4
		ПК-1.У.1.
		ПК-1.У.3.
		ПК-2.В.1.
		ПК-3.3.2.
		ПК-3.3.3
		ПК-3.3.4.
11	Применение электрохимических методов измерений?	ПК-1.3.4
		ПК-1.У.1.
		ПК-1.У.3.
		ПК-2.В.1.
		ПК-3.3.2.
		ПК-3.3.3
		ПК-3.3.4.
12	Особенности электрохимических методов анализа?	ПК-1.3.4
		ПК-1.У.1.
		ПК-1.У.3.
		ПК-2.В.1.
		ПК-3.3.2.
		ПК-3.3.3
		ПК-3.3.4.
13	Как электрические процессы используются в физико-	ПК-1.3.4
	химических измерениях?	ПК-1.У.1.
	-	ПК-1.У.3.
		ПК-2.В.1.
		ПК-3.3.2.
		ПК-3.3.3
		ПК-3.3.4.
14	Как влияет изменение концентрации на показатель	ПК-1.3.4
	преломления вещества?	ПК-1.У.1.
		ПК-1.У.3.
		ПК-2.В.1.
		ПК-3.3.2.
		ПК-3.3.3
		ПК-3.3.4.
15	Поясните принципы рефрактометрических измерений?	ПК-1.3.4
		ПК-1.У.1.
		ПК-1.У.3.
		ПК-2.В.1.
		ПК-3.3.2.
		ПК-3.3.3
		ПК-3.3.4.
16	Принцип действия фотометра?	ПК-1.3.4
	1	ПК-1.У.1.
		ПК-1.У.3.
		ПК-2.В.1.
		ПК-3.3.2.
		ПК-3.3.3
1		1111 5.5.5

		ПК-3.3.4.
17	Поясните принципы интерференционных измерений?	ПК-1.3.4
		ПК-1.У.1.
		ПК-1.У.3.
		ПК-2.В.1.
		ПК-3.3.2.
		ПК-3.3.3
		ПК-3.3.4.
18	Общая методика проведения оптических измерений?	ПК-1.3.4
		ПК-1.У.1.
		ПК-1.У.3.
		ПК-2.В.1.
		ПК-3.3.2.
		ПК-3.3.3
		ПК-3.3.4.
19	Принцип действия интерферометра?	ПК-1.3.4
		ПК-1.У.1.
		ПК-1.У.3.
		ПК-2.В.1.
		ПК-3.3.2.
		ПК-3.3.3
		ПК-3.3.4.
20	Что такое кондуктометрическое титрование?	ПК-1.3.4
		ПК-1.У.1.
		ПК-1.У.3.
		ПК-2.В.1.
		ПК-3.3.2.
		ПК-3.3.3
		ПК-3.3.4.

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

№ п/п	Примерный перечень вопросов для тестов	Код индикатора
-------	--	-------------------

1	Общие вопросы физико-химических методов	ПК-1.3.4
1	1 Для определения вязкости используются измерения	ПК-1.У.1.
	а) временные характеристики;	ПК-1.У.3.
	б) тепловые характеристики	ПК-2.В.1.
	в) электрические характеристики	ПК-3.3.2.
	2 При определении твёрдости используется:	ПК-3.3.3
	а) способность растворов проводить электрический ток;	ПК-3.3.4.
	б) способность атомов и молекул поглощать	
	электромагнитное излучение;	
	в) свойство материала сопротивляться внедрению в его поверхность	
	3 В основе рефрактометрического метода лежит:	
	а) способность растворов проводить электрический ток;	
	б) способность атомов и молекул поглощать	
	электромагнитное излучение;	
	в) способность различных веществ по-разному преломлять проходящий свет.	
	4 На рефрактометре определяют:	
	а) оптическую плотность	
	б) показатель преломления;	
	в) рН раствора	
	5 В основе абсорбционного спектрального анализа лежит:	
	а) закон светопоглощения;	
	б) закон Бугера – Ламберта - Бера; в) закон эквивалентов.	
	6 В спектральном анализе применяют приборы:	
	а) фотоэлектроколориметр	
	б) пламенный фотометр	
	в) спектрофотометр	
	7 На фотометре определяют:	
	а) оптическую плотность;	
	б) показатель преломления;	
	в) рН раствора	
	8 На хроматографе можно провести анализ веществ:	
	а) окрашенных;	
	б) неокрашенных;	
	в) сложного компоненного состава:	
	9 Стандартные растворы – это:	
	а) растворы, с точно известной концентрацией;	
	б) рабочие растворы;	
	в) растворы, содержащие все компоненты, кроме	
	определяемого вещества.	
	10 Растворы сравнения это:	
	а) растворы, с точно известной концентрацией;	
	б) рабочие растворы;	
	в) растворы, содержащие все компоненты, кроме	
	определяемого вещества.	
	11 В основе поляриметрического метода анализа лежит:	
	а) способность атомов и молекул поглощать электромагнитное	
	изучение;	
	б) изучение поляризованного света;	

- в) способность различных веществ по-разному преломлять проходящий свет
- 12 При гравиметрическом анализе определяют:
- а) массу вещества;
- б) объём вещества;
- в) основность компонента.
- 14 На поляриметре определяют:
- а) рН раствора;
- б) оптическую плотность;
- в) показатель преломления;
- г) угол вращения
- 15 Вещества, способные отдавать водород, называются
- а) основаниями
- б) солями
- в) кислотами
- 16 Системы, поддерживающие рН раствора на заданном уровне, называются:
- а) статистическими
- б) буферными
- в) равновесными
- 17 Титрование относится к методам
- а) химическим
- б) физико химическим
- в) физическим
- 18 Хроматография относится к методам
- а) химическим
- б) физико химическим
- в) физическим
- 19 Цель метода титрования
- а) определение состава исследуемого раствора
- б) определение концентрации исследуемого раствора
- в) определение и того, и другого.
- 20 Интерференция наблюдается
- а) при сложении интенсивности световых потоков
- б) при сложении амплитуд световых волн
- в) при наблюдении в отраженном свете

2	Оборудование для физико-химических измерений	ПК-1.3.4
2	Оборудование для физико-химических измерении	ПК-1.У.1.
	1 Что такое нулевой раствор:	ПК-1.У.3.
	а) дистиллированная вода	ПК-2.В.1.
	б) раствор и минимальным количеством примеси	ПК-3.3.2.
	в) раствор и минимальным количеством примеси	ПК-3.3.3
	в) раствор сравнения с известными характеристиками	ПК-3.3.4.
	2 Для чего применяется диспергирующая призма:	
	а) для отражения световых потоков	
	б) для спектрального разложения световых потоков	
	в) для формирования поля зрения	
	2 pH - метр позволяет измерять:	
	а) концентрацию ионов водорода	
	б) цвет раствора	
	в) наличие примеси в среде	
	3 Кондуктометрическая ячейка используется:	
	а) для определения сопротивления образца	
	б) для определения удельной электропроводности	
	в) для формирования нулевого раствора	
	4 Фотометр предназначен:	
	а) для определения силы света	
	б) для получения когерентных световых потоков	
	в) для определения оптической плотности	
	5 Монохроматор предназначен	
	а) для определения яркости света	
	б) для получения направленного излучения	
	в) для выделения заданного спектрального интервала	
	6 Лазер предназначен для	
	а) получения монохроматического излучения с малой	
	расходимостью	
	б) определения показателя поглощения	
	в) Определения фазового состава вещества	
	7. Как сформировать условие максимума в интерферометре	
	а) определить фазовый сдвиг	
	б) задать определенную длину волны	
	в) сформировать нулевую разность хода	
	Q Var hallan avotag with anavywan was avore warranger	
	8 Как используется дифференциальная схема измерений при	
	определении оптической плотности	
	 а) результат определяется как разница оптических плотностей опорного и измерительного каналов 	
	б) для определения коэффициента отражения	
	в) для определения коэффициента отражения	
	2, для определения погрешности измерении	

9. Принцип действия рефрактометра основан	
а) на поглощении световых лучей	
б) на основе буферных растворов	
в) на основе полного внутреннего отражения	
10 Градуировочный график позволяет:	
а) определить вид растворенного вещества	
б) определить погрешность результата измерений	
в) определить связь между измеряемым и определяемым	
Парамотром	

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п	Перечень контрольных работ	
	Не предусмотрено	

10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

11. Методические указания для обучающихся по освоению дисциплины

11.1. Методические указания для обучающихся по освоению лекционного материала.

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
 - развитие профессионально-деловых качеств, любви к предмету

и самост

- появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- презентация;
- видеоролики;
- видеоуроки.

Видеоматериалы размещены в курсе LMS (https://lms.guap.ru/new/course/view.php?id=8092).

1. Вводная часть лекции (вступление) предусматривает время на проверку готовности студентов к занятию (их наличие и осмотр внешнего вида, текущий контроль пройденного ранее учебного материала),а также объявление темы лекции, её целей, рекомендаций по использованию учебной литературы в часы самостоятельной работы, с указанием параграфов (страниц) и полных наименований изданий.

Вступление:

- тема лекции;
- учебные цели, которые должны быть достигнуты на лекции;
- учебные вопросы;
- учебная

литература.

Контрольные вопросы

(пример):

- 1. Назовите метрологические характеристики средств измерений.
- 2. Дайте характеристику основной погрешности измерения.
- 3. Назовите источники дополнительных погрешностей измерений.
- 2. Основная часть лекции раскрывает учебные вопросы занятия. При необходимости конкретизировать учебный материал, главные (узловые) вопросы могут содержать подвопросы.

Понятие о единстве измерений и его основы:

- условия единства измерений;
- нормативные основы единства измерений;
- организационные основы единства измерений;
- технические основы единства измерений.
- 3. В заключительной части лекции следует планировать время на выводы, выдачу задания студентам на самостоятельную работу, ответы на вопросы по пройденной теме, подведение итогов, а также на общие выводы, помогающие осмыслить всю лекцию, отчётливо высветить её основную идею.

Заключительная часть

- 1. Выводы по лекции.
- 2. Объявление оценок студентам по инициативному контролю.
- 3. Задание студентам на самостоятельную работу.
- 4. Ответы на вопросы студентов.
- 11.2. Методические указания для обучающихся по прохождению практических занятий

Практическое занятие является одной из основных форм организации учебного процесса, заключающаяся в выполнении обучающимися под руководством преподавателя комплекса учебных заданий с целью усвоения научно-теоретических основ учебной дисциплины, приобретения умений и навыков, опыта творческой деятельности.

Целью практического занятия для обучающегося является привитие обучающимся умений и навыков практической деятельности по изучаемой дисциплине.

Планируемые результаты при освоении обучающимся практических занятий:

- закрепление, углубление, расширение и детализация знаний при решении конкретных задач;
- развитие познавательных способностей, самостоятельности мышления, творческой активности;
- овладение новыми методами и методиками изучения конкретной учебной дисциплины;
- выработка способности логического осмысления полученных знаний для выполнения заданий;
- обеспечение рационального сочетания коллективной и индивидуальной форм обучения.

Требования к проведению практических занятий

На практических занятиях должны быть последовательно выполнены следующие этапы:

- разбор нового материала с формулами или повторение ранее рассмотренного на лекции;
 - рассмотрение решения типовых заданий;
 - разбор и обсуждение условий заданий по вариантам;
 - консультации по выполнению заданий;
 - прием заданий.

11.3. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихсяявляются:

- учебно-методический материал по дисциплине;
- курс в LMS.
- 11.4. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

В течение семестры студенты

- защищают лабораторные работы;
- выполняют практические работы;
- выполняют тестирования по материалам лекций.
- 11.5. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

— зачет — форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. зачет, как правило, проводится в период зачетной недели и завершается аттестационной оценкой «зачтено», «незачтено».

Система оценок при проведении текущего контроля и промежуточной аттестации осуществляется в соответствии с руководящим документом организации РДО ГУАП. СМК 3.76 «Положение о текущем контроле успеваемости и промежуточной аттестации студентов и аспирантов, обучающихся по образовательным программам высшего образования в ГУАП» https://docs.guap.ru/guap/2020/sto_smk-3-76.pdf.

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой