МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 43

УТВЕРЖДАЮ

Руководитель образовательной программы

доц.,к.т.н.

(должность, уч. степень, звание)

А.А. Фоменкова

(подпись)

«17» июня 2024 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Программирование встроенных приложений» (Наименование дисциплины)

Код направления подготовки/ специальности	09.03.04		
Наименование направления подготовки/ специальности	Программная инженерия		
Наименование направленности	Проектирование программных систем		
Форма обучения	очная		
Год приема	2024		

Лист согласования рабочей программы дисциплины

Программу составил (а)							
доц., к.т.н.	13.06.24	А.А. Попов (инициалы, фамилия)					
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)					
Программа одобрена на засед	ании кафедры № 43						
« <u>17</u> » <u>июня</u> 2024 г, протокол N	<u>05/2024</u>						
Заведующий кафедрой № 43 д.т.н.,проф. М.Ю. Охтилев							
(уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)					
Заместитель директора института №4 по методической работе							
ДОЦ.,К.Т.Н.	17.06.2024	А.А. Фоменкова					
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)					

Аннотация

Дисциплина «Программирование встроенных приложений» входит в образовательную программу высшего образования — программу бакалавриата по направлению подготовки/ специальности 09.03.04 «Программная инженерия» направленности «Проектирование программных систем». Дисциплина реализуется кафедрой «№43».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ПК-2 «Способность владеть методологией программной инженерии при проектировании программных систем различного назначения»

Содержание дисциплины охватывает круг вопросов, связанных с изучением организации программного обеспечения встраиваемых систем, получением знаний, о структуре, функциях и основах программирования микроконтроллеров.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, самостоятельная работа обучающегося, курсовое проектирование.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 7 зачетных единиц, 252 часа.

Язык обучения по дисциплине «русский»

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Целью изучения дисциплины является получение обучающимися необходимых навыков разработки программного обеспечения встроенных систем, получением знаний о структуре, функциях и основах программирования микроконтроллеров, что позволяет решать вопросы анализа функционирования программного обеспечения встраиваемых систем.

- 1.2. Дисциплина входит в состав части, формируемой участниками образовательных отношений, образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Tr 6 1	П		U		
Таолина Г	– Перечені	ь компетенциі	и и инликато	пов их	лостижения
т иолици т	TTOPO TOTAL	э компетенци	и и шидикаго	PODIM	достимении

Категория (группа) компетенции	Код и наименование компетенции	Код и наименование индикатора достижения компетенции
Профессиональные компетенции	ПК-2 Способность владеть методологией программной инженерии при проектировании программных систем различного назначения	ПК-2.3.1 знает методы проектирования, тестирования и сопровождения программных систем различного назначения на всех этапах жизненного цикла ПК-2.У.1 умеет применять методологии проектирования, тестирования и сопровождения программных систем различного назначения на всех этапах жизненного цикла ПК-2.В.1 владеет навыками использования методов и средств проектирования программного обеспечения, программных интерфейсов и баз данных

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- «Информатика»,
- «Дискретная математика»,
- «Основы программирования»,
- «Алгоритмы и структуры данных»,
- «Архитектура ЭВМ и систем».

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и используются при изучении других дисциплин:

- «Программирование мобильных устройств».

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

Dyn ywefyroù nefory	Разго	Трудоемкость по семестрам		
Вид учебной работы	Всего	№6	№7	
1	2	3	4	
Общая трудоемкость дисциплины, 3E/ (час)	7/ 252	5/ 180	2/72	
Из них часов практической подготовки	51	34	17	
Аудиторные занятия, всего час.	85	68	17	
в том числе:				
лекции (Л), (час)	34	34		
практические/семинарские занятия (ПЗ),				
(час)				
лабораторные работы (ЛР), (час)	34	34		
курсовой проект (работа) (КП, КР), (час)	17		17	
экзамен, (час)	36	36		
Самостоятельная работа, всего (час)	131	76	55	
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Экз.,	Экз.		

Примечание: ** кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Разделы, темы дисциплины	Лекции (час)	ПЗ (СЗ) (час)	ЛР (час)	КП (час)	СРС (час)	
Семестр 6						
Раздел 1. Архитектура встроенных систем. Тема 1.1. Основные понятия и принципы построения встроенных систем. Тема 1.2. Организация и принципы работы RISC-процессоров.	8		8		18	
Раздел 2. Принципы программирования встроенных приложений. Тема 2.1. Принципы программного управления подсистемами микроконтроллера. Тема 2.2. Организация интерфейсов связи. Тема 2.3. Аналого-цифровые и цифроаналоговые преобразователи.	22		22		48	
Раздел 3. Организация приложений на основе операционной системы. Тема 3.1. Архитектура встраиваемой операционной системы.	4		4		10	
Итого в семестре:	34		34		76	
Семест	p 7	г		Г		
Выполнение курсового проекта				17	55	
Итого в семестре:				17	55	

Итого	34	0	34	17	131

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий.

Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

	- Содержание разделов и тем лекционного цикла						
Номер	Название и содержание разделов и тем лекционных занятий						
раздела	A						
1	Архитектура встроенных систем.						
	Тема 1.1. Основные понятия и принципы построения встроенных систем.						
	Лекция №1. Общие понятия проектирования и программирования встроенных						
	систем.						
	Тема 1.2. Организация и принципы работы RISC-процессоров.						
	Лекция №2. Формирование архитектуры системы команд RISC-процессора						
	Лекция №3. Элементы архитектуры процессоров, программная модель ARM						
	Cortex-M.						
	Лекция №4. Модель памяти ARM Cortex-M. Структурная схема						
	микроконтроллера STM32Fx, назначение подсистем.						
2	Принципы программирования встроенных приложений.						
	Тема 2.1. Принципы программного управления подсистемами						
	микроконтроллера.						
	Лекция №5. Стандарт CMSIS. Стандарт вызова процедур для архитектуры						
	ARM (AAPCS).						
	Лекция №6. Организация работы линий порта ввода/вывода (GPIO).						
	Лекция №7. Подсистема тактирования микроконтроллера STM32F3x (RCC).						
	Лекция №8. Организация системы прерываний. Контроллер вложенных						
	векторных прерываний (NVIC).						
	Лекция №9. Расширенный контроллер прерываний и событий (EXTI), блок-						
	схема, назначение.						
	Лекция №10. Понятие таймера на основе счётчика. Принцип работы простого						
	таймера. Системный таймер.						
	Лекция №11. Структурная схема таймера с расширенным функционалом.						
	Режимы работы каналов таймера.						
	Тема 2.2. Организация интерфейсов связи.						
	Лекция №12. Методы передачи данных. Принцип организации прямого						
	доступа к памяти.						
	Лекция №13. Принцип работы с жидкокристаллическим экраном. Механизмы						
	программного управления ресурсами вычислительной системы. Автоматное						
	программирование.						
	Лекция №14. Универсальный асинхронный приёмопередатчик (UART).						
	Интерфейс I ² C. Интерфейс SPI.						
	11						

	Тема 2.3. Аналого-цифровые и цифро-аналоговые преобразователи. Лекция №15. Аналогово-кодовое кодирование, этапы преобразования. Аналого-цифровые и цифро-аналоговые преобразователи, принцип работы.
3	Организация приложений на основе операционной системы. Тема 3.1. Архитектура встраиваемой операционной системы. Лекция №16. Понятие мультизадачной системы, встраиваемой операционной системы (ОС), процесса (задачи). Планирование задач. Лекция №17. ОС реального времени CMSIS-RTOS RTX.

4.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

				Из них	$N_{\underline{0}}$		
$N_{\underline{0}}$	Темы практических	Формы практических	Трудоемкость,	практической	раздела		
Π/Π	занятий	занятий	(час)	подготовки,	дисцип		
				(час)	лины		
	Учебным планом не предусмотрено						
	Всег						

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

			Из них	№
$N_{\underline{0}}$	Наименование лабораторных работ	Трудоемкость,	практической	раздела
Π/Π	паименование лаоораторных раоот	(час)	подготовки,	дисцип
			(час)	лины
	Семестр	6		
1	Изучение средств отладки приложения	4		1
	интегрированной среды разработки MDK			
	Keil μVision.			
2	Изучение принципов управления линиями	6		1,2
	порта в/в. Настройка подсистемы			
	тактирования микроконтроллера.			
3	Изучение принципов программной	6		2
	настройки подсистемы прерываний			
	микроконтроллера.			
4	Изучение принципов программного	6		2
	управления таймерами микроконтроллера.			
5	Освоение принципов автоматного	6		2
	программирования как механизма			
	управления подсистемами			
	микроконтроллера.			
6	Изучение принципов работы	6		2,3
	операционной системы CMSIS-RTOS RTX.			

Всего	34	

4.5. Курсовое проектирование/ выполнение курсовой работы

Цель курсового проекта: получение практических навыков программирования основных элементов встраиваемых приложений в ходе разработки конкретного прототипа устройства.

Часов практической подготовки: 17.

Примерные темы заданий на курсовой проект приведены в разделе 10 РПД.

4.6. Самостоятельная работа обучающихся

Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего, час	Семестр 6, час	Семестр 7, час
1	2	3	4
Изучение теоретического материала дисциплины (TO)	34	34	
Курсовое проектирование (КП, КР)	55		55
Подготовка к текущему контролю успеваемости (ТКУ)	30	30	
Подготовка к промежуточной аттестации (ПА)	12	12	
Всего:	131	76	55

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8.

Таблица 8- Перечень печатных и электронных учебных изданий

•		Количество
		экземпляров в
Шифр/	Библиографическая ссылка	библиотеке
URL адрес	виолиографическая ссылка	(кроме
		электронных
		экземпляров)
https://urait.ru/bc	Огородников, И. Н. Микропроцессорная техника:	
ode/453337	введение в Cortex-M3: учебное пособие для вузов / И.	
	Н. Огородников. — Москва: Издательство Юрайт,	
	2020. — 116 с. — (Высшее образование). — ISBN	
	978-5-534-08420-7. — Текст: электронный // ЭБС	
	Юрайт. — URL: https://urait.ru/bcode/453337	

https://e.lanbook.	Джозеф, Ю. Ядро Cortex-М3 компании ARM. Полное	
com/book/69941	руководство: руководство / Ю. Джозеф; перевод с	
	английского А. В. Евстифеева. — Москва: ДМК	
	Пресс, 2012. — 552 с. — ISBN 978-5-97060-307-9. —	
	Текст: электронный // Лань: электронно-	
	библиотечная система. — URL:	
	https://e.lanbook.com/book/69941	
https://znanium.c	Барретт, С. Ф. Встраиваемые системы.	
om/catalog/produ	Проектирование приложений на микроконтроллерах	
ct/406520	семейства 68HC12 / HCS12 с применением языка С	
	[Электронный ресурс] / С. Ф. Барретт, Д. Дж. Пак	
	Москва: ДМК пресс, 2010 640 с ISBN 5-9706-	
	0034-2 Текст: электронный URL:	
	https://znanium.com/catalog/product/406520	
https://e.lanbook.	Ключарёв, А. А., Кочин, К. А., Фоменкова, А. А.	
com/book/341030	Программирование микроконтроллеров STM32: учеб.	
	пособие. – СПб.:ГУАП, 2023. – 196 с ISBN 978-5-	
	8088-1829-3 Текст: электронный // Лань:	
	электронно-библиотечная система. — URL:	
	https://e.lanbook.com/book/341030	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 — Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет»

URL адрес	Наименование
https://softwar.ru/programmirovanie/868-keil-	Keil MDK-ARM Development
mdk.html	Software (бесплатная версия)
https://keilpack.azureedge.net/pack/Keil.STM32F1	Пакет
xx_DFP.2.4.0.pack	Keil.STM32F1xx_DFP.2.4.0.pack
https://www.st.com/en/microcontrollers-	Перечень документации на
microprocessors/stm32f303vc.html#documentation	микроконтроллер STM32F303VC
https://www.st.com/en/microcontrollers-	Перечень документации на
microprocessors/stm32f103c8.html#documentation	микроконтроллер STM32F103C8

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

№ п/п	Наименование
1	Операционная система Microsoft Windows
2	Keil MDK-ARM Development Software (бесплатная версия)

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п	Наименование
	Не предусмотрено

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Мультимедийная лекционная аудитория	
2	Специализированная лаборатория «Микропроцессорных	
	систем»	
3	Отладочный комплект Open32F3-D	

- 10. Оценочные средства для проведения промежуточной аттестации
- 10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Экзамен	Список вопросов к экзамену;
	Задачи;
	Тесты.
Выполнение курсового проекта	Экспертная оценка на основе требований к
	содержанию курсового проекта.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции	Voneytranyativa ahan grannaya wa wa ga wa
5-балльная шкала	Характеристика сформированных компетенции

Оценка компетенции	Vonovronvor of on the opening we was greatered
5-балльная шкала	Характеристика сформированных компетенций
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий.
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий.
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий.
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений.

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

	<u> </u>	
№	Перечень вопросов (задач) для экзамена	Код
Π/Π	пере тепь вопросов (зада 1) дли экзанена	индикатора
1.	Понятие встраиваемой системы. Типы встраиваемых систем и их	ПК-2.3.1
	характерные отличия от остальных систем. Понятие программного	
	управления. Принципы программного управления. Система	
	автоматического управления.	
2.	Общая формулировка задачи проектирования встроенной системы.	ПК-2.3.1
	Проблемы при проектировании встроенных приложений. Структура	
	процесса проектирования встраиваемой системы. Понятие	
	микроконтроллера (МК) и его место среди вычислителей.	
	Классификационные признаки. Семейства МК. Маршрут создания	
	ПО МК.	

3.	Понятия: архитектура вычислительной системы, процессора,	ПК-2.3.1
	тактирования. Гарвардская архитектура с редуцированной системой	
	команд (RISC). Принципы построения архитектуры RISC	
	процессора, основные элементы процессора и их взаимодействие.	
4.	Понятие архитектура системы команд. Общая схема работы RISC	ПК-2.3.1
	процессора при взаимодействии с памятью. Принцип совмещения	
	операций академика С.А. Лебедева. Понятие критического пути	
	выполнения команды. Назначение основных стадий конвейера RISC	
	процессора.	HI4 0 D 1
5.	Элементы архитектуры процессоров с точки зрения программиста.	ПК-2.В.1
	Процессор Cortex-M3/4, блок-схема процессора, конвейер команд.	
	Понятие, арифметика с насыщением.	THC 2 D 1
6.	Программная модель процессора Cortex-M3/4. Режимы работы и	ПК-2.В.1
7.	состояния процессора Cortex-M3/4. Модель памяти процессора Cortex-M3/4. Карта памяти	ПК-2.В.1
/.	STM32F303xC.Основные шины процессора. Адресация с прямым и	11K-2.D.1
	обратным порядком байт.	
8.	Виды адресации. Способы адресации процессора Cortex-M3/4. Блок-	ПК-2.В.1
0.	схема МК STM32F303хС. Назначение подсистем МК.	1110-2.15.1
9.	Стандартизация восприятия адресации. Стандарт CMSIS. Типы	ПК-2.3.1
'	данных, определенные стандартом. Область стандартизации.	1110 2.5.1
	Уровни абстракции. Компоненты CMSIS в проекте, их структура и	
	назначение.	
10.	Иерархия организации памяти. Основные шины и сигналы	ПК-2.3.1
10.	управления памятью. Классификация памяти. Характеристики	1110 2.3.1
	памяти. Сегментация памяти, основные сегменты.	
11.	Подсистема сброса и тактирования. Назначение резонатора,	ПК-2.В.1
	применяемые типы в электронике. Понятие HSI, HSE, LSI, LSE, PLL,	
	SYSCLK, HCLK их назначение. Назначение генератора опорной	
	частоты с фазовой автоподстройкой частоты. Структурная схема	
	подсистемы тактирования.	
12.	Подсистема сброса и тактирования. Общая схема настройки	ПК-2.В.1
	PLLCLK, SYSCLK, HCLK. Регистры, используемые для настройки.	
	Структурная схема сброса МК. Назначение и принцип работы	
	системы сброса.	
13.	Дискретные электрические сигналы. Понятие логических	ПК-2.3.1
	входов/выходов. Порты и сигнальные линии. Двухтактный выход,	
	структурная схема, принцип функционирования, достоинства,	
	недостатки.	
14.	Однотактный выход с пассивной нагрузкой, схема, принцип	ПК-2.3.1
	функционирования, достоинства, недостатки. Состояние линий	
	низкое (Low), высокое (High), конфликта (X), плавающее (Z).	
	Принцип использования Z состояния выхода с открытым стоком.	
1.5	Подтягивающие резисторы и их назначение.	HICAR 1
15.	Структурная схема линии порта ввода/вывода МК STM32. Принцип	ПК-2.В.1
1.0	настройки и работы схемы. Триггер Шмидта.	HICO D 1
16.	Режимы работы линий порта ввода/вывода МК STM32 и регистры их	ПК-2.В.1
	настройки.	

17.	Система прерываний. Определения: прерывания, запроса	ПК-2.3.1
17.	прерывания, обработчика прерывания, вектор прерывания,	1110 2.5.1
	приоритет прерывания, события, исключения. Виды прерываний.	
	Издержки в организации системы прерываний. Системные	
	исключения ARM Cortex_M3/4. Внешние прерывания. Принцип	
	настройки прерываний.	
18.	Контроллер вложенных векторных прерываний (NVIC). Регистры	ПК-2.В.1
	разрешения и запрещения прерываний NVIC. Регистры	
	установки/сброса признака отложенного прерывания NVIC.	
	Активное состояние. Взаимосвязь таблицы векторов прерываний с	
	номерами прерываний.	
19.	Уровни приоритета, группировка приоритетов, регистры настройки.	ПК-2.В.1
	Базовые средства конфигурации прерываний библиотеки CMSIS.	
	Программные прерывания.	
20.	Системный таймер, принцип работы. Регистры системного таймера.	ПК-2.В.1
21.	Расширенный контроллер прерываний и событий EXTI. Блок схема,	ПК-2.В.1
	назначение, принцип работы. Регистры расширенного контроллера	
	прерываний и событий. Порядок настройки внешнего прерывания с	
_	входа ПВВ.	
22.	Понятие таймера. Виды таймеров, основные модули, принцип	ПК-2.3.1
	работы, место в системе. Блок-схема базового таймера STM32Fx,	
• • • • • • • • • • • • • • • • • • • •	основные регистры.	
23.	Блок-схема таймера общего назначения STM32Fx, основные модули	ПК-2.В.1
	и их назначение. Соединение таймеров в каскадном режиме, таблица	
2.4	межсоединений таймеров.	HW 2 D 1
24.	Блок-схема таймера с расширенным функционалом STM32Fx.	ПК-2.В.1
25	Принцип работы.	ПК-2.3.1
25.	Понятие широтно-импульсной модуляции сигнала (ШИМ). Работа	11K-2.3.1
	таймера в режиме ШИМ. Назначение энкодера, принцип действия	
26.	при измерении линейных и вращательных перемещений. Спецификации ARM AMBA. Используемые термины при	ПК-2.В.1
20.	рассмотрении шин. Обозначение сигналов на временных	11IX-2.D.1
	диаграммах. Назначение шины периферии АРВ. Назначение	
	высокопроизводительной шины АНВ. Блок-схема шины АРВ.	
	Диаграмма состояний шины АРВ.	
27.	Принцип работы жидкокристаллических экранов. Понятие GRAM.	ПК-2.3.1
	Стандарт протокола параллельной шины Intel 8080. Блок схема	
	контроллера ILI9325. Принцип настройки контроллера. Регистры	
	настройки. Временные диаграммы чтения/записи данных в	
	контроллер. Формат РСХ.	
28.	Контроллер прямого доступа к памяти DMA. Блок-схема, режимы	ПК-2.В.1
	работы, регистры настройки контроллера.	
29.	Понятие интерфейса. Асинхронный и синхронный режим передачи	ПК-2.3.1
	данных. Режимы передачи параллельного кода со стробированием, с	
	квитированием.	
30.	Универсальный асинхронный приёмопередатчик (UART). Принцип	ПК-2.В.1
	работы передатчика, приёмника UART. Формат байта данных UART.	
2:	Основные регистры управления.	
31.	Интерфейс I ² C, схема подключения к шине, протокол шины. Блок	ПК-2.В.1
	схема модуля I^2C в STM32, регистры настройки работы модуля.	

32.	Интерфейс SPI, схема подключения к шине, протокол шины. Понятие «дифференциальный сигнал». CAN интерфейс, общие	ПК-2.В.1
22	сведения.	THC 2.2.1
33.	Методологическая схема формирования и кодирования информации.	ПК-2.3.1
	Методы дискретизации сигналов. Выводы теоремы Котельникова	
	В.А. для функций с ограниченным спектром.	
34.	Аналогово-кодовое кодирование сигналов. Классификация АЦП.	ПК-2.3.1
	Статические параметры АЦП. Структурная схема и принцип работы	
2.5	ЦАП.	THC 2 D 1
35.	Структурная схема и принцип работы: параллельного АЦП; АЦП	ПК-2.3.1
	последовательного приближения.	
36.	Механизмы управления ресурсами микроконтроллера. Понятие	ПК-2.3.1
	конечного автомата. Автоматы Мили и Мура. Граф автомата.	
	Последовательность работы автомата Мура в программе.	
37.	Автоматное программирование. Понятие программного конечного	ПК-2.3.1
	автомата, виртуальные таймеры, сообщения.	
38.	Операционные системы реального времени. Понятие задачи, виды	ПК-2.3.1
	задач ОС. Планирование задач и их состояния. Потоки. Функции ОС,	
	понятие ядра. Блок управления задачей – назначение, структура.	
39.	Рассчитать коэффициенты настройки подсистемы тактирования и	ПК-2.У.1
	базового таймера ТІМх для настройки прерывания от таймера	
	каждые 3 минуты.	
40.	Рассчитать коэффициенты настройки таймера с расширенным	ПК-2.У.1
	функционалом ТІМх для настройки ШИМ сигнала частотой 720 Гц и	2.7.1
	коэффициентом заполнения kw=0,235. Частота тактирования таймера	
	коэффициентом заполнения $kw=0,233$. Частота тактирования таимера $FCK_INT = FCK_PSC = 144 M\Gamma \mu$.	
41.	Аналитическая функция аналогового сигнала: e(t)=5*sin(2*pi*t)	ПК-2.У.1
71.	(считать в радианах). Осуществить его аналогово-кодовое	11111-2.3.1
	кодирование на отрезке [0;1] секунд, частота дискретизации 5 Гц,	
	величина кванта по уровню 0.2 В. Разрядную сетку и способ	
	кодирования в ней выбрать самостоятельно. Результат записать в	
	виде таблицы: первый столбец аналоговое значение, второй –	
	цифровой код, третий - погрешность квантования.	

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16. Таблица 16 — Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код индикатора
	Учебным планом не предусмотрено	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

30 /	Примерный перечень тем для курсового проектирования/выполнения
№ п/п	курсовой работы
1.	Калькулятор арифметических операций.
2.	Логический двоичный калькулятор
3.	Калькулятор графиков степенных функций.
4.	Цифровой самописец.
5.	Выносной пульт контроля.

6.	Часы.
7.	Сторожевой пульт.
8.	Генератор ШИМ звуковой частоты.
9.	Таймер обратного отсчёта.
10.	Транслятор числа в код Морзе.
11.	Генератор сигнала.
12.	Генератор прямоугольных импульсов.
13.	Гирлянда из 8-ми светодиодов. Управление движением огоньков.

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

	олица 18—Примерныи перечень вопросов для тестов	Код		
Номер	Содержание теста			
		индика		
		тора		
1	Инструкция: Прочитайте текст, выберите правильный ответ.	ПК-		
	Программное управление это:	2.3.1		
	то, чего мы хотим достичь при помощи управления;			
	управление работой системы по заданной программе;			
	3) изменение состояния объекта управления;			
	4) набор команд в микропроцессорной системе;			
	indoop komand b minkponpodeccopnon enerome,			
2	Инструкция: Прочитайте текст, выберите правильный ответ.	ПК-		
	Из какой последовательности этапов состоит трехступенчатый	2.B.1		
	конвейер ARMv7?			
	1) выборка, декодирование, выполнение;			
	2) декодирование, выборка, выполнение;			
	3) выполнение, выборка, декодирование;			
	4) выборка, выполнение, выполнение;			
	,			
3	Инструкция: Прочитайте текст, выберите правильный ответ.	ПК-		
	Модель процессора с точки зрения программиста обычно	2.3.1		
	обеспечивает:			
	1) моделирование работы процессора на уровне взаимодействия			
	вентилей в течении одного такта;			
	2) моделирование процессора на уровне кодов операций			
	исполняемых команд;			
	3) моделирование пользовательских периферийных устройств,			
	отображаемых в памяти;			
	4) моделирование работы процессов в логической системе памяти;			
	.,			
4	Инструкция: Прочитайте текст, выберите правильный ответ.	ПК-		
	Стек в микроконтроллерах размещается в:	2.B.1		
	1) ПЗУ;			
	2) O3V;			
	3) Флэш памяти;			
	4) Внешней памяти;			

5	 Инструкция: Прочитайте текст, выберите правильный ответ. Что такое «точка входа» («Entry point») в приложении? 1) место, с которого начинается выполнение; 2) расположение функции main(); 3) самый маленький адрес, содержащийся в образе программы; 4) место, где компоновщик хранит дополнительную информацию; 	ПК- 2.В.1
6	Инструкция: Прочитайте текст, выберите правильный ответ. Согласно стандарту AAPCS, чтобы обеспечить оптимальную эффективность при программировании на Си, какое максимальное количество аргументов может быть передано в функцию? 1) 1; 2) 4; 3) 3; 4) 8;	ПК- 2.3.1
7	Инструкция: Прочитайте текст, выберите правильный ответ. В подсистеме тактирования умножение частоты осуществляется модулем: 1) HSE; 2) PLL; 3) HSI; 4) CSS; 5) LSE;	ПК- 2.3.1
8	 Инструкция: Прочитайте текст, выберите правильный ответ. Интервал времени между поднятием сигнала запроса внешнего прерывания, до первой выборки команды обработчика прерывания, называется: время реакции системы прерывания (Interrupt Latency); приоритет прерывания (Interrupt Priority); обслуживание задачи (Service thread); время отклика (Response time); 	ПК- 2.3.1
9	 Инструкция: Прочитайте текст, выберите правильный ответ. В контроллере прерываний (NVIC), когда поступил запрос на прерывание, но ещё не обрабатывается, он находится в каком из следующих состояний? 1) неактивно (Inactive); 2) активно (Active); 3) отложено (Pending); 4) отключено (Disable); 	ПК- 2.3.1
10	 Инструкция: Прочитайте текст, выберите правильный ответ. Разрядность счётчика системного таймера (SYSTICK): 1) 8 бит; 2) 16 бит; 3) 24 бита; 4) 32 бита; 	ПК- 2.В.1

11	 Инструкция: Прочитайте текст, выберите правильные варианты ответа. Суть принципа программного управления заключается в следующем: 1) программа заранее составляется и вводится в вычислительную машину, после этого всё решение выполняется машиной автоматически; 2) все вычисления, предписанные алгоритмом, должны быть представлены в виде программы, состоящей из последовательности управляющих слов-команд вычислительной машины; 3) в разделении функций управления и на их основе построения структуры управления вычислительной машины; 4) все вычисления, достаточно представить в виде блок-схемы и приказать вычислительной машине их выполнить; 5) программа порождается машиной и корректируется в зависимости от потока входных данных; 	ПК- 2.3.1
12	 Инструкция: Прочитайте текст, выберите правильные варианты ответа. Микроконтроллеры, по набору инструкций, делятся на: 1) RISC; 2) CISC; 3) DSP; 4) MIPS; 	ПК- 2.3.1
13	 Инструкция: Прочитайте текст, выберите правильные варианты ответа. Выберите правильные утверждения: память SRAM построена на триггерах; память SRAM имеет большее быстродействие по сравнению с памятью DRAM; память SRAM построена на конденсаторах; память SRAM имеет большую плотность по сравнению с памятью DRAM; память DRAM построена на триггерах; 	ПК- 2.3.1
14	 Инструкция: Прочитайте текст, выберите правильные варианты ответа. Тактовый генератор микроконтроллеров STM32 HSE может работать: 1) с внешним сигналом для FLASH-памяти программ; 2) с внешним кварцевым/керамическим резонатором; 3) с внешним сигналом синхронизации; 4) с внутренней RC-цепочкой; 5) с внутренним кварцевым/керамическим резонатором; 	ПК- 2.3.1

15	Инструкция: Прочитайте текст, выберите правильные варианты ответа. Расширенный контроллер прерываний и событий (EXTI), возможно ли настроить прерывание от внешней входной линии: 1) на изменение уровня сигнала с '0' в '1'; 2) на изменение уровня сигнала с '1' в '0'; 3) на установившейся уровень сигнала в состояние '1'; 4) на установившейся уровень сигнала в состояние '0'; 5) на исчезновение входного сигнала;	ПК- 2.3.1
16	Инструкция: Прочитайте текст, выберите правильные варианты ответа. Регистровая память микроконтроллеров включает: 1) регистры общего назначения; 2) регистры системы прерываний; 3) регистры управления портами ввода/вывода; 4) регистры статического ОЗУ; 5) регистры специального назначения; Ответ:	ПК- 2.В.1
17	 Инструкция: Прочитайте текст, выберите правильные варианты ответа. Триггер Шмитта: используется для программирования выводов как на вход, так и на выход; используется во входных буферах на всех линиях портов в/в; преобразует входной сигнал произвольной формы в сигнал, принимающий два стандартных уровня "0" и "1"; преобразует дискретный входной сигнал "0" и "1" в непрерывный; статическая характеристика триггера Шмитта не имеет петлю гистерезиса; 	ПК- 2.3.1
18	Инструкция: Прочитайте текст, выберите правильные варианты ответа. Выберите режимы, в которые могут быть настроены линии порта в/в: 1) выхода; 2) входа; 3) альтернативной функции; 4) аналоговый вход/выход; 5) однотактный выход с пассивной нагрузкой; 6) усилитель мощности с трансформаторным выходом; 7) выхода с оптической развязкой;	ПК- 2.В.1

19				ПК- 2.3.1
20	Инструкция: Прочитайте текст, выберите правильные варианты ответа. Укажите линии, используемые интерфейсом I2C: 1) SDA; 2) SCL; 3) MOSI; 4) MISO; 5) Rx; 6) Tx;			ПК- 2.3.1
21	Инструкция: Прочитайте текст и установите соответствие. Для акронима подсистемы микроконтроллера, указанного в левом столбце, укажите соответствующее значение, указанное в правом столбце: A GPIO 1 подсистема тактирования и сброса В DMA 2 интерфейс ввода/вывода С DAC 3 контроллер прямого доступа к памяти D RCC 4 цифро-аналоговый преобразователь E PLL 5 фазовая автоподстройка частоты		ПК- 2.В.1	
22				ПК- 2.3.1
23	Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа: в каком режиме передачи работает интерфейс I^2C — асинхронном или синхронном.			ПК- 2.3.1

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п	Перечень контрольных работ
	Не предусмотрено

- 10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.
 - 11. Методические указания для обучающихся по освоению дисциплины
- 11.1. Методические указания для обучающихся по освоению лекционного материала

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий. Лекционный материал может сопровождаться демонстрацией слайдов.
- 11.2. Методические указания для обучающихся по выполнению лабораторных работ
- В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач обучающегося:

приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;

- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задание и требования к проведению лабораторных работ

Приведены на сервере кафедры 43 в разделе .../Методическое обеспечение кафедры 43/Программирование встроенных приложений/

Структура и форма отчета о лабораторной работе

Приведены на сервере кафедры 43 в разделе .../Методическое обеспечение кафедры 43/Программирование встроенных приложений/

Требования к оформлению отчета о лабораторной работе

Приведены на сервере кафедры 43 в разделе .../Методическое обеспечение кафедры 43/Программирование встроенных приложений/

11.3. Методические указания для обучающихся по прохождению курсового проектирования/выполнения курсовой работы

Курсовой проект/ работа проводится с целью формирования у обучающихся опыта комплексного решения конкретных задач профессиональной деятельности.

Курсовой проект/ работа позволяет обучающемуся:

- применить полученные знания, умения и практический опыт при решении комплексных задач, в соответствии с основными видами профессиональной деятельности по направлению 09.03.04;
- приобрести опыт аналитической, расчётной, конструкторской работы и сформировать соответствующие умения;
- сформировать умения работы со специальной литературой, справочной, нормативной и правовой документацией и иными информационными источниками;
- сформировать умения формулировать логически обоснованные выводы,
 предложения и рекомендации по результатам выполнения работы;
- развить системное мышление, творческую инициативу, самостоятельность, организованность и ответственность за принимаемые решения;
- сформировать навыки планомерной регулярной работы над решением поставленных задач.

Структура пояснительной записки курсового проекта/ работы

Приведены на сервере кафедры 43 в разделе .../Методическое обеспечение кафедры 43/Программирование встроенных приложений/

Требования к оформлению пояснительной записки курсового проекта/ работы

Приведены на сервере кафедры 43 в разделе .../Методическое обеспечение кафедры 43/Программирование встроенных приложений/

11.4. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихся, являются учебно-методические материалы по дисциплине приведенные на сервере кафедры 43 в разделе .../Методическое обеспечение кафедры 43/ Программирование встроенных приложений/

11.5. Методические указания для обучающихся по прохождению текущего контроля успеваемости

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

Текущий контроль проводится в течение семестра по итогам выполнения студентами лабораторных занятий в виде защиты. Защита лабораторной работы происходит после ее выполнения на основе электронного отчета, который должен содержать основные структурные элементы: название, тему, цель, задачи, расчетные формулы, код программы, осциллограммы сигналов.

«Отлично» ставится, если студент демонстрирует знания о методах содержания, обобщения и систематизации приведенного в отчете материала на уровне 90-100%

«Хорошо» - если студент демонстрирует знания о методах получения, обобщения и систематизации приведенного в отчете материала на уровне 75-90%;

«Удовлетворительно» - если студент демонстрирует знания о методах получения, обобщение и систематизации приведенного в отчете материала на уровне 50-75%;

«Неудовлетворительно» - если студент не знает о методах получения, обобщения и систематизации более половины приведенного в отчете материала.

Результаты текущего контроля успеваемости отражаются в личном кабинете в автоматизированной информационной системе.

Низкие результаты текущего контроля (оценка «удовлетворительно» и ниже) при проведении промежуточной аттестации позволяют экзаменатору задавать дополнительные вопросы по теме лабораторных занятий, а также помимо теоретических вопросов предлагать другие задания.

11.6. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

– экзамен – форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой