МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 23

УТВЕРЖДАЮ Руководитель программы

доцент, к.т.н.

(должность, уч. степень, звание)

Н.А. Гладкий

(инициалы, фамилия)

(подпись)

«**24**» _ **05**_ 2024 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Основы оптики»

Код научной специальности	12.03.02		
Наименование научной специальности	Оптотехника		
Наименование направленности (профиля) (при наличии)	Оптико-электронные приборы и комплексы		
Форма обучения	очная		
Год начала реализации программы	2024		

Санкт-Петербург -2024

Лист согласования рабочей программы дисциплины

Программу составил (а)	5	
старший преподаватель (должность, уч. степень, звание)	(подпись, дата)	К.В. Сердюк (инициалы, фамилия)
Программа одобрена на заседани	и кафедры № 23	
«24» июня 2024 г, протокол № 10)/24	
Заведующий кафедрой № 23 д.т.н.,проф	(подпись, дата)	А.Р. Бестугин (инициалы, фамилия)
, ,		, , , , , , , , , , , , , , , , , , ,
Заместитель директора института	а №2 по методической р	аботе
доц.,к.т.н.,доц.	MH-	Н.В. Марковская
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)

Аннотация

Дисциплина «Основы оптики» входит в образовательную программу высшего образования — программу бакалавриата по направлению подготовки/ специальности 12.03.02 «Оптотехника» направленности «Оптико-электронные приборы и комплексы». Дисциплина реализуется кафедрой «№23».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ОПК-1 «Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в инженерной деятельности, связанной с проектированием и конструированием, технологиями производства оптотехники, оптических и оптико-электронных приборов и комплексов»

ОПК-3 «Способен проводить экспериментальные исследования и измерения, обрабатывать и представлять полученные данные с учетом специфики оптических измерений»

Содержание дисциплины охватывает круг вопросов, связанных с явлениями и процессами, происходящими в оптическом диапазоне электромагнитного поля.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, семинары, самостоятельная работа студентов, консультации.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 6 зачетных единиц, 216 часов.

Язык обучения по дисциплине «русский».

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Целью преподавания дисциплины "Основы оптики" является подготовка бакалавра по направлению 12.03.05, в рамках которой осуществляется получение студентами необходимых знаний в области электромагнитных явлений оптического диапазона, и навыков расчета оптических полей в устройствах оптической обработки информации, а также продемонстрировать полученные студентами знания и навыки при разработке конкретных оптоэлектронных устройств.

- 1.2. Дисциплина входит в состав обязательной части образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа)	Код и наименование	Код и наименование индикатора
компетенции	компетенции	достижения компетенции
Общепрофессиональные компетенции	ОПК-1 Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в инженерной деятельности, связанной с проектированием и конструированием, технологиями производства оптотехники, оптических и оптико-электронных приборов и комплексов	ОПК-1.3.1 знать фундаментальные законы естествознания, основные физические и математические законы ОПК-1.3.2 знать основные методы математического моделирования, связанные с проектированием и конструированием, технологиями производства оптотехники, оптических и оптико-электронных приборов и комплексов ОПК-1.У.1 уметь использовать естественнонаучные и общеинженерные знания при решении практических задач, связанных с проектированием и конструированием, технологиями производства оптотехники, оптических и оптико-электронных приборов и комплексов
Общепрофессиональные компетенции	ОПК-3 Способен проводить экспериментальные исследования и измерения, обрабатывать и представлять полученные данные с учетом специфики оптических измерений	ОПК-3.В.1 владеть навыками проведения экспериментальных исследований и измерений

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- «Математика. Аналитическая геометрия и линейная алгебра»,
- «Математика. Математический анализ»,
- «Физика»,
- $\langle\langle Xимия \rangle\rangle$,
- «Экология»,
- «Информатика»,
- «Инженерная и компьютерная графика».

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и используются при изучении других дисциплин:

- «Лазерные измерения»,
- «Лазерные системы специального назначения»,
- «Оптические устройства обработки информации».

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

В б б б		Трудоемкость по семестрам		
Вид учебной работы	Всего	№5	№6	
1	2	3	4	
Общая трудоемкость дисциплины, 3E/ (час)	6/ 216	2/72	4/ 144	
Из них часов практической подготовки				
Аудиторные занятия, всего час.	102	51	51	
в том числе:				
лекции (Л), (час)	34	17	17	
практические/семинарские занятия (ПЗ), (час)	17	17		
лабораторные работы (ЛР), (час)	34	17	17	
курсовой проект (работа) (КП, КР), (час)	17		17	
экзамен, (час)	36		36	
Самостоятельная работа, всего (час)	78	21	57	
Вид промежуточной аттестации: зачет,	Дифф.		Экз.	
дифф. зачет, экзамен (Зачет, Дифф. зач,	Зач.,	Дифф. Зач.		
Экз.**)	Экз.			

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Taosinga 5 Taogesibi, Tembi gireginisinibi, nx 1932	· ·				
Decrease marks market	Лекции	П3 (С3)	ЛР	КΠ	CPC
Разделы, темы дисциплины	(час)	(час)	(час)	(час)	(час)
Сем	естр 5				
Раздел 1. Уравнения световых полей					
Тема 1.1 Элементы векторного анализа. Векторные					
функции. Поверхностные, контурные и объемные	5	5	5	5	15
интегралы. Дифференциальные операторы					
(градиент, дивергенция, ротор). Теоремы Гаусса и					

Стокса					
Тема 1.2. Уравнения Максвелла в вакууме.					
Волновые уравнения, уравнения Гельмгольца					
Тема 1.3. Теорема Пойнтинга. Энергия световой					
волны. Тема 1.4 Поляризация световых волн					
Раздел 2. Дифракция, дисперсия и интерференция					
световых волн					
Тема 2.1. Дифракция световых волн. Принцип					
Гюйгенса - Френеля.					
Тема 2.2 Интегральная теорема Кирхгофа.	4	4	4	4	14
Дифракция Френеля и Фраунгофера.					
Тема 2.3. Дисперсия световых волн. Фазовая и					
групповая скорости					
Тема 2.4. Интерференционные явления.					
Когерентность.					
Раздел 3. Рассеяние световых волн					
Тема 3 1. Явление рассеяния света. Рассеяние					
Рэлея	4	4	4	4	14
Тема 3.2. Комбинационное рассеяние.	•				
Тема 3.3 Рассеяние Мандельштама - Бриллюэна.					
Тема 3.4. Акустооптическое взаимодействие.					
Раздел 4. Элементы квантовой оптики					
Тема 4.1. Границы применимости волновой теории					
света.					
Тема 4 2. Квантовые гипотезы Планка и	4	4	4	4	14
Эйнштейна. Энергия световой волны при	+	4	4	4	14
квантовом описании					
Тема 4.3. Квантовое описание оптического					
излучения и его классическое приближение.					
Семестр	6				
1					
Выполнение курсового проекта				17	
Итого в семестре:	17		17	17	57
Итого	34	17	34	17	78
111010					

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Номер раздела	Название и содержание разделов и тем лекционных занятий
1	Раздел 1. Уравнения световых полей
	Тема 1.1 Элементы векторного анализа. Векторные функции.
	Поверхностные, контурные и объемные интегралы.
	Дифференциальные операторы (градиент, дивергенция,
	ротор). Теоремы Гаусса и Стокса
	Тема 1.2. Уравнения Максвелла в вакууме. Волновые
	уравнения, уравнения Гельмгольца
	Тема 1.3. Теорема Пойнтинга. Энергия световой волны.

	Тема 1.4 Поляризация световых волн
2	Раздел 2. Дифракция, дисперсия и интерференция световых
_	ВОЛН
	Тема 2.1. Дифракция световых волн. Принцип Гюйгенса -
	Френеля.
	Тема 2.2 Интегральная теорема Кирхгофа. Дифракция
	Френеля и Фраунгофера.
	Тема 2.3. Дисперсия световых волн. Фазовая и групповая
	скорости
	Тема 2.4. Интерференционные явления. Когерентность.
3	Раздел 3. Рассеяние световых волн
	Тема 3 1. Явление рассеяния света. Рассеяние Рэлея
	Тема 3.2. Комбинационное рассеяние.
	Тема 3.3 Рассеяние Мандельштама - Бриллюэна.
	Тема 3.4. Акустооптическое взаимодействие.
4	Раздел 4. Элементы квантовой оптики
	Тема 4.1. Границы применимости волновой теории света.
	Тема 4 2. Квантовые гипотезы Планка и Эйнштейна. Энергия
	световой волны при квантовом описании
	Тема 4.3. Квантовое описание оптического излучения и его
	классическое приближение.

4.3. Практические (семинарские) занятия Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

		The same of		Из них	$N_{\underline{0}}$
No	Темы практических	Формы практических	Трудоемкость,	практической	раздела
п/п	занятий	занятий	(час)	подготовки,	дисцип
				(час)	лины
		Семестр 5			
1	Математический	Семинар	2	2	1
	аппарат				
	классической				
	оптики				
2	Уравнения световых	Семинар	2	2	1
	полей				
3	Теорема Пойнтинга	Семинар	2	2	1
4	Дифракция	Семинар	3	3	2
	световых волн	-			
5	Дисперсия световых	Семинар	2	2	2
	волн	-			
6	Интерференционные	Семинар	2	2	2
	явления	-			
7	Акустооптическое	Семинар	2	2	3
	взаимодействие	-			
8	Элементы квантовой	Семинар	2	2	4
	оптики	_			
	Всего)	17		

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

			Из них	№
№ Наименование лабораторных работ	Трудоемкость,	практической	раздела	
Π/Π		(час)	подготовки,	дисцип
			(час)	лины
	Семестр :	5		
1	Исследование поляризации лазерного	7	7	1
	излучения			
2	Интерференция световых волн	7	7	2
3	Дифракция на прямоугольном отверстии	6	6	2
	Семестр (6		
4	Коллоквиум по ЛР	7	7	2
5	Акустооптическое взаимодействие	7	7	2
	Всего	34		

4.5. Курсовое проектирование/ выполнение курсовой работы Цель курсового проекта:

Примерные темы заданий на курсовой проект приведены в разделе 10 РПД.

4.6. Самостоятельная работа обучающихся

Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего, час	Семестр 5, час	Семестр 6, час
1	2	3	4
Изучение теоретического материала дисциплины (TO)	16	6	10
Курсовое проектирование (КП, КР)	17		17
Расчетно-графические задания (РГЗ)			
Выполнение реферата (Р)			
Подготовка к текущему контролю успеваемости (ТКУ)	15	5	10
Домашнее задание (ДЗ)	15	5	10
Контрольные работы заочников (КРЗ)			
Подготовка к промежуточной аттестации (ПА)	15	5	10
Всего:	78	21	57

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8.

Таблица 8- Перечень печатных и электронных учебных изданий

	Tuestingu e Trepe temb ite turnbir ir strekt pentibir y reembir nogumini			
Шифр/ URL адрес	Библиографическая ссылка	Количество экземпляров в библиотеке (кроме электронных экземпляров)		
[535 K 7]	Калитеевский Н. Н. Волновая оптика. Изд	ФО(2), ГС(14), ГСЧЗ(1)		
	3-е М.: Лань, 2011485485 с.			
[0 62	Оптические устройства в радиотехнике:	ФО(2), ГС(52)		
621.391]	Учебное пособие для вузов. Изд.2-е,			
	прераб. и доп./ Под ред. В. Н. Ушакова,			
	М.: Радиотехника, 2009. – 256 с.			

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет»

URL адрес	Наименование
https://znanium.com/catalo	Ландсберг, Г. С. Оптика: учебное пособие для вузов / Г. С.
g/document?id=369169#ant	Ландсберг 7-е изд., стер Москва : ФИЗМАТЛИТ, 2017
	852 с ISBN 978-5-9221-1742-5 Текст : электронный.
https://znanium.com/catalo	Якушенков, Ю. Г. Основы оптико-электронного
g/document?id=367491	приборостроения: учебник / Ю. Г. Якушенков 2-е изд.,
	перераб. и доп Москва : Логос, 2020 376 с (Новая
	университетская библиотека) ISBN 978-5-98704-652-4
	Текст : электронный.

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

№ п/п	Наименование
	Не предусмотрено

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п	Наименование
	Не предусмотрено

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Лекционная аудитория	51-06-03
2	Мультимедийная лекционная аудитория	51-06-03

- 10. Оценочные средства для проведения промежуточной аттестации
- 10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

таолица 13 — состав оцено-ных средств для п	проведения промежуто той аттестации
Вид промежуточной аттестации	Перечень оценочных средств
Экзамен	Список вопросов к экзамену;
	Экзаменационные билеты;
	Задачи;
	Тесты.
Дифференцированный зачёт	Список вопросов;
	Тесты;
	Задачи.
Выполнение курсового проекта	Экспертная оценка на основе требований к
_	содержанию курсового проекта.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции	Vanayanayanyan ahan ganapayan ya ya garayaya	
5-балльная шкала	Характеристика сформированных компетенций	
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий. 	
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 	

Оценка компетенции	Vanagramyoriyuga ahanyuga ahanyuga vanagramyuga	
5-балльная шкала	Характеристика сформированных компетенций	
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий. 	
«неудовлетворительно» «не зачтено»	 – обучающийся не усвоил значительной части программного материала; – допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; – испытывает трудности в практическом применении знаний; – не может аргументировать научные положения; – не формулирует выводов и обобщений. 	

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	Код индикатора
	Математический аппарат классической электродинамики.	ОПК-1.3.1
	Дифференцирование векторных функций. Разложение	ОПК-1.3.2
	векторных функций в ряд.	ОПК-1.У.1
	Математический аппарат классической электродинамики.	ОПК-3.В.1
	(Интегрирование векторных функций. Градиент,	
	Дивергенция, ротор, поверхностный, контурный и	
	объемный интегралы, теорема Стокса, теорема Гаусса).	
	Уравнение Максвелла.	
	Волновое уравнение.	
	Уравнение Гельмгольца.	
	Теорема Пойнтинга.	
	Принцип Гюйгенса-Френеля	
	Вторая теорема Грина и ее смысл.	
	Интегральная теорема Кирхгофа-Гельмгольца.	
	Функция Грина. Функция Грина свободного пространства.	
	Дифракция Френеля-Фраунгофера.	
	Дисперсия световых волн. Первое приближение теории	
	дисперсии, групповые волны.	
	Интерференция световых волн Условия интерференции.	
	Когерентность световых волн. Когерентные и	
	некогерентные колебания	
	Дифракция. Определение и примеры.	
	Постановка задачи теории дифракции в оптическом	
	диапазоне.	
	Смысл применения второй теоремы Грина при решении	
	дифракционных задач.	
	Выбор функции Грина.	
	Принцип работы интерферометра Майкельсона. Описание	
	временной корреляционной функция оптического поля.	

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16.

Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

	аолица 10 – Вопросы (задачи) для зачета / дифф. зачета				
№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код индикатора			
	Математический аппарат классической электродинамики.	ОПК-1.3.1			
	Дифференцирование, и	ОПК-1.3.2			
	ряды векторных функций. Интегрирование векторных функций	ОПК-1.У.1			
	Математический аппарат классической электродинамики. Градиент.	ОПК-3.В.1			
	Дивергенция.	01111 01211			
	Ротор				
	Математический аппарат классической электродинамики.				
	Поверхностный				
	интеграл. Контурный интеграл. Объемный интеграл				
	Математический аппарат классической электродинамики. Теорема				
	Гаусса. Теорема				
	Стокса				
	Оптический диапазон и его особенности				
	Уравнения Максвелла.				
	Уравнения Максвелла в комплексной форме				
	Волновые уравнения				
	Уравнения Гельмгольца				
	Теорема Пойнтинга				
	Дифракция световых волн. Принцип Гюйгенса-Френеля				
	Строгая постановка задачи теории дифракции. Постановка задачи				
	теории				
	дифракции в оптическом диапазоне.				
	Вторая теорема Грина и ее смысл при решении дифракционных				
	задач				
	Интегральная теорема Кирхгофа-Гельмгольца.				
	Функция Грина. Функция Грина свободного пространства.				
	Выбор функции Грина				
	Дифракция Френеля.				
	Дифракция Фраунгофера				
	Транспаранты. Линза как фазовый транспарант				
	Оптический когерентный фурье-процессор				
	Дисперсия световых волн. Фазовая скорость				
	Разложение волнового числа в ряд Тейлора				
	Первое приближение теории дисперсии. Групповая скорость.				
	Поляризация световых волн. Общий случай поляризации. Виды				
	поляризации				

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

таолица т т	тере тень тем для куресьего проектирования выполнения куресьен рассты	
№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы	
1	1 Расчет шумовой погрешности оптико-электронных приборов	

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

№ п/п	Примерный перечень вопросов для тестов	Код индикатора
1	Что устанавливает операция rot : связь между скаляром и вектором	ОПК-1.3.1
	_ связь между скаляром и скаляром _связь между вектором и	
	вектором _ связь между вектором и скаляром	
2	Что устанавливает операция grad : связь между скаляром и	
	вектором связь между скаляром и скаляром связь между	
	вектором и вектором _ связь между вектором и скаляром	
3	Что устанавливает операция div : связь между скаляром и вектором]
	_ связь между скаляром и скаляром _ связь между вектором и	
	вектором _ связь между вектором и скаляром	
4	Что устанавливает теорема Гаусса: связь между контурным и	
	поверхностным интегралами связь между объемным и	
	поверхностным интегралами связь между контурным и объемным	
	интегралами	
5	Что устанавливает теорема Стокса: связь между контурным и	•
J	поверхностным интегралами связь между объемным и	
	поверхностным интегралами _ связь между контурным и объемным	
	интегралами	
6	Что связывают уравнения Максвелла: связь между напряженностью	-
U	электрической Е компоненты электромагнитного поля и	
	плотностью ј электрического тока _ связь между напряженности	
	электрической Е и магнитной Н компонентами электромагнитного	
	поля _ связь между пространственными и временными	
	характеристиками какой-либо одной компоненты	
	электромагнитного поля	
7	Что связывают волновые уравнения: _ связь между	
	напряженностью электрической Е компоненты электромагнитного	
	поля и плотностью ј электрического тока _ связь между	
	напряженностями электрической Е и магнитной Н компоненты	
	электромагнитного поля _ связь между пространственными и	
	временными характеристиками какой-либо одной компоненты	
	электромагнитного поля _ связь между пространственными	
	характеристиками какойлибо одной компоненты	
	электромагнитного поля	
8	Что связывает уравнение Гельмгольца: _ связь между	
	напряженностью электрической Е компоненты электромагнитного	
	поля и плотностью ј электрического тока _ связь между	
	напряженностями электрической Е и магнитной Н компоненты	
	электромагнитного поля _ связь между пространственными и	
	временными характеристиками какой-либо одной компоненты	
	электромагнитного поля _ связь между пространственными	
	характеристиками какойлибо одной компоненты	
	электромагнитного поля	
9	Волновое уравнение: уравнение в частных производных]
	обыкновенное дифференциальное уравнение _ трансцендентное	
	уравнение алгебраическое уравнение	
10	Уравнение Гельмгольца: уравнение в частных производных	ОПК-1.3.2
10	обыкновенное дифференциальное уравнение трансцендентное	01110 1.5.2
	уравнение алгебраическое уравнение	
11	Волновое уравнение в общем случае: одномерное _ двухмерное _	1
11	Волновое уравнение в оощем случае, одномерное _ двухмерное _	

	Уравнение Гельмгольца в общем случае: одномерное двухмерное	
	трехмерное четырехмерное	
12	Чем принято определять состояние поляризации электромагнитного	-
12	поля: ориентацией вектора электрической компоненты	
	ориентацией вектора магнитной компоненты _ ориентацией вектора	
	Пойнтинга	
13	На базе каких законов выводятся уравнения Максвелла: Ома	-
13	Кирхгофа _ электромагнитной индукции _ полного тока	
14	Укажите вектор Пойнтинга: $H \times E_j = \sigma E_j = E \times H$	-
15	Укажите вектор поинтинга. пхе_ј –ое _ ехп Что является математической основой скалярной теории	-
13		
	дифракции: теорема Стокса _ теорема Грина _ теорема Гаусса _ теорема Пойнтинга	
16	*	-
17	Дайте определение явления дифракции Что является физической основой скалярной теории дифракции:	-
1 /		
	закон полного тока _ закон электромагнитной индукции _ принцип	
18	Гюйгенса — Френеля _ принцип причинности	-
18	Что описывает дифракция Фраунгофера: _ поле на поверхности	
10	экрана поле в отверстии поле в дальней зоне	-
19	Что устанавливает теорема Грина: _ связь между контурным и	
	поверхностным интегралами _ связь между объемным и	
	поверхностным интегралами _ связь между контурным и объемным	
20	интегралами	ОПК-1.У.1
20	Дайте определение когерентных колебаний	Olik-1.y.1
21	Какие колебания могут быть когерентными: два случайных	
	колебания _ два монохроматических колебания _	
22	монохроматическое и случайное колебания	-
22 23	Дайте определение явления интерференции Какие колебания дают устойчивую интерференционную картину:	-
23	два когерентных колебания два случайных колебания два	
	частично когерентных колебания _ два случаиных колебания _ два	
24	Какое минимальное количество источников необходимо для	-
24	1 0	
25	Что такое квазимонохроматическое излучение: широкополосное	-
23	излучение низкочастотное излучение узкополосное излучение	
26	Что такое диспергирующая среда: среда с мелкодисперсными	-
20	компонентами среда, в которой наблюдается затухание излучения	
	среда, в которой наблюдается дисперсия фазовой скорости	
	_ среда, в которой наозподается дисперсия фазовой скорости _ мутная среда	
27	Что такое дисперсия фазовой скорости: зависимость фазовой	-
21	скорости монохроматической волны от частоты непостоянство	
	скорости движения, огибающей узкополосного излучения	
	линейная зависимость волнового числа от угловой частоты	
	линейная зависимость волнового числа от угловой частоты	
28	Явление дисперсии фазовой скорости явление: вредное полезное	1
	однозначно ответить невозможно	
29	Затухание оптического излучения в среде явление: вредное	1
	полезное _ однозначно ответить невозможно	
30	Где наблюдается явление дисперсии фазовой скорости: в	ОПК-3.В.1
	электрических цепях в волновых системах при прохождении	JIII J.D.1
	электрического тока в вакууме	
31	В рамках какого раздела волновой теории применяется	1
<u> </u>	T Lundam samasan raskim uhumamaran	I

	приближение Кирхгофа: теории дисперсии _ теории интерференции
	_ теории дифракции _ теории рассеяния
32	Что такое функция Грина: реакция линейной системы на δ — воздействие _ реакция линейной системы на единичную функцию _ реакция линейной системы на гармоническое колебание _ реакция линейной системы на стохастическое воздействие
33	При каких соотношениях длины волны λ и минимального размера а отверстия справедливо приближение Кирхгофа: а $<<\lambda$ _ a $>>\lambda$ _ a \approx λ
34	Как учитываются граничные условия в рамках скалярной теории дифракции: применяется строгий электродинамический подход _ учитывается влияние на вектор Н _ учитывается влияние на вектор Е _ никак не учитываются
35	Отрицательные частоты имеют физический смысл в случае спектров: временных процессов _ пространственных распределений _ не имеют физического смысла
36	Что не выполняет пространственного преобразования Фурье: слой свободного пространства _ линза _ линза + слои свободного пространства
37	Что такое фотон: элементарная частица _ часть атома _ часть молекулы _ часть твердого тела
38	Как выражается энергия фотона: 2 E _ 2 H _ EH , _ ηω
39	Какой электрический заряд несет фотон: положительный _ отрицательный _ электрически нейтрален
40	Что связывает квантовое и классическое описание оптического излучения: принцип неопределенности Гейзенберга _ принцип причинности _ принцип соответствия Бора

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п	Перечень контрольных работ	
	Не предусмотрено	

- 10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.
 - 11. Методические указания для обучающихся по освоению дисциплины
- 11.1. Методические указания для обучающихся по освоению лекционного материала.

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- изложение вводной части;
- изложение основной части лекции;
- краткие выводы по каждому из вопросов;
- заключение;
- рекомендации литературных источников по излагаемым вопросам.
- 11.2. Методические указания для обучающихся по прохождению практических занятий.

Практическое занятие является одной из основных форм организации учебного процесса, заключающаяся в выполнении обучающимися под руководством преподавателя комплекса учебных заданий с целью усвоения научно-теоретических основ учебной дисциплины, приобретения умений и навыков, опыта творческой деятельности.

Целью практического занятия для обучающегося является привитие обучающимся умений и навыков практической деятельности по изучаемой дисциплине.

Планируемые результаты при освоении обучающимся практических занятий:

- закрепление, углубление, расширение и детализация знаний при решении конкретных задач;
- развитие познавательных способностей, самостоятельности мышления, творческой активности;
- овладение новыми методами и методиками изучения конкретной учебной дисциплины;
- выработка способности логического осмысления полученных знаний для выполнения заданий;
- обеспечение рационального сочетания коллективной и индивидуальной форм обучения.

Требования к проведению практических занятий

Требования к оформлению отчета представлены в методических указаниях. Методические указания изданы в виде электронных ресурсов библиотеки ГУАП.

11.3. Методические указания для обучающихся по выполнению лабораторных работ.

В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося.

Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задание и требования к проведению лабораторных работ

Лабораторные работы выполняются на лабораторных установках с заполнением протокола измерений.

Структура и форма отчета о лабораторной работе

Отчет по лабораторной работе включает обязательные пункты, представленные в методических указаниях.

Требования к оформлению отчета о лабораторной работе

Требования к оформлению отчета представлены в методических указаниях. Методические указания изданы в виде электронных ресурсов библиотеки ГУАП.

11.4. Методические указания для обучающихся по прохождению курсового проектирования/выполнения курсовой работы

Курсовой проект/ работа проводится с целью формирования у обучающихся опыта комплексного решения конкретных задач профессиональной деятельности.

Курсовой проект/ работа позволяет обучающемуся:

Структура пояснительной записки курсового проекта/ работы

Пояснительная записка курсового проект включает обязательные пункты, представленные в методических указаниях.

Требования к оформлению пояснительной записки курсового проекта/ работы

Требования к оформлению представлены в методических указаниях. Методические указания изданы в виде электронных ресурсов библиотеки ГУАП.

11.5. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихсяявляются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ (для обучающихся по заочной форме обучения).
- 11.6. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

Возможные методы текущего контроля успеваемости обучающихся:

- устный опрос на занятиях;
- систематическая проверка выполнения индивидуальных заданий;
- защита отчётов по лабораторным работам; проведение контрольных работ;
- тестирование;
- контроль самостоятельных работ (в письменной или устной формах);
- контроль выполнения индивидуального задания на практику;
- контроль курсового проектирования и выполнения курсовых работ;
- иные виды, определяемые преподавателем.

Контроль успеваемости обучающихся проводится в форме тестирования.

11.7. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

- экзамен форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».
- зачет это форма оценки знаний, полученных обучающимся в ходе изучения учебной дисциплины в целом или промежуточная (по окончании семестра) оценка знаний обучающимся по отдельным разделам дисциплины с аттестационной оценкой «зачтено» или «не зачтено».
- дифференцированный зачет это форма оценки знаний, полученных обучающимся при изучении дисциплины, при выполнении курсовых проектов, курсовых работ, научно-исследовательских работ и прохождении практик с аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой
		_	