МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

фелеральное государственное автономное образовательное учреждение высшего

образования "САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 13

УТВЕРЖДАЮ Руководитель образовательной программы

доц.,к.т.н.

(должность, уч. степень, звание)

Н.А. Овчинникова

(инициалы, фамилия)

(подпись) «24» июня 2024 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Микромеханические инерциальные чувствительные элементы» (Наименование дисциплины)

Код направления подготовки/ специальности	24.05.06	
Наименование направления подготовки/ специальности	Системы управления летательными аппаратами	
Наименование направленности	Приборы систем управления летательных аппаратов	
Форма обучения	очная	
Год приема	2024	

Санкт-Петербург- 2024

Лист согласования рабочей программы дисциплины

Программу составил (а)	1110	
к.фм.н., доц.	HE	А.А. Лезова
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Программа одобрена на заседа	ии кафедры № 13	
«24» июня 2024 г, протокол №	211	
Заведующий кафедрой № 13 к.т.н., доцент	ANS	Н.А. Овчинникова
(уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Заместитель директора институ	та №1 по методической раб	боте
доц.,к.т.н.		В.Е. Таратун
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)

Аннотация

Дисциплина «Микромеханические инерциальные чувствительные элементы» входит в образовательную программу высшего образования – программу специалитета по направлению подготовки/ специальности 24.05.06 «Системы управления летательными аппаратами» направленности «Приборы систем управления летательных аппаратов». Дисциплина реализуется кафедрой «№13».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ПК-2 «Способен координировать и обеспечивать конструкторское сопровождение разработки проектов приборов ориентации, навигации и стабилизации летательных аппаратов в ракетно-космической промышленности»

ПК-4 «Способен координировать подготовку и проведение испытаний приборов ориентации, навигации и стабилизации летательных аппаратов в ракетно-космической промышленности с заданными техническими требованиями»

ПК-8 «Способен представлять результаты исследований в форме отчетов, рефератов, обзоров, публикаций, докладов и заявок на изобретения»

Содержание дисциплины охватывает круг вопросов, связанных с изучением принципа действия и проведением расчетов микромеханических инерциальных чувствительных элементов.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, самостоятельная работа студента, консультации.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 5 зачетных единиц, 180 часов.

Язык обучения по дисциплине «русский»

- 1. Перечень планируемых результатов обучения по дисциплине
- 1.1. Цели преподавания дисциплины «Микромеханические инерциальные чувствительные элементы» является формирование у обучающихся знаний о принципах построения, проектирования и изготовления микромеханических гироскопов и акселерометров (ММГ и ММА), образующих новый класс инерциальных чувствительных элементов, обладающих уникальными массогабаритными и стоимостными характеристиками, об областях их применения и перспективах развития.
- 1.2. Дисциплина входит в состав части, формируемой участниками образовательных отношений, образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа) компетенции	Код и наименование компетенции	Код и наименование индикатора достижения компетенции
Профессиональные компетенции	ПК-2 Способен координировать и обеспечивать конструкторское сопровождение разработки проектов приборов ориентации, навигации и стабилизации летательных аппаратов в ракетно-космической промышленности	ПК-2.3.1 знать основы проектирования, конструирования и производства приборов ориентации, навигации и стабилизации летательных аппаратов; виды проектной документации ПК-2.У.1 уметь разрабатывать проекты приборов ориентации, навигации и стабилизации летательных аппаратов и координировать их разработку ПК-2.В.1 владеть навыками работы в информационно-коммуникационном пространстве, проводить компьютерное моделирование, расчеты с использованием программных средств общего и специального назначения при разработке проектов приборов ориентации, навигации и стабилизации летательных аппаратов
Профессиональные компетенции	ПК-4 Способен координировать подготовку и проведение испытаний приборов ориентации, навигации и стабилизации летательных аппаратов в ракетно-космической промышленности с заданными техническими	ПК-4.У.1 уметь разрабатывать планы, программы и методики проведения испытаний приборов ориентации, навигации и стабилизации летательных аппаратов, их составных частей ПК-4.У.2 уметь применять современные программные средства для анализа результатов испытаний ПК-4.В.1 владеть методами обработки результатов испытанов испытаний с использованием ЭВМ

	требованиями	
Профессиональные компетенции	ПК-8 Способен представлять результаты исследований в форме отчетов, рефератов, обзоров, публикаций, докладов и заявок на изобретения	ПК-8.В.1 владеть навыками обобщения, формулирования и изложения результатов научно-исследовательских и опытно-конструкторских работ

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- «Введение в специальность»,
- «Математика»,
- «Теоретическая механика»
- «Физика»
- «Электроника»
- «Технология приборостроения»
- «Гироскопические приборы и системы»
- «Основы моделирования приборов и систем»

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и используются при используются при подготовке выпускной квалификационной работы специалиста.

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

Вид учебной работы	Всего	Трудоемкость по семестрам №9
1	2	3
Общая трудоемкость дисциплины, 3E/ (час)	5/ 180	5/ 180
Из них часов практической подготовки	51	51
Аудиторные занятия, всего час.	102	102
в том числе:		
лекции (Л), (час)	51	51
практические/семинарские занятия (ПЗ), (час)		
лабораторные работы (ЛР), (час)	51	51
курсовой проект (работа) (КП, КР), (час)		
экзамен, (час)	36	36
Самостоятельная работа, всего (час)	42	42
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Экз.	Экз.

Примечание: **кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Разделы, темы дисциплины	Лекции	П3	ЛР	КП	CPC
газделы, темы дисциплины	(час)	(C3)	(час)	(час)	(час)
Сем	естр 9				
Раздел 1.					
Тема 1.1.	15		25		11
•••••					
Тема 1.n.					
Раздел 2.	15				11
Раздел 3.	10				10
Раздел 4.	11		26		10
Итого в семестре:	51		51		42
Итого	51	0	51	0	42

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Номер раздела	Название и содержание разделов и тем лекционных занятий		
1	1 Раздел 1. Теоретические основы микромеханическ		
	гироскопов (ММГ) и акселерометров (ММА)		
	Тема 1.1 Основные структуры и модели динамики ММГ LL,		
	RR и LR типов. Динамика взаимодействия первичных и		
	вторичных колебаний ММГ LL и RR типов. Волновые		
	твердотельные гироскопы.		
	Тема 1.2. Основные схемы и принципы функционирования		
	ММГ. Структурные схемы, передаточные функции,		
	масштабные коэффициенты преобразования ММГ LL, RR и		
	LR типов. Основные погрешности ММГ.		
	Тема 1.3. Основные схемы и принципы функционирования		
	микромеханических акселерометров (ММА). Классификация		
	ММА (одномерные и двумерные, осевые и маятниковые, прямого преобразования и компенсационного типа).		
	Прямого пресооразования и компенсационного типа). Тема 1.4 Статика и динамика ММГ и ММА. Модели		
	динамики, структурные схемы, передаточные функции,		
	масштабные коэффициенты преобразования, рабочая полоса		
	частот, основные погрешности ММГ и ММА.		
	Тема 1.5. Основные технологические процессы производства		
	ММГ и ММА. Обобщенный технологический процесс		
	производства ММГ и ММА. Основные технологические		
	операции производства, включающие: литографию,		

	получение слоев различных материалов, травление, микросборочные операции, испытание изделий.		
2	Раздел 2. Микромеханические инерциальные модули и		
_	системы ориентации и навигации		
	Тема 2.1 Микромеханические инерциальные модули.		
	Назначение, функциональность, основные элементы,		
	основные характеристики.		
	Тема 2.2 Микромеханические системы ориентации и		
	навигации. Назначение, функциональность, принцип		
	построения, основные характеристики.		
3	Раздел 3. Элементная база и основы технологии		
	производства ММГ и ММА		
	Тема 3.1 Электростатические датчики сил и моментов,		
	емкостные и тензометрические преобразователи		
	микроперемещений, элементы упругих подвесов		
	чувствительных элементов, системы возбуждения ММГ.		
	Тема 3.2 Физико-химические свойства кремния, как		
	основного конструкционного материала для изготовления чувствительных элементов ММГ и ММА. Материалы.		
	Тема 3.3 Обобщенный технологический процесс		
	производства ММГ и ММА. Основные технологические		
	операции производства, включающие: литографию,		
	получение слоев различных материалов, травление и		
	микросборочные операции, испытание изделий.		
4	Раздел 4. Методики экспериментальных исследований		
	характеристик ММГ и ММА.		
	Цели и задачи лабораторных и натурных экспериментов.		
	Технологическое и специальное оборудование для		
	производства испытаний. Автоматизация		
	экспериментальных исследований. Методы обработки		
	данных эксперимента. Оценка случайных погрешностей		
	выходного сигнала ММГ и ММА методом вариации Алана.		

4.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

№ п/ п	Темы практических занятий	Формы практических занятий	Трудоемкость, (час)	Из них практическо й подготовки, (час)	№ раздела дисцип лины
		едусмотрено			
Всего					

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

№ п/ п	Наименование лабораторных работ	Трудоемкость , (час)	Из них практическо й подготовки, (час)	№ раздела дисцип лины
	Семестр 9	9		
1	Калибровка ММГ LL-типа	15		1
2	Исследование статистических	10		1
	характеристик ММГ LL – типа			
3	Калибровка двумерного ММА осевого	14		1
	типа			
4	Исследование статистических	10		3
	характеристик двумерного ММА осевого			
	типа			
5	Зачетное занятие	2		
	Всего	51		

- 4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено
- 4.6. Самостоятельная работа обучающихся Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего,	Семестр 9,
Вид самостоятельной раооты	час	час
1	2	3
Изучение теоретического материала дисциплины (TO)	17	17
Подготовка отчетов по лабораторным работам	15	15
Расчетно-графические задания (РГЗ)		
Выполнение реферата (Р)		
Подготовка к текущему контролю успеваемости (ТКУ)	10	10
Домашнее задание (ДЗ)		
Контрольные работы заочников (КРЗ)		
Подготовка к промежуточной		
аттестации (ПА)		
Всего:	42	42

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8.

Таблица 8- Перечень печатных и электронных учебных изданий

Шифр/	Библиографическая ссылка	Количество экземпляров в
	1 1	1

URL адрес		библиотеке
		(кроме электронных экземпляров)
681.2	Распопов В.Я. Микромеханические	6
P 24	приборы. Тула, 2002, 367 с.	
629.7	Микросистемы ориентации беспилотных	6
M59	летательных аппаратов [Текст] / Р. В.	
	Алалуев [и др.]; ред. В. Я. Распопов М.:	
	Машиностроение, 2011 184 с.	
681.2	Приборы первичной информации:	6
P24	Микромеханические приборы [Текст]:	
	учебное пособие / В. Я. Распопов ; Тул.	
	гос. ун-т Тула : [б. и.], 2002 390 с.	
681.58	Меркурьев И.В., Подалков В.В. Динамика	6
M52	микромеханического и волнового	
	твердотельного гироскопа М.:	
	ФИЗМАТЛИТ, 2009.–228 с.	
531	Прикладная теория гироскопов [Текст]:	35
Л84	учебник / Д. П. Лукьянов, В. Я. Распопов,	
	Ю. В. Филатов ; Концерн "ЦНИИ	
	"Электроприбор" СПб. : Изд-во ЦНИИ	
	"Электроприбор", 2015 316 с.	
629.7	Северов Л.А. Механика гироскопических	45
C28	систем: Учебное пособие. – М.: МАИ	
	(ТУ), 1996. – 212 с.	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 — Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет»

URL адрес	Наименование

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

№ п/п	Наименование
	Не предусмотрено

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п	Наименование
	Не предусмотрено

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Мультимедийная лекционная аудитория	Б.М. а. 13-04
2	2 Специализированная лаборатория «Микромеханических Б.М. а	
	инерциальных чувствительных элементов»	
3	Стенд вращения одноосный	

10. Оценочные средства для проведения промежуточной аттестации

10.1. Состав оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Экзамен	Список вопросов к экзамену, тест.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции	1
5-балльная шкала	Характеристика сформированных компетенций
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий.
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий.

Оценка компетенции	Vanartanyatika ahan timanatiki iv kartitatiki i
5-балльная шкала	Характеристика сформированных компетенций
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий.
«неудовлетворительно » «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения;
	– не формулирует выводов и обобщений.

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	Код
1	- ` ` ` '	индикатора
1	Классификация ММГ и ММА.	ПК-2.3.1
2	Принцип действия ММГ различных типов	ПК-2.3.1
3	Модификации и принцип действия ММА	ПК-2.3.1
4	Математическая модель динамики движения	ПК-2.3.1
	чувствительного элемента ММГ LL-типа	
5	Математическая модель динамики движения	ПК-2.3.1
	чувствительного элемента ММГ RR-типа	
6	Установившейся режим работы ММГ. Связь параметров	ПК-2.3.1
	колебаний с физическими параметрами чувствительного	
	элемента	
7	Частотные характеристики ММГ и рабочая полоса частот	ПК-2.3.1
8	Связь амплитудных и фазовых соотношений вторичных	ПК-2.3.1
	колебаний ММГ в установившемся режиме	
9	Статические и динамические характеристики ММА	ПК-2.3.1,
	• •	ПК-4.У.1,
		ПК-4.У.2,
		ПК-4.В.1,
		ПК-8.В.1
10	Источники ошибок в ММГ и ММА	ПК-2.3.1
11	Аналитические методы расчета механических	ПК-2.3.1
	характеристик ММГ и ММА	
12	Принцип действия емкостных датчиков перемещений	ПК-2.3.1
	чувствительного элемента в ММГ и ММА. Основные	
	соотношения. Вопросы проектирования	
13	Электростатические датчики управляющей силы и	ПК-2.3.1
	момента. Расчет энергетических характеристик и	
	линейности преобразования	
14	Преобразователи «емкость - напряжение». Виды	ПК-2.3.1
	преобразователей и расчетные соотношения	2.5.1
	The coherence is her termine confinements	

15	Структуры систем автогенераторного возбуждения первичных колебаний в ММГ. Расчет параметров установившихся колебаний	ПК-2.3.1
16	Структура и принцип работы системы возбуждения первичных колебаний в ММГ с опорным генератором	ПК-2.3.1
17	Формирование контура фазовой подстройки частоты опорного генератора. Выбор параметров контура.	ПК-2.3.1
18	Принципы формирования выходного сигнала в ММГ и ММА в приборах прямого измерения. Схемотехника измерительного канала	ПК-2.3.1
19	Формирования выходного сигнала в ММГ и ММА в приборах компенсационного типа	ПК-2.3.1
20	Стабилизация амплитуды первичных колебаний ММГ управлением амплитудой импульсов возбуждения	ПК-2.3.1
21	Стабилизация амплитуды первичных колебаний ММГ управлением длительностью импульсов возбуждения.	ПК-2.3.1
22	Сопряжение частот первичных и вторичных колебаний. Схемотехника и варианты решения задачи.	ПК-2.3.1
23	Основные технологические процессы производства ММГ и ММА.	ПК-2.3.1
24	Методики экспериментальных исследований характеристик ММГ и ММА	ПК-2.3.1, ПК-4.У.1, ПК-4.У.2, ПК-4.В.1, ПК-8.В.1
25	Технологическое и специальное оборудование для производства испытаний.	ПК-2.3.1, ПК-4.У.1, ПК-4.У.2
26	Автоматизация экспериментальных исследований. Методы обработки данных эксперимента.	ПК-2.3.1, ПК-4.У.1, ПК-4.У.2, ПК-4.В.1, ПК-8.В.1
27	Оценка случайных погрешностей выходного сигнала ММГ и ММА методом вариации Алана.	ПК-2.3.1, ПК-4.У.1, ПК-4.У.2, ПК-4.В.1, ПК-8.В.1

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16. Таблица 16 — Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код индикатора
	Учебным планом не предусмотрено	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

№ п/п	Примерный перечень вопросов для тестов	Код индикатора
1. 1	Выберите из списка типы акселерометров, различающиеся по виду движений инерционной массы:	ПК-2.3.1
	А. Осевые	
	Б. Однокомпонентные В. Маятниковые	
	Г. Линейные	
	Д. Приборы компенсационного измерения	
	Запишите соответствующие буквы в любом порядке.	
2.	Сопоставьте элементам первого списка	ПК-2.3.1
	1. Акселерометр прямого измерения	
	2. Линейный акселерометр	
	3. Акселерометр компенсационного измерения	
	4. Угловой акселерометр	
	и элементы второго списка	
	А. Ось чувствительности параллельна вектору линейного ускорения, являющегося следствием углового ускорения.	
	Б. ЧЭ непосредственно передает информацию о действующем на	
	него ускорении в виде перемещений ИМ или деформаций упругих	
	элементов подвеса на вторичный преобразователь. Все	
	погрешности измерительной цепи присутствуют в выходном	
	сигнале акселерометра.	
	В. Сила, вызванная измеряемым ускорением и действующая на ИМ,	
	частично или полностью (интегратор в контуре) уравновешивается	
	с помощью цепи отрицательной обратной связи, реализующей	
	силовую разгрузку ЧЭ посредством выходного сигнала,	
	поступающего на устройство компенсации (преобразователи силы,	
	момента). Точность измерительной цепи зависит в основном от	
	преобразователя силы (момента). Г. Ось чувствительности параллельна вектору измеряемого	
	Г. Ось чувствительности параллельна вектору измеряемого ускорения	
3.	Уравнение движения инерционной массы (ИМ) осевого	ПК-2.3.1
	микроакселерометра при условии, что центр масс и геометрический	
	центр подвеса совпадают и направление действующего ускорения	
	совпадает с осью у, которая является осью чувствительности, имеет	
	вид	
	$my''+b_y y'+G_y y=m a_y,$	
	где m – масса $ИМ$; b_y , G_y – коэффициент демпфирования и	
	суммарная жесткость подвеса в направлении оси у соответственно;	
	а _у – действующее ускорение.	
1	Запишите данное уравнение в установившемся режиме.	ПИ ЭЭ 1
4.	Перечислите не менее пяти классификационных признаков	ПК-2.3.1
5.	микромеханических гироскопов. Выберите ошибочное утверждение.	ПК-2.3.1
٦.	А. По виду движения ИМ в режиме движение (РД) и режиме	11112.3.1
	чувствительности (РЧ) различают гироскопы LL-типа (linear-	

	linear), гироскопы RR- типа (rotare-rotare) и гироскопы LR-типа.	
	Б. В LL-гироскопах ИМ в РД и РЧ совершают вращательные	
	перемещения	
	В. В RR- гироскопах ИМ в РД и РЧ совершают вращательные	
	перемещения	
	Г. В LR (RL)-гироскопах ИМ в РД и РЧ совершают различные	
	комбинации поступательных и вращательных перемещений.	
6.	Монокристаллический кремний наиболее часто используется в	ПК-2.3.1
0.	МЭМС - устройствах. Монокремний имеет структуру решетки типа	1110 2.5.1
	алмаза. Как известно, для монокристаллов имеет место анизотропия	
	свойств. Определите символ направления, проходящего через	
	начало координат и точку с координатами (а/8, 3b/8, 5c/8).	
7.	Перечислите не менее трех способов контроля размерных	ПК-2.3.1,
/.		
	параметров ЧЭ МЭМС прибора при травлении.	ПК-4.У.1,
		ПК-4.У.2
8.	Опишите принцип работы емкостного преобразователя	
	перемещений.	
9.	Перечислите и сравните методы устранения электронными	ПК-2.3.1,
	средствами основных погрешностей микромеханических	ПК-4.У.1,
	гироскопов.	ПК-4.У.2
10.	Дайте краткое пояснение термину «электростатическая жесткость	ПК-2.3.1
	подвеса»	
11.	Способность микроприбора воспроизводить измеряемые величины	ПК-2.3.1
	с допустимыми погрешностями характеризуется его	
	измерительными свойствами. Выберите из списка пункт, не	
	относящийся к измерительным свойствам микроприбора:	
	А. статическая характеристика,	
	Б. Чувствительность	
	В. переходный процесс	
	Г. тип подвеса	
	Д. полоса пропускания частот и частотные искажения измеряемого	
	сигнала	
12.	Укажите, в каком из возможных режимов частотной настройки	ПК-2.3.1
	обеспечивается максимальная чувствительность	
	микромеханического гироскопа к измеряемой угловой скорости.	
13.	Выберите все верные утверждения из списка:	ПК-2.3.1
	А. Частотная характеристика линейной стационарной системы	
	является функцией, позволяющей найти параметры выходного	
	гармонического сигнала по известным параметрам входного	
	сигнала.	
	Б. Чувствительность линейного акселерометра ограничивается в	
	основном жесткостью упругого подвеса, тепловыми шумами,	
	шумами 1/f, а также шумами систем считывания информации и	
	управления	
	В. На сегодняшний день известен ряд физических принципов, на	
	которых основано функционирование выпускаемых принципов, на	
	МЭМС-акселерометров, различающихся способами считывания	
	сигнала при ускорении подвижной массы устройства:	
	пьезоэлектрические, ёмкостные, пьезорезистивные, оптические и	
	электромагнитные.	
14.	Поясните кратко, с чем связаны	ПК-2.3.1,
14.	Поясните кратко, с чем связаны А. Погрешности коэффициента преобразования	ПК-2.3.1,
	х. погрешности коэффицистта преооразования	1111-7.3.1,

	микромеханического гироскопа Б. Смещение нуля	ПК-4.У.2, ПК-4.В.1, ПК-8.В.1
15.	Приведите формулу расчета вариации Аллана	ПК-2.3.1, ПК-4.У.1, ПК-4.У.2, ПК-4.В.1, ПК-8.В.1
16.	Ниже приведен список определяемых при испытаниях характеристик или свойств датчиков угловой скорости (1) Смещение нуля, дрейф, шум (2) Влияние постоянных линейных ускорений (3) Удароустойчивость и ударопрочность (4) Влияние изменений температуры и давления Для каждого из пунктов списка укажите необходимое испытательное оборудование.	ПК-2.3.1, ПК-4.У.1, ПК-4.У.2
17.	Поясните, для чего применяются фоторезисты в процессе фотолитографии.	ПК-2.3.1
18.	Выберите верные утверждения: А. Получаемые нами показания МЭМС-датчиков не являются точными значениями, они всегда содержат погрешности и ошибки. Б. Получаемые нами показания МЭМС-датчиков являются точными значениями. В. Чтобы ошибки в измерениях не приводили к ошибкам в функционировании системы в целом, данные датчиков необходимо обрабатывать.	ПК-2.3.1
19.	Выберите диапазон размеров МЭМС устройств: А. 100 нм-1000000нм Б. 1000000нм-10 ⁸ нм	ПК-2.3.1
	В. 0.1 нм-100 нм	
20.		ПК-2.3.1
20. 21.	В. 0.1 нм-100 нм	ПК-2.3.1
	В. 0.1 нм-100 нм Назовите области применения микромеханических акселерометров Перечислите не менее трех методов, применяемых при	
21.	В. 0.1 нм-100 нм Назовите области применения микромеханических акселерометров Перечислите не менее трех методов, применяемых при изготовлении МЭМС устройств. Опишите кратко принцип работы волновых микромеханических	ПК-2.3.1 ПК-2.3.1 ПК-2.3.1, ПК-4.У.1, ПК-4.У.2
21.	В. 0.1 нм-100 нм Назовите области применения микромеханических акселерометров Перечислите не менее трех методов, применяемых при изготовлении МЭМС устройств. Опишите кратко принцип работы волновых микромеханических гироскопов. Перечислите известные вам методы испытаний механических	ПК-2.3.1 ПК-2.3.1 ПК-2.3.1, ПК-4.У.1,

	Г. Диффузионные тензорезисторы представляют собой примеси пили р-типа проводимости, которые в виде узких полосок внедряют (имплантируют) в приповерхностный слой кристалла через вскрытые окна в оксиде.	
26.	Перечислите основные достоинства и недостатки емкостного преобразователя перемещений.	ПК-2.3.1
27.	Перечислите методы устранения электронными средствами основных погрешностей МГ.	ПК-2.3.1, ПК-4.У.1, ПК-4.У.2, ПК-4.В.1, ПК-8.В.1
28.	Приведите общую схему построения уравнений движения микромеханического гироскопа.	ПК-2.3.1
29.	Объясните причины газового и конструкционного демпфирования чувствительных элементов микромеханических гироскопов.	ПК-2.3.1
30.	Поясните кратко, что понимается под термином «шум» в микромеханических приборах.	ПК-2.3.1, ПК-4.У.1, ПК-4.У.2, ПК-4.В.1, ПК-8.В.1

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п	Перечень контрольных работ	
	Не предусмотрено	

- 10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.
- 11. Методические указания для обучающихся по освоению дисциплины Целью дисциплины «Микромеханические инерциальные чувствительные элементы» является получения студентами необходимых навыков в принципах построения, проектирования и изготовления микромеханических гироскопов и акселерометров (ММГ и ММА), которые образуют новый класс инерциальных чувствительных элементов, обладающих уникальными массогабаритными и стоимостными характеристиками, а также ознакомление с областями их применения и перспективы развития.
- 11.1. Методические указания для обучающихся по освоению лекционного материала.

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- ознакомление студентов с физическими законами и принципами функционирования микромеханических гироскопов и акселерометров;
- изложение методов математического описания динамики движения микромеханических гироскопов и акселерометров различных типов и оценки их метрологических характеристик;
- ознакомление с методами возбуждения и стабилизации колебаний механических масс микромеханических гироскопов;
- изложение способов регистрации движения чувствительных масс в микромеханических гироскопах и акселерометрах и первичной обработки измерений;
- ознакомление с вопросами проектирования отдельных функциональных узлов микрогироскопов и акселерометров и приборов в целом;
- изложение методов и способов формирования обратных связей в микромеханических гироскопах и акселерометрах компенсационного типа;
- ознакомление со средствами автоматизации исследования и проектирования МЭМС;
- ознакомление с вопросами технологии изготовления микромеханических приборов и устройств;
- изучение факторов, определяющих погрешности микромеханических гироскопов и акселерометров и способов их компенсации.
- 11.2. Методические указания для обучающихся по выполнению лабораторных работ.

В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;

- получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задание и требования к проведению лабораторных работ

Студенты разбиваются на подгруппы, по 3-4 человека. Перед проведением лабораторной работы обучающемся следует внимательно ознакомиться с методическими указаниями по ее выполнению. В соответствии с заданием обучающиеся должны подготовить необходимые данные, получить от преподавателя допуск к выполнению лабораторной работы, выполнить указанную последовательность действий, получить требуемые результаты, оформить и защитить отчет по лабораторной работе.

Структура и форма отчета о лабораторной работе

Отчет о лабораторной работе должен включать в себя: титульный лист, формулировку задания, теоретические положения, используемые при выполнении лабораторной работы, описание процесса выполнения лабораторной работы, полученные результаты и выводы.

Требования к оформлению отчета о лабораторной работе

По каждой лабораторной работе выполняется отдельный отчет. Титульный лист оформляется в соответствии с шаблоном (образцом) приведенным на сайте ГУАП (www.guap.ru) в разделе «Сектор нормативной документации». Текстовые и графические материалы оформляются в соответствии с действующими ГОСТами и требованиями, приведенными на сайте ГУАП (www.guap.ru) в разделе «Сектор нормативной документации».

11.3. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихсяявляются:

- учебно-методический материал по дисциплине
- 11.4. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины. К каждому занятию, кроме первого, студенты готовят краткие сообщения в форме презентаций (не более 5 слайдов) по теме предыдущей лекции, используя для подготовки научные статьи, изданные не ранее 2018 года. Презентация обязательно должна содержать тему сообщения, содержательную часть и список использованной литературы. Презентации сдаются преподавателю через личный кабинет ГУАП. В случае успешной подготовки 5 сообщений обучающийся в качестве поощрения систематической

и успешной работы освобождается от одного из двух вопросов при проведении промежуточной аттестации по выбору обучающегося.

11.5. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Проводится в форме экзамена — форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Билет содержит два теоретических вопроса. В процессе подготовки обучающиеся могут пользоваться конспектом. В ответ на теоретические вопросы обучающийся должен привести развернутый конспект с планом ответа, необходимыми определениями, иллюстрациями, формулами и зависимостями. В ходе ответа преподавателем могут быть заданы уточняющие вопросы. После ответа преподавателем могут быть заданы студенту 1-2 дополнительных вопроса по вопросам из всего курса, не требующие длительной подготовки. На подготовку конспекта ответа по билету отводится не более 1 часа 20 минут, на обдумывание ответа на дополнительные вопросы не более 10 минут на каждый. В общей сложности ответ студента не должен превышать 40 минут без учета времени на обдумывание дополнительных вопросов.

Система оценок при проведении промежуточной аттестации осуществляется в соответствии с требованиями Положений «О текущем контроле успеваемости и промежуточной аттестации студентов ГУАП, обучающихся по программы высшего образования» и «О модульно-рейтинговой системе оценки качества учебной работы студентов в ГУАП».

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой