МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 43

УТВЕРЖДАЮ

Руководитель образовательной программы

доц.,к.т.н.

(должность, уч. степень, звание)

А.А. Фоменкова

«17» июня 2024 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Компьютерное моделирование»

(Наименование дисциплины)

Код направления подготовки/ специальности	09.03.04	
Наименование направления подготовки/ специальности	Программная инженерия	
Наименование направленности	Проектирование программных систем	
Форма обучения	очная	
Год приема	2024	

Лист согласования рабочей программы дисциплины

Программу составил (а)		
проф., д.т.н., доц.		С.И. Колесникова
(должность, у г. степень, звиние)	(подпись, дага)	(ппициалы, фамилия)
Программа одобрена на засед «17» июня 2024 г, протокол М	• •	
« <u>17</u> " <u>июня</u> 2024 г, протокол 3	12 03/2024	
Заведующий кафедрой № 43 д.т.н.,проф.	77.06.2024	М.Ю. Охтилев
(уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
доц.,к.т.н.	тута №4 по методической работе ———————————————————————————————————	А.А. Фоменкова
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)

Аннотация

Дисциплина «Компьютерное моделирование» входит в образовательную программу высшего образования — программу бакалавриата по направлению подготовки/ специальности 09.03.04 «Программная инженерия» направленности «Проектирование программных систем». Дисциплина реализуется кафедрой «№43».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ПК-1 «Способность моделировать, анализировать и использовать формальные методы конструирования программного обеспечения»

Содержание дисциплины охватывает круг вопросов, связанных с основными понятиями, методами, алгоритмами компьютерного моделирования, описанием различных классов моделей; знакомством с принципами имитационного моделирования и способами имитации сложных систем (на базе программных средств и пакетов прикладных программ); с описанием методов имитации на ЭВМ случайных величин; с рассмотрением некоторых вопросов статистической обработки результатов экспериментов многомерных динамических дискретных непрерывных И (стохастических) систем управления; с моделями обработки больших данных.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: (лекции, лабораторные работы, самостоятельная работа обучающегося, консультации).

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 5 зачетных единиц, 180 часов.

Язык обучения по дисциплине «русский»

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Приобретение обучающимися необходимых навыков в области системного моделирования реальных ситуаций и процессов: ознакомление с типами моделей и принципами аналитического и имитационного моделирования динамических систем; развитие навыков алгоритмизации, обработки данных и их реализации на базе языков и пакетов прикладных программ моделирования.

- 1.2. Дисциплина входит в состав части, формируемой участниками образовательных отношений, образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Tr 6 1	П		U		
Таолина Г	– Перечені	ь компетенциі	и и инликато	пов их	лостижения
т иолици т	TTOPO TOTAL	э компетенци	и и шидикаго	PODIM	достимении

Категория (группа) компетенции	Код и наименование компетенции	Код и наименование индикатора достижения компетенции
Профессиональные компетенции	ПК-1 Способность моделировать, анализировать и использовать формальные методы конструирования программного обеспечения	ПК-1.3.1 знает основы моделирования и формальные методы конструирования программного обеспечения ПК-1.У.1 умеет использовать формальные методы конструирования программного обеспечения ПК-1.В.1 владеет навыками моделирования и формальными методами конструирования программного обеспечения

2. Место дисциплины в структуре ОП

Дисциплина базируется на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- Математика. Математический анализ
- Информатика
- Основы программирования

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и используются при изучении других дисциплин:

- Защита информации
- Обработка экспериментальны данных

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблине 2.

Таблица 2 – Объем и трудоемкость дисциплины

Вид учебной работы		Всего	Трудоемкость по семестрам	
1				№7
	1		2	3
Общая	трудоемкость	дисциплины,	5/ 180	5/ 180

ЗЕ/ (час)		
Из них часов практической подготовки	34	34
Аудиторные занятия, всего час.	68	68
в том числе:		
лекции (Л), (час)	34	34
практические/семинарские занятия (ПЗ),		
(час)		
лабораторные работы (ЛР), (час)	34	34
курсовой проект (работа) (КП, КР), (час)		
экзамен, (час)	36	36
Самостоятельная работа, всего (час)	76	76
Вид промежуточной аттестации: зачет,		
дифф. зачет, экзамен (Зачет, Дифф. зач,	Экз.	Экз.
Экз.**)		
**		<u> </u>

Примечание: **кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Разделы, темы дисциплины	Лекции (час)	ПЗ (СЗ) (час)	ЛР (час)	КП (час)	СРС (час)
Сем	естр 7		, ,	, , ,	
Раздел 1. Классификация моделей и типов	12		12		26
моделирования.					
Тема 1.1. Основные методы моделирования					
сложных систем. Типы пакетов прикладных					
программ для построения компьютерных моделей.					
Тема 1.2. Имитационное моделирование. Метод					
Монте-Карло. Модели систем массового					
обслуживания (СМО). Уравнения Колмогорова для					
вероятностей состояний СМО. Элементы					
численного моделирования.					
Тема 1.3. Модели интеллектуального анализа					
данных.					
Раздел 2. Статистический анализ результатов	12		12		20
моделирования.					
Тема 2.1. Верификация и значимость моделей.					
Тема 2.2. Моделирование временных рядов.					
Раздел 3. Моделирование линейных и	10		10		30
нелинейных систем.					
Тема 3.1. Модели линейных/нелинейных					
дискретных/непрерывных динамических объектов в					
Simulink.					
Тема 3.2. Модели детерминированного хаоса.					
Итого в семестре:	34		34		76
Итого	34	0	34	0	76

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Номер раздела	Название и содержание разделов и тем лекционных занятий
1	Тема 1.1.
	Лекция 1. Понятие модели. Классификация видов моделирования. Математическое и компьютерное моделирование. Классификация математических моделей. Основные понятия и общий подход к решению проблемы моделирования сложных систем. Пакеты прикладных программ для моделирования сложных объектов. Демонстрация слайдов
	Тема 1.2. Лекция 2. Аналитическое и имитационное моделирование. Этапы имитационного моделирования. Типы датчиков базовых случайных величин (СВ). Равномерные датчики СВ и их применение для генерации СВ с произвольным вероятностным распределением (метод Монте-Карло). Демонстрация слайдов Лекции 3-4. Основные понятия и общий подход к решению
	проблемы моделирования сложных систем. Моделирование отказов систем. Свойства простейших потоков отказов. Уравнения Колмогорова для формализации моделей систем массового обслуживания. Некоторые типы аналитических моделей систем в стационарном и не стационарном режимах функционирования. Принцип вычисления стационарных характеристик. Демонстрация слайдов
	Лекция 5. Численное и имитационное моделирование конкретных типов сложных систем. Временные диаграммы. Критерии и показатели экономической эффективности функционирования некоторых моделей систем ТМО. Демонстрация слайдов Тема 1.2. Лекция 6. Модели ИАД для обработки больших данных. Модели распознавания образов для повышения репрезентативности
	выборки.
2	Тема 2.1. Лекция 7. Проверка адекватности моделей. Статистический анализ результатов моделирования. Оценивание вероятностных распределений и их числовых характеристик. Демонстрация слайдов Тема 2.2.
	Лекции 8-9. МНК и модели временных рядов. Модели прогнозирования нестационарных стохастических временных рядов, порождаемых сложными динамическими объектами. Моделирование динамических систем в виде дифференциальных и разностных уравнений со стохастической неопределенностью. Демонстрация слайдов
3	Тема 3.1. Лекции 10-11. Модели линейного программирования и пакеты ПП для построения компьютерных моделей. Тема 3.2. Лекции 12-13. Модели детерминированного хаоса на примере автоколебаний. Практическое использование объектов
	детерминированного хаоса в теории сигналов и для моделирования реальных ситуаций в прикладных задачах. Демонстрация слайдов

Лекции 14-15. Моделирование дискретных и непрерывных
многомерных нелинейных детерминированных систем управления
на принципах многообразий и вариационного исчисления с
минимизацией дисперсии выходного сигнала. Демонстрация
слайдов
Лекции 16-17. Численное моделирование самолетом амфибия на
принципах управления на многообразиях. Случай
детерминированных помех. Вопросы устойчивости объекта
управления. Демонстрация слайдов

4.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

				Из них	$N_{\underline{0}}$
$N_{\underline{0}}$	Темы практических	Формы практических	Трудоемкость,	практической	раздела
Π/Π	занятий	занятий	(час)	подготовки,	дисцип
				(час)	лины
Учебным планом не предусмотрено					
	Всег				

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

№ п/п	Наимен	ование лабораторных работ	Трудоемкость, (час)	Из них практической подготовки, (час)	№ раздела дисцип лины
			Семестр 7	T	
1	Модели ли	нейного программирования	4	4	2
2	Модели не:	пинейного программирования	6	6	3
3	произволы	вание случайных величин с ным распределением на основе ого распределения. Метод Монте-	6	6	1
4	прогнозиро	гатистического моделирования и ования динамических систем по у ряду (на основе МНК)	4	4	2
5		ание непрерывных моделей - шальных уравнений в MatLab	6	6	1
6	моделей с	ание дискретных динамических описанием в виде разностных в MatLab Simulink	4	4	2
7	Моделиров детермини	ание объектов рованного хаоса	4	4	3
	_	Всего	34	34	

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего,	Семестр 7,
Вид самостоятсявной расств	час	час
1	2	3
Изучение теоретического материала	50	50
дисциплины (ТО)	30	30
Курсовое проектирование (КП, КР)		
Расчетно-графические задания (РГЗ)		
Выполнение реферата (Р)		
Подготовка к текущему контролю		
успеваемости (ТКУ)		
Домашнее задание (ДЗ)		
Контрольные работы заочников (КРЗ)		
Подготовка к промежуточной	26	26
аттестации (ПА)	20	20
Всего:	76	76

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8. Таблица 8— Перечень печатных и электронных учебных изданий

Шифр/ URL адрес	Библиографическая ссылка	Количество экземпляров в библиотеке (кроме электронных экземпляров)
URL: https://e.lanbook.com/book/339761 (дата обращения: 17.08.2023)	Совертков, П. И. Компьютерное моделирование / П. И. Совертков. — Санкт-Петербург: Лань, 2023. — 424 с. — ISBN 978-5-507-46708-2. — Текст: электронный // Лань: электроннобиблиотечная система.	
URL: https://e.lanbook.com/book/131726 (дата обращения: 17.08.2023).	Компьютерное моделирование в авиакосмической промышленности / под редакцией И. Б. Аббасова. — Москва: ДМК Пресс, 2019. — 300 с. — ISBN 978-5-97060-634-6. — Текст: электронный // Лань: электронно-	

библиотечная система.	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационно-

телекоммуникационной сети «Интернет»

URL адрес	Наименование	
http://scp.sfedu.ru/study/1-5.html	Электронный учебник «Синергетическая теория	
	управления»	
https://msdn.microsoft.com/ru-ru/	Официальный сайт компании Microsoft.	
	Microsoft DreamSpark for Academic Institutions	
http://bookash.pro/ru/t/MATLAB/	IATLAB/ Сборник книг по моделированию в MatLab Simulink	
www.matlab.ru	Консультационный сайт пакета Matlab	

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

№ п/п	Наименование
1	Операционная система Microsoft Windows XP Professional
2	Microsoft Office
3	MATLAB – Simulink

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п	Наименование
	Не предусмотрено

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Мультимедийная лекционная аудитория	
2	Специализированная лаборатория	Б.М. 23-08, 23-09, 23- 10

- 10. Оценочные средства для проведения промежуточной аттестации
- 10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Экзамен	Список вопросов к экзамену;
	Тесты.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции	Vanarana variana ahan arang anang ang arang ang		
5-балльная шкала	Характеристика сформированных компетенций		
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий. 		
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 		
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий. 		
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 		

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	Код индикатора
1	Понятие модели. Классификация видов моделирования. Математическое и компьютерное моделирование. Классификация математических моделей. Основные понятия и общий подход к решению проблемы моделирования сложных систем. Пакеты прикладных программ для моделирования сложных объектов.	ПК-1.3.1
2	Типы датчиков базовых случайных величин (CB). Равномерные датчики CB и их применение для генерации CB с произвольным вероятностным распределением (метод Монте-Карло).	
3	Моделирование отказов систем. Свойства простейших потоков отказов. Уравнения Колмогорова для состояний систем массового обслуживания (стационарном и не стационарном).	
4	Аналитическое и имитационное моделирование. Этапы имитационного моделирования. Этапы имитационного моделирования функционирования сложных систем. Временные диаграммы. Критерии и показатели экономической эффективности функционирования некоторых моделей систем.	ПК-1.У.1
5	Проверка адекватности моделей. Статистический анализ результатов моделирования. Оценивание вероятностных распределений и их числовых характеристик. Значимость моделей.	
7	Моделирование временного ряда. МНК. Модели прогнозирования нестационарных стохастических временных рядов, порождаемых сложными динамическими объектами.	
8	Модели детерминированного хаоса на примере объектов Фейгенбаума, Ферхюльста, Лоренца, Рэлея. Практическое использование объектов детерминированного хаоса в теории сигналов и для моделирования реальных ситуаций в прикладных задачах.	ПК-1.В.1
9	Моделирование дискретных многомерных нелинейных детерминированных систем управления на принципах многообразий и вариационного исчисления.	
10	Моделирование сложных динамических систем в виде систем обыкновенных дифференциальных уравнений с линейной и нелинейной правой частью.	
11	Дискретные и непрерывные нелинейными модели в Simulink. Дифференциальные и разностные уравнения.	
12	Простейшая вариационная задача. Принцип минимального действия.	
13	Моделирование нелинейной 2-мерной системы управления на заданном многообразии. Принцип минимального действия и функционал качества синергетического управления.	
14	Методы и модели интеллектуального анализа и обработки больших данных.	

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16. Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код индикатора
	Учебным планом не предусмотрено	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 — Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
Учебным планом не предусмотрено	

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

	1 1 1	Код	Код ответа
№	Паухь самуу уу намауууу раймааар инд таатар		код ответа
Π/Π	Примерный перечень вопросов для тестов	индикат	
		opa	_
1	Инструкция: Прочитайте текст, выберите один	ПК-	3
	правильный ответ	1.3.1	
	Преобразование нелинейной модели в линейную		
	называется:		
	1) идентификацией;		
	2) нелинейностью;		
	3) линеаризацией;		
	4) уточнением.		
2	Инструкция: Прочитайте текст, выберите	ПК-	2, 5
2		1.3.1	2, 3
	подходящие утверждения	1.3.1	
	Π		
	Динамическая модель описывает		
	1) 5		
	1) проекцию объекта на одну из характеристик		
	объекта;		
	2) изменение характеристик объекта во времени;		
	3) интегральную схему;		
	4) стационарные состояния объекта;		
	5) динамику изменений характеристик объекта		
	согласно разностным/дифференциальным		
	уравнениям.		
3	Инструкция: Прочитайте текст, выберите один	ПК-	2
	правильный ответ	1.3.1	
	1		
	Процесс построения модели предполагает:		
	процесс построения модели предполагает.		
	1) описание всех свойств исследуемого объекта;		
	2) выделение наиболее существенных с точки		
	зрения решаемой задачи свойств объекта;		
	± ±		
	3) описание всех пространственно-временных		
	характеристик изучаемого объекта;		
	4) выделение не более определенного экспертом		
	числа существенных признаков объекта.		

4	Инструкция: Прочитайте текст, выберите один	ПК-	2
	правильный ответ	1.3.1	
	Для простейшего потока отказов системы		
	(аппаратуры) интервал времени т между появлениями		
	событий подчиняется		
	1) нормальному распределению		
	2) показательному распределению P(τ <z)=1-e-λz< td=""><td></td><td></td></z)=1-e-λz<>		
	3) любому распределению		
	4) равномерному распределению.		
5	Инструкция: Прочитайте текст, выберите один	ПК-	2
	правильный ответ	1.3.1	
	Уравнения Колмогорова для СМО описывают		
	1) вероятности отказа в обслуживании		
	2) вероятности состояний системы во времени		
	3) распределение числа <i>n</i> событий, попадающих		
	на интервал длительности t ;		
	4) вероятности того, что на интервале		
	длительностью t не появится ни одного события.		
6	Инструкция: Прочитайте текст, выберите один	ПК-	1
	правильный ответ	1.3.1	
	Динамическая модель, описываемая		
	разностным/дифференциальным уравнением,		
	называется линейной , если ее описание 1) содержит переменные объекта (координаты) и их		
	производные в линейном виде (линейная комбинация		
	координат объекта и их производных);		
	2) содержит коэффициенты перед переменными		
	объекта в линейном виде, сами переменные и их		
	производные могут иметь нелинейное описание;		
	3) содержит только производные с коэффициентом		
	пропорциональности;		
	4) не содержит странных аттракторов в фазовом		
	пространстве.	THE	
7	Инструкция: Прочитайте текст, выберите один	ПК-	a
	правильный ответ	1.3.1	
	Модели отображают процессы, в которых отсутствуют		
	случайные воздействия называются		
	а) детерминированными		
	б) дискретными		
	в) нелинейными		
	г) абстрактными д) информационными		
8	информационными Инструкция: Прочитайте текст, выберите один	ПК-	a
0	правильный ответ	11K- 1.У.1	a
	inpubitibiliti Otbet	1.7.1	

	Динамическая модель является устойчивой, если		
	а) будучи выведенной из своего исходного состояния,		
	стремится к нему;		
	б) при замене параметров модели другими значениями		
	ведет себя аналогично (как и до замены);		
	в) достигает исходного состояния при воздействии		
	только детерминированными помехами (среды);		
	г) достигает исходного состояния при воздействии		
	только случайными помехами (среды);		
9	Инструкция: Прочитайте текст, выберите один	ПК-	a
	правильный ответ	1.У.1	
	Моделирование — это:		
	а) замещение одного объекта другим с целью		
	получения информации о важнейших свойствах		
	* *		
	объекта-оригинала;		
	б) создание материального (физического) объекта той		
	или иной природы, отражающего только некоторые		
	характеристики оригинала;		
	в) создание базы знаний, отражающей поведение		
	объекта во времени;		
	H D C	TILC	
10	Инструкция: Выберите утверждения относительно	ПК-	б), в), г), д)
	системы массового обслуживания, которые верно	1.У.1	
	сформулировано:		
	а) уравнения Колмогорова-Чепмена описывают		
	вероятности отказа в СМО;		
	б) число уравнений в системе Колмогорова-Чепмена		
	равно числу состояний;		
	в) одно из свойств простейшего потока событий — это		
	отсутствие последействий;		
	г) простейший поток событий есть пуассоновский		
	поток;		
	д) пуассоновский поток событий обладает всеми		
	свойствами простейшего потока.		
11	Инструкция: Прочитайте текст, выберите один	ПК-	2
11	правильный ответ	1.У.1	
	inpublishin Orbet	1.7.1	
	Верификация имитационной модели – это		
	1) это учет в модели объектов, не входящих в		
	обучающую выборку, но входящих в генеральную		
	совокупность, по отношению к которой данная		
	обучающая выборка репрезентативна;		
	2) есть проверка соответствия ее поведения		
	предположениям экспериментатора;		
	3) есть проверка соответствия ее поведения реальному		
	объекту на измененных исходных данных;		
	4) есть получение оценок ее параметров на основе		
10	МНК.	ПК-	1
12	Инструкция: Прочитайте текст, выберите один правильный ответ		1
	т правильный ответ	1.У.1	1

		ı	
13	Адаптивность модели - это 1) способность модели быстро приспосабливать свою структуру и параметры к изменению условий (изменению выборки); 2) характеристика обобщающей способности модели (приемлемые результаты на обучении и контроле); 3) это учет в модели объектов, не входящих в обучающую выборку, но входящих в генеральную совокупность, по отношению к которой данная обучающая выборка репрезентативна. Инструкция: Прочитайте текст, выберите один	ПК-	2
	правильный ответ	1.B.1	
		1.2.1	
	Регрессионная параметрическая модель в общем		
	виде — это		
	1) зависимость только линейного вида $f(x_k)=a\cdot y_k+b$ на		
	выборке $\{x_k, y_k\}^r_{k=1}$, для всех $k=1,,r$;		
	2) функция установления степени соответствия набора		
1.4	$\{x_k, y_k\}^r_{k=1}$ какой-либо функции из заданного набора.	ПК-	
14	Составьте проект модели Simulink для получения	11K- 1.B.1	
	двух графиков в одном окне Scope: единичного скачка на промежутке [0,6] и проинтегрированного	1.0.1	
	единичного скачка с 3-х до 6-ти у.ед.		
	Ответ.		
	Step Integrator		
	мы получим график вида:		
	5 0 5 0 2 4 6		
	5		
	0		
	_5		
15	Инструкция: Прочитайте текст, выберите один	ПК-	1
	правильный ответ	1.B.1	
	п		
	Переобучение в нейросетевых моделях и моделях		
	распознавания образов - это явление, характеризующее		
	1) низкий процент ошибок на обучающей выборке и высокий процент ошибок на контрольной выборке;		
	2) низкий процент ошибок на обучающей выборке и		
	низкий процент ошибок на контрольной выборке;		
	3) высокий процент ошибок на обучающей выборке и		
	низкий процент ошибок на контрольной выборке;		
	4) высокий процент ошибок на обучающей выборке и		
	высокий процент ошибок на контрольной выборке;		
16	Инструкция: Прочитайте текст, выберите один	ПК-	2
I	правильный ответ	1.B.1	1

	Декомпозиция модели системы — это 1) поиск элемента с наибольшим числом связей;		
	2) условное деление системы на ее составляющие по		
	определенному правилу;		
	3) формирование новой системы из множества		
	подобных элементов;		
	4) определение центрального (основного) элемента.		
17	Инструкция: Изобразите в Simulink модель, отвечающая за получение графика решения уравнения $\dot{x} = -2x + 1.8u$, $x(0) = 0$ (на входе – единичный скачок)	ПК- 1.В.1	OTBCT. Step Gain1 Scope Integrator Gain
18	Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа.	ПК-1	Ответ: 3. Любая модель в современных условиях, требующая
	 Компьютерная модель - это информационная модель, выраженная специальными знаками; структурная схема программы; любая модель, реализация которой основана на программных средствах; только физическая модель, реализованная инструментальными программными средствами. 		программную реализацию и предварительное ее тестирование на уровне программы, требует аппаратную часть - компьютер.
19	Инструкция: Прочитайте текст, выберите правильные варианты ответа и запишите аргументы, обосновывающие выбор ответов. Идентификация модели означает— 1) распознавание образа объекта, который моделируется; 2) статистический анализ модели и получение оценок ее параметров; 3) проверка истинности соответствия модели реальному объекту; 4) выбор одной модели из нескольких претендентовмоделей.	ПК-1	2), 4) Выбор 2) и 4) соответствует ГОСТ 20913-75: определение параметров и структуры математической модели, обеспечивающей наилучшее совпадение вы-ходных координат объекта и модели при одинаковых входных воздей-ствиях.
20	Инструкция: Прочитайте текст и установите соответствие. К каждой позиции, данной в центральном столбце, подберите соответствующие номера позиций в левом столбце по формулировкам правого столбца.	ПК-1	Ответ. 3D Нелинейная модель 1B, 3B Хаотическая модель
	Указать нужное соответствие для продолжения		3A,3В Нелинейная и хаотическая модели

	омулирования верного утражественный выбор). Нелинейная модель Хаотическая модель Нелинейная и хаотическая модели	Номер соответствия 1 хаотическая модель 2 случайный процесс 3 детерминированная модель		
Пос. пос. Ука мат 1) а 2) п 3) о		е соответствующую а направо. рядок этапов ания процесса: ования;	ПК-1	Ответ 3, 4, 2, 1
Ино разл Про	 2) проведение исследования; 3) определение целей моделирования; 4) поиск математического описания. Инструкция: Прочитайте текст и запишите развернутый обоснованный ответ. Представить алгоритм вычисления площади (пл. S) криволинейной фигуры S по методу Монте-Карло. 		ПК-1	ОТВЕТ 1. Зафиксировать прямоугольник <i>P</i> , в который входит криволинейная фигура <i>S</i> , и его площадь (пл. <i>P</i>). 2. Применить процедуру заполнения случайными точками прямоугольник <i>P</i> . 3. Рассчитать величины: <i>N</i> _P — число точек внутри прямоугольника <i>P</i> ; <i>N</i> _S — число точек внутри криволинейной фигуры <i>S</i> ; отношение величин <i>N</i> _S / <i>N</i> _P . 4. Воспользоваться определением геометрической вероятности для вычисления площади криволинейной фигуры <i>S</i> и принципом метода Монте-Карло: <i>пл. S/пл. P=N</i> _P / <i>N</i> _S . 5. Вычислить площадь (пл. <i>S</i>) криволинейной фигуры <i>S</i> по методу Монте-Карло: <i>пл. S=пл. P</i> (<i>N</i> _P / <i>N</i> _S).

1 тип) Задание комбинированного типа с выбором одного верного ответа из четырех предложенных и обоснованием выбора считается верным, если правильно указана цифра и приведены конкретные аргументы, используемые при выборе ответа. Полное совпадение с верным ответом оценивается 1 баллом, неверный ответ или его отсутствие — 0 баллов.

2 тип) Задание комбинированного типа с выбором нескольких вариантов ответа из предложенных и развернутым обоснованием выбора считается верным, если правильно указаны цифры и приведены конкретные аргументы, используемые при выборе ответов. Полное совпадение с верным ответом оценивается 1 баллом, если допущены ошибки или ответ отсутствует — 0 баллов.

3 тип) Задание закрытого типа на установление соответствия считается верным, если установлены все соответствия (позиции из одного столбца верно сопоставлены с позициями другого столбца). Полное совпадение сверным ответом оценивается 1 баллом, неверный ответ или его отсутствие —0 баллов

4 тип) Задание закрытого типа на установление последовательности считается верным, если правильно указана вся последовательность цифр. Полное совпадение с верным ответом оценивается 1 баллом, если допущены ошибки или ответ отсутствует — 0 баллов.

5 тип) Задание открытого типа с развернутым ответом считается верным, если ответ совпадает с эталонным по содержанию и полноте. Правильный ответ за задание оценивается в 3 балла, если допущена одна ошибка \неточность \ ответ правильный, но не полный - 1 балл, если допущено более 1 ошибки \ ответ неправильный \ ответ отсутствует -0 баллов.

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п	Перечень контрольных работ
	Не предусмотрено

10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

11. Методические указания для обучающихся по освоению дисциплины

11.1. Методические указания для обучающихся по освоению лекционного материала (если предусмотрено учебным планом по данной дисциплине).

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

– получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;

- получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- Вступление (введение): определение темы, плана и цели лекции, связь с предыдущими и последующими занятиями, постановка основных вопросов.
 - Обоснование актуальности рассматриваемых вопросов.
- Изложение основного материала: реализация содержания темы, приведение системы доказательств и методических выводов. Приведение алгоритма, реализующего решение основной задачи (при необходимости).
 - Формулировка вопросов по лекции к зачетному занятию.
 - Рекомендации к выполнению соответствующей лабораторной работы.
- Заключение: логическое завершение подачи материала в виде кратких тезисов; рекомендаций по самостоятельной работе.

Подробные методические указания по освоению лекционного материала приведены в учебном методическом пособии, находящемся в электронной форме в виде электронных ресурсов 43 кафедры: Методическое обеспечение кафедры 43/Компьютерное моделирование/С.И. Колесникова. Методические указания к выполнению лабораторных работ по дисциплине «Компьютерное моделирование».

- 11.2. Методические указания для обучающихся по участию в семинарах (не предусмотрено учебным планом по данной дисциплине)
- 11.3. Методические указания для обучающихся по прохождению практических занятий (не предусмотрено учебным планом по данной дисциплине)
- 11.4. Методические указания для обучающихся по выполнению лабораторных работ.
- В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.
- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Защита лабораторной работы студента осуществляется согласно отчету, в котором должны быть отражены:

- 1) ФИО студента, группа, наименование лабораторной работы, вариант (берèтся из приложения 1);
- 2) начальные данные к работе (выдаются преподавателем), указание на выбранную методику поиска решения;
 - 3) алгоритмизация и программное моделирование (согласно заданию);

4) отчет выполняется в документе word со скриншотами, пример отчета к лабораторной работе приведен в образце оформления в методическом пособии Методическое обеспечение кафедры 43/Компьютерное моделирование/С.И. Колесникова. Методические указания к выполнению лабораторных работ по дисциплине «Компьютерное моделирование».

Результат работы программы представляется лично студентом на занятиях (на компьютере или в режиме on-line в LMS).

Задание и требования к проведению лабораторных работ

Задания и требования к проведению лабораторных работ, структура и форма отчета о лабораторной работе, образец оформления отчета о лабораторной работе, а также подробные методические указания по освоению лекционного материала приведены в учебном методическом пособии, находящемся в электронной форме в виде электронных ресурсов 43 кафедры: Методическое обеспечение кафедры 43/Компьютерное моделирование/С.И. Колесникова. Методические указания к выполнению лабораторных работ по дисциплине «Компьютерное моделирование»

Структура и форма отчета о лабораторной работе

Форма отчета о лабораторной работе приведена в учебном методическом пособии, находящемся в электронной форме в виде электронных ресурсов 43 кафедры: Методическое обеспечение кафедры 43/Компьютерное моделирование/С.И. Колесникова. Методические указания к выполнению лабораторных работ по дисциплине «Компьютерное моделирование»

Требования к оформлению отчета о лабораторной работе

Требования к оформлению отчета о лабораторной работе приведены в учебном методическом пособии, находящемся в электронной форме в виде электронных ресурсов 43 кафедры: Методическое обеспечение кафедры 43/Компьютерное моделирование/С.И. Колесникова. Методические указания к выполнению лабораторных работ по дисциплине «Компьютерное моделирование»

- 11.5. Методические указания для обучающихся по прохождению курсового проектирования/выполнения курсовой работы (не предусмотрено учебным планом по данной дисциплине)
- 11.6. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихся являются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ (для обучающихся по заочной форме обучения).

Методические указания к самостоятельной работе приведены в учебном методическом пособии, находящемся в электронной форме в виде электронных ресурсов 43 кафедры: Методическое обеспечение кафедры 43/Компьютерное моделирование/С.И. Колесникова. Методические указания к выполнению самостоятельной работы по дисциплине «Компьютерное моделирование»

11.7. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

11.8. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

– экзамен – форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Система оценок при проведении промежуточной аттестации осуществляется в соответствии с требованиями Положений «О текущем контроле успеваемости и промежуточной аттестации студентов ГУАП, обучающихся по программам высшего образования» и «О модульно-рейтинговой системе оценки качества учебной работы студентов в ГУАП».

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой