МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего

образования "САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 13

	УТВЕРЖДАЮ
Руководи	тель образовательной программы
доц.,к.т.н	I
Н.А. Овч	(должность, уч. степень, звание) ИННИКОВА
	(инициалы, фамилия)
	(подпись) «24» июня 2024 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Цифровые системы управления и обработки информации» (Наименование дисциплины)

Код направления подготовки/ специальности	24.05.06		
Наименование направления подготовки/ специальности	Системы управления летательными аппаратами		
Наименование направленности	Приборы систем управления летательных аппаратов		
Форма обучения	очная		
Год приема	2024		

Санкт-Петербург – 2024

Лист согласов	ания рабочей программы	дисциплины
Программу составил (а)	1	
Доцент, к.т.н.	#	С.Г.Бурлуцкий
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Программа одобрена на заседани	и кафедры № 13	
«24» июня 2024 г, протокол № 1	1	
Заведующий кафедрой № 13 к.т.н.	Cally.	Н.А. Овчинникова
(уч. степень, звание)	(поринсь, дата)	(инициалы, фамилия)
Заместитель директора института	а № 1 но методической ра	боте
доц.,к.т.н.	XX	В.Е. Таратун
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)

Аннотация

Дисциплина «Цифровые системы управления и обработки информации» входит в образовательную программу высшего образования — программу специалитета по направлению подготовки/ специальности 24.05.06 «Системы управления летательными аппаратами» направленности «Приборы систем управления летательных аппаратов». Дисциплина реализуется кафедрой «№13».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ОПК-7 «Способен на основе системного подхода анализировать работу систем управления летательными аппаратами различного назначения, как объектов ориентации, стабилизации, навигации, управления движением, а также создавать математические модели, позволяющие прогнозировать тенденцию их развития как объектов управления и тактики их применения»

ОПК-8 «Способен проводить динамические расчеты систем управления летательными аппаратами, применять методики математического и полунатурного моделирования динамических систем "подвижный объект - система управления (система ориентации, стабилизации, навигации, управления движением)"»

ПК-8 «Способен представлять результаты исследований в форме отчетов, рефератов, обзоров, публикаций, докладов и заявок на изобретения»

Содержание дисциплины охватывает круг вопросов, связанных с цифровыми информационно управляющими системами летательных аппаратов (ЛА), цифровой обработкой сигналов, методологией построения и принципами функционирования цифровых систем обработки информации в бортовых комплексах управления ЛА, анализа и синтеза цифровых систем автоматического управления применительно к предметной области технической эксплуатации ЛА и авиационных двигателей, а именно, к управлению и регулированию в каналах дистанционного управления, в топливной автоматике двигателей, функциональных системах летательных аппаратов и бортовых системах технического обслуживания.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, практические занятия, самостоятельная работа обучающегося.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 4 зачетных единицы, 144 часа.

Язык обучения по дисциплине «русский»

- 1. Перечень планируемых результатов обучения по дисциплине
- 1.1. Цели преподавания дисциплины является формирование у обучающихся способности и готовности:
- к исследованию объектов и процессов эксплуатации авиационной техники, в том числе с помощью пакетов прикладных программ и элементов математического моделирования на основе базовых знаний;
- к участию и проведению контроля, диагностирования, прогнозирования технического состояния, регулировочных и доводочных работ, испытаний и проверки работоспособности авиационных систем, изделий по внедрению прогрессивных методов, форм и видов технического обслуживания, а также ремонта воздушных судов, а также
 - к выполнению проектно-конструкторских работ в области управления ЛА;
- к использованию компьютерных технологий и средств автоматизации проектирования при разработке проектов приборов, систем и комплексов управления ЛА;
- к использованию компьютерных технологий в процессе подготовки производства, изготовления и контроля приборов и комплексов управления ЛА;
- к постановке задач синтеза цифровых систем управления на основе анализа требований к качеству их функционирования;
- к разработке математических моделей цифровых систем управления движением и навигации ЛА различного назначения.
- 1.2. Дисциплина входит в состав обязательной части образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа) компетенции	Код и наименование компетенции	Код и наименование индикатора достижения компетенции
Общепрофессиональные компетенции	ОПК-7 Способен на основе системного подхода анализировать работу систем управления летательными аппаратами различного назначения, как объектов ориентации, стабилизации, навигации, управления движением, а также создавать математические модели, позволяющие	ОПК-7.3.1 знать математическое описание элементов и систем управления летательными аппаратами ОПК-7.У.1 уметь проводить динамические расчеты систем управления летательных аппаратов и создавать математические модели их движения ОПК-7.В.1 владеть навыками исследования динамики систем управления летательных аппаратов ОПК-7.В.2 владеть методами операционного исчисления и спектрального анализа при исследовании систем управления летательными аппаратами

	прогиозировати			
	прогнозировать			
	тенденцию их			
	развития как объектов			
	управления и			
	тактики их			
	применения			
	ОПК-8 Способен	OTT 0 D 1		
	проводить	ОПК-8.3.1 знать математический аппарат		
	динамические	и методики расчета динамических		
	расчеты систем	характеристик систем управления		
	управления	летательными аппаратами;		
	летательными	специализированные программные		
	аппаратами,	продукты анализа и синтеза		
	применять	динамических систем; методики		
	методики	математического и полунатурного		
	математического и	моделирования комплекса "подвижный		
Of warm of a covery war.	полунатурного	объект - система управления"		
Общепрофессиональные	моделирования	ОПК-8.У.1 уметь выполнять		
компетенции	динамических	динамические расчеты, связанные с		
	систем	проектированием систем управления		
	"подвижный	летательными аппаратами; решать задачи		
	объект - система	синтеза и анализа динамических систем,		
	управления	используя методики математического и		
	(система	полунатурного моделирования		
	ориентации,	ОПК-8.В.1 владеть навыками решения		
	стабилизации,	практических задач, связанных с		
	навигации,	анализом и синтезом систем управления		
	управления	летательными аппаратами		
	движением)"	1		
	ПК-8 Способен			
	представлять			
	результаты			
	исследований в	ПК-8.В.1 владеть навыками обобщения,		
Профессиональные	форме отчетов,	формулирования и изложения результатов		
компетенции	рефератов,	научно-исследовательских и опытно-		
no	обзоров,	конструкторских работ		
	публикаций,	Rono Ipjaropeana paoor		
	докладов и заявок			
	на изобретения			
	па изобретения			

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- Математика. Математический анализ;
- Математика. Аналитическая геометрия и линейная алгебра;
- Математика. Теория вероятностей и математическая статистика;
- Математика. Дифференциальные уравнения;
- Физика;
- Информатика;
- Электротехника;
- Электроника;

- Информационные технологии;
- Основы измерительной техники;
- Автоматика и управление;
- Авиационные приборы и измерительно-вычислительные комплексы;
- Интеллектуальные системы.

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и могут использоваться при изучении других дисциплин:

- Пилотажно-навигационные комплексы;
- Системы сбора и обработки полетной информации;
- Системы автоматического управления летательных аппаратов и их силовых установок;
- Основы испытания авиационной и космической техники;
- Целевые системы космических аппаратов;
- Системы управления полетом космических аппаратов.

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

		Трудоемкость по		
Вид учебной работы	Всего	семестрам		
		№7		
1	2	3		
Общая трудоемкость дисциплины, ЗЕ/ (час)	4/ 144	4/ 144		
Из них часов практической подготовки	17	17		
Аудиторные занятия, всего час.	85	85		
в том числе:				
лекции (Л), (час)	34	34		
практические/семинарские занятия (ПЗ), (час)	17	17		
лабораторные работы (ЛР), (час)	34	34		
курсовой проект (работа) (КП, КР), (час)				
экзамен, (час)	36	36		
Самостоятельная работа, всего (час)	23	23		
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Экз.	Экз.		

Примечание: **кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

таолица 5— газделы, темы дисциплины, их труд	TOCMIKOC1.	ь			
Разделы, темы дисциплины	Лекции (час)	ПЗ (СЗ) (час)	ЛР (час)	КП (час)	CPC (час)
Сем	естр 7		, ,		, ,
Раздел 1. Основы построения цифровых систем					
автоматического управления					
Тема 1.1. Принципы построения цифровых					
фильтров и систем	3		4		2
Тема 1.2. Восстановление непрерывного сигнала					
по дискретным отсчетам	3		4		3

Тема 1.3. Математические методы описания					
цифровых фильтров и систем	4	4			3
Раздел 2. Анализ цифровых систем					
автоматического управления					
Тема 2.1. Передаточные функции цифровых					
фильтров и систем	4	5	4		3
Тема 2.2. Частотные характеристики цифровых					
систем	4	2	4		3
Тема 2.3 Устойчивость цифровых систем	4	3	4		2
Тема 2.4 Программная реализация цифровых					
алгоритмов обработки сигналов	4				2
Раздел 3. Синтез цифровых систем					
автоматического управления					
Тема 3.1. Синтез цифровых систем по					
непрерывному прототипу	4	2	4		3
Тема 3.2 Синтез модальных регуляторов	4	1	10		2
Итого в семестре:	34	17	34		23
Итого	34	17	34	0	23

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Номер раздела	Название и содержание разделов и тем лекционных занятий			
Раздел 1. Основы	Тема 1.1. Принципы построения цифровых фильтров и			
	1 11 1			
построения цифровых	систем			
систем автоматического	Сущность цифровой обработки сигналов. Виды квантования.			
управления	Достоинства и недостатки цифровых систем. Варианты			
	построения цифровых автоматических систем. Виды			
	импульсной модуляции. Шумы квантования АЦП и ЦАП.			
	Тема 1.2. Восстановление непрерывного сигнала по			
	дискретным отсчетам			
	Дискретные сигналы. Спектр дискретного сигнала, его			
	свойства. Задача восстановления непрерывного сигнала по			
	дискретным отсчетам. Теорема Котельникова. Необходимое			
	условие точного восстановления. Алгоритм восстановления			
	непрерывного сигнала.			
	Тема 1.3. Математические методы описания цифровых			
	фильтров и систем			
	Разностные уравнения и их решение. Z-преобразование.			
	Смещенное <i>z</i> -преобразование. Основные теоремы и свойства			
	<i>z</i> -преобразования. Нахождение оригинала по <i>z</i> -			
	преобразованию.			
Раздел 2. Анализ	Тема 2.1. Передаточные функции цифровых фильтров и			
цифровых систем	систем			
автоматического	Определение дискретной передаточной функции. Связь			
управления	импульсной характеристики цифрового фильтра с			
	передаточной функцией. Рекурсивные и нерекурсивные			
	цифровые фильтры. Приведенная непрерывная часть.			

Формирующие элементы. Передаточная функция приведенной непрерывной части с амплитудно-импульсной модуляцией 1 рода; с экстраполятором нулевого порядка; с экстраполятором 1 порядка. Структурная схема замкнутой линеаризованной цифровой системы. Передаточные функции разомкнутого контура; замкнутой системы; по ошибке. Смещенные передаточные функции.

Тема 2.2 Частотные характеристики цифровых систем.

Частотная передаточная функция. Амплитудно-частотная и фазо-частотная характеристики. Амплитудно-фазовая характеристика. Использование псевдочастоты. Логарифмические частотные характеристики цифровых систем.

Тема 2.3 Устойчивость цифровых систем

Необходимое И достаточное условие устойчивости. Характеристические уравнения. Использование билинейного преобразования. Применение критериев Гурвица, Найквиста, Михайлова при анализе устойчивости цифровых систем. Влияние на устойчивость квантования ПО уровню. Предельные Оценка устойчивости. циклы. запаса Перерегулирование. Запасы по амплитуде и фазе. Показатель колебательности. Построение запретных областей для АФХ по заданному показателю колебательности.

Тема 2.4 Программная реализация цифровых алгоритмов обработки сигналов

Схема прямого программирования. Каноническая схема. Транспонированные схемы. Параллельная и последовательная схемы. Учет ошибок, вызванных округлением коэффициентов разностных уравнений.

Раздел 3. Синтез цифровых систем автоматического управления

Тема 3.1. Синтез цифровых систем по непрерывному прототипу

Основные подходы к синтезу цифровых регуляторов. Применение методов численного интегрирования при аппроксимация регулятора. Частотная дискретной коррекция. Устойчивость переоборудованных регуляторов. Дискретная аппроксимация методом отображения нулей и полюсов. Дискретная аппроксимация методом фиктивного квантования. Метолы аппроксимации дискретной непрерывных систем, основанные на аппроксимации частотных характеристик и переходных процессов. Синтез регулятора, основанный на билинейном преобразовании. Выбор периода дискретности и единиц младших разрядов преобразователей.

Тема 3.2 Синтез модальных регуляторов

Задача размещения полюсов. Использование регуляторов низкого порядка. Стабилизация объектов управления с использованием цифровых П-, ПИ-, ПИД-регуляторов. Синтез цифровых систем по критерию оптимального быстродействия. Определение минимальной длительности переходного процесса без учета требований грубости. Грубые системы. Необходимое и достаточное условие

грубо	ости.	Синтез	цифрог	вых	систем	c	оптимальным
быст	родейс	ствием с	учетом т	ребов	ваний гру	бост	ги.

4.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

№ п/п	Темы практических занятий	занятий (час)		Из них практической подготовки, (час)	№ раздела дисцип лины
		Семестр 7			
1	Типовые динамические	Решение	2	2	1
	звенья систем управления.	задач			
	Показатели качества.				
2	Z-преобразования типовых	Решение	2	2	2
	дискретных сигналов.	задач			
3	Нахождение передаточной	Решение	2	2	2
	функции дискретного	задач			
	фильтра по разностному				
	уравнению.				
4	Нахождение	Решение	2	2	2
	установившихся процессов	задач			
	цифровых систем.				
5	Нахождение частотных	Решение	2	2	2
	характеристик цифровых	задач			
	систем.				
6	Оценка устойчивости	Решение	3	3	2
	цифровых систем.	задач			
7	Синтез цифровой следящей	Решение	4	4	3
	системы.	задач			
	Всего		17		

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

			Из них	No
$N_{\underline{0}}$	Наименование лабораторных работ	Трудоемкость,	практической	раздела
Π/Π	паименование лаоораторных раоот	(час)	подготовки,	дисцип
			(час)	лины
	Семестр	7		
1	Исследование алгоритмов выбора частоты	4	4	1
	дискретизации и разрядности кодирования			
2	Исследование эффектов квантования	4	4	1
3	Исследование динамических диапазонов	4	4	1
	аналогово-цифровых преобразователей			
4	Синтез КИХ фильтров	4	4	2
5	Синтез БИХ фильтров	4	4	2
6	Исследование цифровых фильтров	4	4	2
7	Исследование возможности	2	2	2
	восстановления непрерывного сигнала по			

	его дискретным отсчетам			
8	Синтез следящей системы с цифровой коррекцией	4	4	3
9	Исследование модальных регуляторов.	4	4	3
	Всего	34		

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

racinique, Bilgh came crem cubilent pacer		, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,
Вид самостоятельной работы	Всего,	Семестр 7,
Вид самостоятельной работы	час	час
1	2	3
Изучение теоретического материала	12	12
дисциплины (ТО)	12	12
Курсовое проектирование (КП, КР)		
Расчетно-графические задания (РГЗ)		
Выполнение реферата (Р)		
Подготовка к текущему контролю	11	11
успеваемости (ТКУ)	11	11
Домашнее задание (ДЗ)		
Контрольные работы заочников (КРЗ)		
Подготовка к промежуточной		
аттестации (ПА)		
Всего:	23	23

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8. Таблица 8— Перечень печатных и электронных учебных изданий

Шифр/ URL адрес	Библиографическая ссылка	Количество экземпляров в библиотеке (кроме электронных экземпляров)
681.5 Б53	Цифровые автоматические системы [Текст] : ЦАС. : монография / В. А.Бесекерский М. : Наука, 1976	44
621.391 C 32	Цифровая обработка сигналов [Текст] : учебное пособие / А. Б. Сергиенко 3-е изд СПб. : БХВ - Петербург, 2015 768 с	5
-	Основы теории цифровых систем управления: учеб. пособие / К.Ю. Поляков. – СПб.: СПбГМТУ, 2006	-

	161 c. http://window.edu.ru/resource/527/58527/files/digsys.pdf	
004.9 Ц 75	Цифровые системы управления и обработки информации [Текст]: методические указания к выполнению лабораторных работ / СПетерб. гос. ун-т аэрокосм. приборостроения; сост. А. В. Лопарев СПб.: Изд-во ГУАП, 2009 27 с.	42

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационно-

телекоммуникационной сети «Интернет»

URL адрес	Наименование
https://ru.dsplib.org	Библиотека алгоритмов цифровой обработки сигналов

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

№ п/п	Наименование
1.	MATLAB (Math Works Inc.)

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

	F T - F
№ п/п	Наименование
	Не предусмотрено

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Лекционная аудитория	1303
2	Мультимедийная лекционная аудитория	1304
3	Мультимедийная лекционная аудитория	5108

10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Экзамен	Список вопросов к экзамену;
	Экзаменационные билеты;
	Задачи;
	Тесты.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции	Veneratory of the property was a state of the state of th
5-балльная шкала	Характеристика сформированных компетенций
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий.
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий.
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий.
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений.

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	Код
	1 \ \ /	индикатора
1.	Виды квантования. Шумы квантования в АЦП и ЦАП.	ОПК-7.3.1
2.	Достоинства и недостатки цифровых систем. Варианты	
	построения ЦАС.	
3.	Виды импульсной модуляции.	
4.	Теорема Котельникова. Восстановление непрерывного	ОПК-7.У.1
	сигнала по дискретным отсчетам.	
5.	Разностные уравнения и их решение.	
6.	Разностные уравнения и их решение.	
7.	<i>Z</i> -преобразование.	ОПК-7.В.1
8.	Основные теоремы и свойства <i>z</i> -преобразования.	
9.	Нахождение оригинала по <i>z</i> -преобразованию.	
10.	Передаточные функции цифровых вычислителей.	ОПК-7.В.2
11.	Передаточные функции приведенной непрерывной части.	
12.	Передаточные функции замкнутых ЦАС.	
13.	Частотные характеристики цифровых систем.	ОПК-8.3.1
14.	Использование псевдочастоты.	
15.	Устойчивость цифровых систем. Показатели запаса	
	устойчивости.	
16.	Схема прямого программирования.	ОПК-8.У.1
17.	Каноническая форма представления цифрового фильтра.	
18.	Транспонированные формы представления цифрового	
	фильтра.	
19.	Схемы последовательного и параллельного	ОПК-8.В.1
	программирования.	
20.	Дискретная аппроксимация непрерывного регулятора.	
21.	Синтез ЦАС, основанный на аппроксимации частотных	
	характеристик и переходных процессов.	
22.	Использование П-, ПИ- и ПИД-регуляторов.	ПК-8.В.1
23.	Синтез ЦАС с конечной длительностью переходного	
	процесса.	
24.	Синтез ЦАС с использованием билинейного	
	преобразования.	

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16.

Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код индикатора
	Учебным планом не предусмотрено	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

	а 18 – Примерный перечень вопросов для тестов	Код
№ п/п	Примерный перечень вопросов для тестов	индикатора
1	Какой из видов модуляции используется в системах с временным	ПК-2.3.1
	разделением каналов?	
	• AИM-1	
	• АИМ-2	
	• ШИМ	
	 ВИМ 	
2	Что из нижеперечисленного является преимуществом БИХ-	ПК-2.3.1
	фильтров?	
	• возможность точной реализации желаемой импульсной	
	характеристики	
	• возможность получения желаемых частотных характеристик	
	с использованием фильтров невысокого порядка	
	• такие фильтры всегда устойчивы	
	• в таких фильтрах отсутствуют ошибки округления	
3	Что является необходимым условием точного восстановления	ПК-2.У.1
	непрерывного сигнала по дискретным отсчетам?	
	• конечная длительность сигнала	
	• непрерывность спектра сигнала	
	• периодичность сигнала с периодом, кратным периоду	
	дискретизации	
	• бесконечное время наблюдения	
4	Какая из схем программирования позволяет одновременно	ПК-2.У.1
	реализовывать как операции умножения, так и операции сложения?	
	• схема прямого программирования	
	• каноническая схема	
	• транспонированная схема	
	• схема параллельного программирования	TT 0 1 1 1
5	Передаточная функция цифрового фильтра равна $D(z) = \frac{1}{z-1}$. Какую	ПК-2.У.1
	операцию осуществляет фильтр?	
	• цифровое интегрирование	
	• цифровое дифференцирование	
	• прогнозирование на 1 такт	
	• задержку на 1 такт	
6	Какая из приведенных передаточных функций соответствует	ПК-2.У.1
	устойчивому фильтру?	
	$ \bullet D(z) = \frac{z-1}{z+2} $	
	$D(z) = \frac{z-1}{z+2}$ $D(z) = \frac{z^2 - 1}{z^2 + 2}$	
	$\bullet D(z) = \frac{z-1}{z}$	
	$ \bullet D(z) = \frac{1}{3} \frac{z^2 + 4z + 1}{z^2 - 1} $	
7		THE O. D. 1
7	Какая из перечисленных кривых остается неизменной при переходе	ПК-2.В.1
	от частоты к псевдочастоте?	

	• амплитудно-частотная характеристика		
	• логарифмическая амплитудно-частотная характеристика		
	• фазо-частотная характеристика		
	• амплитудно-фазовая характеристика		
8	Чему равно установившееся значение амплитуды выходной	ПК-2.В.1	
	последовательности цифрового фильтра с передаточной функцией		
	$D(z) = z^{-1}$ при подаче на его вход гармонического воздействия с		
	единичной амплитудой и периодом 2 с? Период дискретности 0,15		
	c.		
	• 1		
	• 0		
	• ∞		
	• 1/2		

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п		Перечень контрольных работ
	Не предусмотрено	

10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

11. Методические указания для обучающихся по освоению дисциплины

Целью преподавания дисциплины является формирование у обучающихся способности и готовности:

- к исследованию объектов и процессов эксплуатации авиационной техники, в том числе с помощью пакетов прикладных программ и элементов математического моделирования на основе базовых знаний;
- к участию и проведению контроля, диагностирования, прогнозирования технического состояния, регулировочных и доводочных работ, испытаний и проверки работоспособности авиационных систем, изделий по внедрению прогрессивных методов, форм и видов технического обслуживания, а также ремонта воздушных судов.
- 11.1. Методические указания для обучающихся по освоению лекционного материала.

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

– получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;

- получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- *Введение:* устанавливается связь темы с пройденным материалом, определяются цели, задачи лекции, формулируется план лекции. Формулируются проблемы. Предлагается список информационных источников по различным взглядам на проблематику лекции. Лектор должен быть краток и выразителен. На введение отводится 5–8 минут.
- Основное содержание: отражаются ключевые идеи, теория вопроса. По возможности излагаются различные точки зрения. Выслушиваются суждения студентов. Студентам предлагается сформулировать выводы после каждой логической части. Представляются оценочные суждения лектора. Преподаватель формулирует резюме, подтверждаются или опровергаются ключевые идеи, высказанные в начале лекции.
- Заключение: делаются обобщения и выводы в целом по теме. Идет презентация будущего лекционного материала. Преподаватель определяет направления самостоятельной работы студентов/

Варианты чтения лекции:

- 1. Устное эссе предполагает профессиональное в теоретическом и методическом плане изложение конкретного вопроса. Но это спектакль одного актера, аудитория в лучшем случае вовлечена во «внутренний диалог» с преподавателем. Такая лекция представляет собой продукт, созданный одним только преподавателем, а студентам остается роль пассивных слушателей.
- 2. Устное эссе-диалог с организацией взаимодействия преподавателя со студентами, которые привлекаются к работе посредством использования приемов скрытого и открытого диалога.
- 3. Лекция с использованием постановки и решения проблемы. Такая лекция начинается с вопроса, парадокса, загадки, возбуждающим интерес студентов. Ответ, как правило, определяется к концу занятия. Студенты предлагают собственные варианты решения проблемы. Если консенсус не достигается, преподаватель дает больший объем информации, наводящую информацию. Как правило, большинство студентов догадывается о конечном результате еще до провозглашения его преподавателем. После формулирования проблематики основные идеи студентов записываются на доске. Они систематизируются определенным образом, структурируются. В заключении лекции окончательные выводы, разработанные на основе идей студентов, записывается на доске.

Условия лекционного общения:

- предварительная самостоятельная подготовка студентов по задачам, сформулированным на предыдущем занятии по предстоящей тематике;
 - свободное и открытое обсуждение материала;
- 4. Лекция с процедурой пауз предполагает чередование мини-лекций с обсуждениями. Каждые 20 минут освещается важная проблема, затем 5–10 минут она

обсуждается. Можно сначала обсудить в малых группах, а затем пригласить кого-то высказать свое мнение от группы. Вслед за обсуждением следует еще одна микролекция.

6. Лекция-диспут, контролируемая преподавателем. Аудитория делится на группы: сторонников данной концепции, оппозицию и арбитров. Студенты делают свой выбор и учатся отстаивать свою точку зрения. Преподаватель организует дебаты и корректирует обсуждение, в конце занятия предлагает свое видение проблемы и подводит итоги.

Выбор варианта лекции определяется образовательными целями и индивидуальным стилем преподавателя.

11.2. Методические указания для обучающихся по прохождению практических занятий

Практическое занятие является одной из основных форм организации учебного процесса, заключающейся в выполнении обучающимися под руководством преподавателя комплекса учебных заданий с целью усвоения научно-теоретических основ учебной дисциплины, приобретения умений и навыков, опыта творческой деятельности.

Целью практического занятия для обучающегося является привитие обучающемся умений и навыков практической деятельности по изучаемой дисциплине.

Планируемые результаты при освоении обучающемся практических занятий:

- закрепление, углубление, расширение и детализация знаний при решении конкретных задач;
- развитие познавательных способностей, самостоятельности мышления, творческой активности;
- овладение новыми методами и методиками изучения конкретной учебной дисциплины;
- выработка способности логического осмысления полученных знаний для выполнения заданий;
- обеспечение рационального сочетания коллективной и индивидуальной форм обучения.

Функции практических занятий:

- познавательная;
- развивающая;
- воспитательная.

По характеру выполняемых обучающимся заданий по практическим занятиям подразделяются на:

- ознакомительные, проводимые с целью закрепления и конкретизации изученного теоретического материала;
- аналитические, ставящие своей целью получение новой информации на основе формализованных методов;
- творческие, связанные с получением новой информации путем самостоятельно выбранных подходов к решению задач.

Формы организации практических занятий определяются в соответствии со специфическими особенностями учебной дисциплины и целями обучения. Они могут проводиться:

- в интерактивной форме (решение ситуационных задач, занятия моделированию реальных условий, деловые игры, игровое проектирование, имитационные занятия, выездные занятия в организации (предприятия), деловая учебная игра, ролевая игра, психологический тренинг, кейс, мозговой штурм, групповые дискуссии);
- в не интерактивной форме (выполнение упражнений, решение типовых задач, решение ситуационных задач и другое).

Методика проведения практического занятия может быть различной, при этом важно достижение общей цели дисциплины.

Требования к проведению практических занятий

1 Практические занятия проводятся после чтения лекций, дающих теоретические основы для их выполнения.

Допускается выполнение практических занятий до прочтения лекций с целью формализации проблемы для изучения теоретического материала при наличии описаний работ, включающих необходимые сведения или ссылки на конкретные учебные издания, содержащие эти сведения.

- 2 Основанием проведения практических занятий по дисциплине являются: рабочая программа учебной дисциплины; расписание учебных занятий.
 - 3 Условия проведения практических занятий.
- 3.1 Практические занятия должны проводиться в аудиториях, соответствующих санитарно-гигиеническим нормам.
- 3.2 Во время практических занятий должны соблюдаться порядок и дисциплина в соответствии с Правилами внутреннего распорядка ГУАП.
- 3.3 Практические занятия должны быть обеспечены в достаточном объеме необходимыми методическими материалами, включающими в себя комплект методических указаний к выполнению практических работ по данной дисциплине.
 - 3.4 Преподаватель несет ответственность за организацию практических занятий.

Он имеет право определять содержание практических работ, выбирать методы и средства проведения занятия, наиболее полно отвечающие их особенностям и обеспечивающие высокое качество учебного процесса.

- 4 Ответственность и обязанности студента.
- 4.1 До проведения практического занятия и на занятии студент имеет право задавать преподавателю вопросы по содержанию и методике выполнения работы.

Ответ преподавателя должен обеспечивать выполнение студентом работы в течение занятия в полном объеме и с надлежащим качеством подтверждаемым тестированием.

- 4.2 Студент имеет право на выполнение практической работы по оригинальной методике с согласия преподавателя и под его наблюдением.
- 4.3 Студент обязан выполнить практическую работу, пропущенную по уважительной причине, в часы, согласованные с преподавателем.
- 4.4 Студент обязан явиться на практическое занятие во время, установленное расписанием, и предварительно подготовленным к проведению занятий, что может контролироваться преподавателем вопросами входного контроля.
- 4.5 В ходе практических занятий студенты ведут необходимые записи в отдельных от материалов лекций носителях или отдельных обособленных от лекционного материала файлах электронной информации, которые преподаватель вправе потребовать для проверки.

Допускается по согласованию с преподавателем представлять отчеты о работе в электронном виде через личный кабинет студента и преподавателя.

- 4.6 В течение практического занятия преподаватель контролирует правильность выполнения заданий; оценка достигнутых результатов по освоению студентом темы, раздела учебной дисциплины осуществляется в конце практического занятия (группы практических занятий) путем проверки отчета и (или) его защиты (презентации, собеседования) или другой формы по усмотрению преподавателя с применением модульно рейтинговой системы ГУАП.
- 4.7 Студент несет ответственность: у за пропуск практического занятия по неуважительной причине; у за неподготовленность к практическому занятию; за несвоевременную сдачу и защиту отчета о практическом занятии.

- 4.8 В соответствии с требованиями стандартов качества ГУАП о системе контроля качества знаний студентов очной и заочной формы обучения студенты, пропустившие занятия и не отработавшие их к началу сессии, не допускаются к зачету или экзамену по данной дисциплине.
- 11.3. Методические указания для обучающихся по выполнению лабораторных работ

В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач у обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задание и требования к проведению лабораторных работ

Перед выполнением лабораторной работы студенты должны:

- а) ознакомиться с содержанием работы;
- б) изучить теоретический материал, необходимый для проведения лабораторной работы;
- в) тщательно проработать методику проведения работы и изучить схему экспериментальной установки;
- г) произвести необходимые предварительные расчеты, составить схемы экспериментального исследования и сформировать таблицы для записи результатов экспериментов и вычислений с определением подлежащего таблиц и сказуемого, с логическим формированием последовательностей экспериментальных данных.

Студенты, явившиеся на занятия не подготовленными, к выполнению лабораторной работы не допускаются.

Каждую работу выполняют бригадой студентов в составе 3-5 человек. В процессе эксперимента каждый член бригады выполняет определенные обязанности: снятие показаний измерительных приборов, фиксирование измеренных данных в подготовленных заранее таблицах, управление пускорегулирующей аппаратурой и др.

Отчет о проделанной работе составляется каждым студентом. Требуемое содержание отчета (необходимые схемы, таблицы и графики) указано в методическом описании каждой работы. Графики снятых и рассчитанных зависимостей желательно вычерчивать на миллиметровой бумаге по координатным осям с соответствующими делениями и обозначениями. После нанесения точек графика их соединяют плавной кривой с учетом возможного «разброса» точек ввиду их неточного снятия во время проведения эксперимента или погрешности расчета.

Кроме того, студент приводит результаты разработки на уровне исследования одного из вопросов по заданию преподавателя. В конце отчета записываются краткие выводы по проделанной работе, дается сравнительная оценка полученных практических результатов с теоретическими сведениями.

Лабораторная работа засчитывается, если студент правильно ответил на вопросы преподавателя, посвященные знанию устройства и принципу работы установки, а также

пониманию физических процессов, объясняющих полученные практические результаты при проведении эксперимента. Студент должен уметь объяснить порядок действий, необходимых для выполнения любого эксперимента в лабораторной работе.

Перед началом работы студенты обязаны изучить инструкцию по технике безопасности для работающих в лаборатории и расписаться о прохождении инструктажа в специальном журнале.

Структура и форма отчета о лабораторной работе

Требования к форме отчета о лабораторной работе определены стандартами Университета: http://guap.ru/guap/standart/titl_main.shtml/

Структура отчета:

- 1) Схема лабораторной установки.
- 2) Паспортные данные исследуемой машины или приборов.
- 3) Таблицы с расчетными и опытными данными.
- 4) Основные расчетные формулы.
- 5) Алгоритмы сглаживания, аппроксимации экспериментальных данных, графики исследуемых зависимостей.
 - 6) Трактовка полученных результатов и краткие выводы по работе.

Требования к оформлению отчета о лабораторной работе

Отчет оформляется в соответствии с требованиями к изложению текста и оформлению работ следует выполнять в соответствии с требованиями ГОСТ 7.32 – 2001.

http://guap.ru/guap/standart/prav_main.shtml

11.4. Методические указания для обучающихся по прохождению самостоятельной работы.

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихся, являются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ (для обучающихся по заочной форме обучения).
- 11.5. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

Текущий контроль успеваемости предназначен для проверки хода и качества усвоения учебного материала, стимулирования учебной работы слушателей и совершенствования методики проведения занятий. Он проводится в ходе всех видов учебных занятий в форме, избранной преподавателем или предусмотренной тематическим планом. Результаты текущего контроля успеваемости отражаются в журналах учета учебных занятий.

Задачи текущего контроля успеваемости:

- проверка качества отработки и усвоения пройденного учебного материала;
- оценка текущей успеваемости обучающихся и качества их подготовки к занятиям;
- активизация и побуждение обучающихся к творческой деятельности, концентрация их внимания, стимулирование самостоятельной познавательной работы;
- накопление данных для оценки подготовленности каждого обучающегося по дисциплине;
 - оценка методической подготовленности обучающихся;
- выявление наиболее сложных для усвоения обучающимися вопросов учебной дисциплины;
- определение перечня необходимых мероприятий по совершенствованию образовательного процесса, учебно-методических материалов и методики проведения занятий.

Основными формами текущего контроля успеваемости являются:

- контрольный опрос обучающихся в устной или письменной форме, а также с использованием технических средств обучения;
 - проверка выполненного задания на самостоятельную работу;
- защита отчетов по лабораторным работам (по которым предусмотрена отчетность);
 - индивидуальные собеседования преподавателя с обучающимися в ходе занятий.

При текущем контроле оценивание успеваемости обучающихся осуществляется по четырехбалльной шкале оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Контроль проводится по завершении изучения наиболее сложных и объемных тем, разделов учебной дисциплины:

- по теме 1, в форме защиты отчетов по лабораторной работе в виде письменных результатов решений задач;
- по теме 4, в форме защиты отчетов по циклу лабораторных работ путём индивидуального собеседования с каждым обучающимся.
- 11.6. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

- экзамен форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».
- зачет это форма оценки знаний, полученных обучающимся в ходе изучения учебной дисциплины в целом или промежуточная (по окончании семестра) оценка знаний обучающимся по отдельным разделам дисциплины с аттестационной оценкой «зачтено» или «не зачтено».
- дифференцированный зачет это форма оценки знаний, полученных обучающимся при изучении дисциплины, при выполнении курсовых проектов, курсовых работ, научно-исследовательских работ и прохождении практик с аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Система оценок при проведении промежуточной аттестации осуществляется в соответствии с требованиями Положений «О текущем контроле успеваемости и промежуточной аттестации студентов ГУАП, обучающихся по программам высшего образования» и «О модульно-рейтинговой системе оценки качества учебной работы студентов в ГУАП».

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой