МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 21

УТВЕРЖДАЮ Руководитель образовательной программы доц.,к.т.н. (должность, уч. степень, звание) Н.А. Гладкий (инициалы, българа) (подпись) « 20 » июня 2024 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Комплексирование систем поиска и наведения» (Наименование дисциплины)

Код направления подготовки/ специальности	12.04.02	
Наименование направления подготовки/ специальности	Оптотехника	
Наименование направленности	Оптико-электронные приборы и комплексы	
Форма обучения	очная	
Год приема	2024	

Санкт-Петербург- 2024

Лист согласования рабочей программы дисциплины

Программу составил (а)		
доц.,к.т.н.,м.н.с.	Charles	М.Б.Рыжиков
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Программа одобрена на заседан	ии кафедры № 21	
« <u>20</u> » <u>июня</u> 2024 г, протоко	ол № <u>8</u>	
Заведующий кафедрой № 21		
д.т.н.,проф.	M	А.Ф. Крячко
(уч. степень, звание)	(подпись дата)	(инициалы, фамилия)
	V	
Заместитель директора институ	га №2 по методической рабо	оте
доц.,к.т.н.,доц.		Н.В. Марковская
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)

Аннотация

Дисциплина «Комплексирование систем поиска и наведения» входит в образовательную программу высшего образования — программу магистратуры по направлению подготовки/ специальности 12.04.02 «Оптотехника» направленности «Оптикоэлектронные приборы и комплексы». Дисциплина реализуется кафедрой «№21».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ПК-2 «Способность к анализу состояния научно-технической проблемы, технического задания и постановке цели и задач проектирования оптических и оптико-электронных приборов, систем и комплексов на основе подбора и изучения литературных и патентных источников»

ПК-3 «Способность к выбору оптимального метода создания новых оптических и оптико-электронных приборов и комплексов и разработке программ экспериментальных исследований, проведению оптических, фотометрических и электрических измерений с выбором технических средств и обработкой результатов»

ПК-4 «Способность к определению направлений и содержанию исследований по разработке и созданию новых квантово-оптических систем для решения задач навигации, связи и контроля космического пространства»

Содержание дисциплины охватывает круг вопросов, связанных с изучением основ теории и технических средств комплексных систем наведения. Основное внимание уделяется изучению принципов комплексирования измерений систем радио- и лазерной локации для повышения точности, помехозащищенности и надежности систем наведения, решением основных научных и технических задач, возникающих при разработке и техническом обслуживании систем наведения и управления летательными и космическими аппаратами.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лабораторные работы, практические занятия, самостоятельная работа обучающегося.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 3 зачетных единицы, 108 часов. Язык обучения по дисциплине «русский»

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Получение обучающимися необходимых знаний, умений и навыков в области разработки структурных и функциональных схем комплексных систем поиска и наведения, знаний о принципах построения комбинированной обработки информации, получаемой от радиотехнических и лазерных измерителей параметров движения летательных аппаратов. Предоставление возможности обучающимся развить и продемонстрировать навыки в области расчетов основных тактико-техническихпараметров систем наведения и результатов вторичной обработки сигналов с выходов систем извлечения информации.

- 1.2. Дисциплина входит в состав части, формируемой участниками образовательных отношений, образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа)	Код и наименование	каторов их достижения Код и наименование индикатора достижения
компетенции	компетенции	компетенции
Профессиональные компетенции	ПК-2 Способность к анализу состояния научно-технической проблемы, технического задания и постановке цели и задач проектирования оптических и оптико-электронных приборов, систем и комплексов на основе подбора и изучения литературных и патентных источников	ПК-2.У.1 уметь составлять планы поиска научнотехнической информации по разработке оптических и оптико-электронных приборов и комплексов
Профессиональные компетенции	ПК-3 Способность к выбору оптимального метода создания новых оптических и оптико-электронных приборов и комплексов и разработке программ экспериментальных исследований, проведению оптических, фотометрических и электрических	ПК-3.У.1 уметь формировать задачи для выявления принципов и путей создания новых оптических и оптико-электронных приборов и комплексов ПК-3.У.3 уметь выбирать оптимальные методы и разрабатывать программы экспериментальных исследований ПК-3.В.1 владеть навыками проведения оптических, фотометрических и электрических измерений

	измерений с выбором технических средств и обработкой результатов	
Профессиональные компетенции	ПК-4 Способность к определению направлений и содержанию исследований по разработке и созданию новых квантово-оптических систем для решения задач навигации, связи и контроля космического пространства	ПК-4.У.1 уметь проводить теоретические и экспериментальные исследования, обосновывающие разработку и создание новых квантово-оптических систем и их составных частей

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- «Распространение электромагнитных радиоволн»,
- «Проектирование лазерных систем»,
- «Источники и приемники оптического излучения»,
- «Устройства СВЧ и антенны».

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и используются при изучении других дисциплин:

- «Лазерные системы специального назначения».

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

Вид учебной работы	Всего	Трудоемкость по семестрам
		№3
1	2	3
Общая трудоемкость дисциплины , 3E/ (час)	3/ 108	3/ 108
Из них часов практической подготовки	34	34
Аудиторные занятия, всего час.	34	34
в том числе:		
лекции (Л), (час)		
практические/семинарские занятия (ПЗ),	17	17
(час)	17	1,
лабораторные работы (ЛР), (час)	17	17
курсовой проект (работа) (КП, КР), (час)		
экзамен, (час)	36	36
Самостоятельная работа, всего (час)	38	38
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Экз.	Экз.

Примечание: **кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

1 аолица 3 – Разделы, темы дисциплины, их трудо		пр (Ср)	ЛР	КП	CPC
Разделы, темы дисциплины	Лекции (час)	ПЗ (СЗ) (час)	лР (час)	КП (час)	(час)
		(4ac)	(4ac)	(4ac)	(4ac)
Сем	Семестр 3				
Раздел 1. Общие сведения о методах и системах					
управления и наведения					
Тема 1.1 Методы наведения. Этапы наведения.					
Требования к траекториям полета.					
Тема 1.2 Метод параллельного сближения.		3			3
Тема 1.3 Метод наведения по кривой погони.					
Метод совмещения.					
Тема 1.4 Ошибка наведения.					
Тема 1.5 Системы самонаведения					
Раздел 2. Математические модели траекторий	1				
подвижных объектов					
Тема 2.1 Полиноминальные модели с					
неизвестными коэффициентами.					
Тема 2.2 Модель на основе векторного			4		5
марковского процесса.					
Тема 2.3 Полиноминальная аппроксимация					
участков траектории.					
Тема 2.4 Вектор состояния динамического объекта.					
Раздел 3. Первичная и вторичная обработка					
информации в радиолокационных и лазерных					
локационных системах					
Тема 3.1 Поиск, обнаружение и оценивание					
параметров сигнала.			4		5
Тема 3.2 Оценивание угловых координат, дальности					
и скорости объектов.					
Тема 3.3 Определение текущих координат					
местоположения объектов					
Раздел 4. Оценивание координат объектов при					
использовании радиотехнических и лазерных					
устройств локации					
Тема 4.1 Измерение дальности. Китайская теорема					
об остатках, перебор частот повторения импульсов.					5
Тема 4.2 Измерение скорости. Способы измерения в					
радио и оптическом диапазоне					
Тема 4.3 Измерение угловых координат. Способы					
измерения в радио и оптическом диапазоне					

Раздел 5. Способы устранения эффекта расходимости оценок Тема 5.1 Фильтры с растущей памятью. Фильтры с эффективной конечной памятью. Тема 5.2 Рекуррентные фильтры с конечной		6			5
памятью. Раздел 6. Фильтрация траекторных параметров подвижных объектов Тема 6.1 Оценка параметров траекторий, заданных детерминированными функциями. Тема 6.2 Оценивание параметров траекторий, описываемых марковскими моделями.		8	4		5
Раздел 7. Способы комплексирования Тема 7.1 Задачи и способы комплексирования Тема 7.2 Способ комплексирования с введением дополнительной информации внутрь контура слежения радиотехнического измерителя. Тема 7.3 Синтез комплексных систем.					5
Раздел 8. Предельная точность комплексных систем наведения Тема 8.1 Совместная функция информации при группировании однотипных данных от нескольких измерителей			5		5
Итого в семестре:		17	17		38
Итого	0	17	17	0	38

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий.

Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Номер раздела	Название и содержание разделов и тем лекционных занятий
	Учебным планом не предусмотрено

4.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

uomi.	Ha c Tipakiii ieekiie sa	питии и их трудосикості			
				Из них	\mathcal{N}_{2}
$N_{\underline{0}}$	Темы практических	Формы практических	Трудоемкость,	практической	раздела
п/п	занятий	занятий	(час)	подготовки,	дисцип
				(час)	лины
		Семестр 3			
	Анализ уровня	решение ситуационных	3	0.5	1
	априорной	задач, мозговой штурм,			
	неопределенности	групповые дискуссии			
	Алгоритмы измерения	решение ситуационных	3	0.5	5
	координат объектов в	задач, мозговой штурм,			
	лазерных и	групповые дискуссии			
	радиотехнических				
	измерителях				

Оценивание угловых	решение задач	3	0.5	5
координат в				
моноимпульсном				
режиме				
Оценка точности	решение задач	4	0.5	6
измерения координат	_			
объектов				
Разработка	решение задач	4	0.5	6
математических	-			
моделей траекторий				
движения воздушных				
судов				
Всег	0	17		

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

№ п/п	Наименование лабораторных работ	Трудоемкость, (час)	Из них практической подготовки, (час)	№ раздела дисцип лины
	Семестр	3		
	Моделирование процесса радиолокационного автоматического сопровождения на ПВЭМ	4	1	2
	Оценка статистических характеристик радиолокационного и лазерного дальномеров	4	1	3
	Исследование и подбор параметров альфа- бета фильтра при заданном виде прогнозируемой траектории	4	1	6
	Исследование статистических характеристик комплексированных измерителей	5	1	8
	Всего	17		

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся

Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего,	Семестр 3,
Вид самостоятсявной расоты	час	час
1	2	3
Изучение теоретического материала дисциплины (TO)	19	19
Курсовое проектирование (КП, КР)		
Расчетно-графические задания (РГЗ)	8	8

Выполнение реферата (Р)	7	7
Подготовка к текущему контролю успеваемости (ТКУ)	2	2
Домашнее задание (ДЗ)		
Контрольные работы заочников (КРЗ)		
Подготовка к промежуточной аттестации (ПА)	2	2
Всего:	38	38

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8. Таблица 8— Перечень печатных и электронных учебных изданий

Таблица 8– Перечень печатных и электронных учебных изданий

Шифр/ URL адрес	Библиографическая ссылка	Количество экземпляров в библиотеке (кроме электронных экземпляров)
https://e.lanbook.com/book/	Общая теория радиолокации и	1 /
128752	радионавигации.	
	Распространение радиоволн:	
	учебник / А. Н. Фомин, В. А.	
	Копылов, А. А. Филонов, А. В.	
	Андронов; под редакцией А. Н.	
	Фомина. — Красноярск : СФУ,	
	2017. — 318 c. — ISBN 978-5-	
	7638-3738-4. — Текст:	
	электронный // Лань:	
	электронно-библиотечная	
	система	
https://e.lanbook.com/book/	Основы импульсной лазерной	
106446	локации: учебное пособие / В.	
	И. Козинцев, М. Л. Белов, В. М.	
	Орлов [и др.]; под редакцией В.	
	Н. Рождествина. — 2-е изд. —	
	Москва : МГТУ им. Баумана,	
	2010. — 573 c— ISBN 978-5-	
	7038-3436-7. — Текст:	
	электронный // Лань:	
	электронно-библиотечная	
	систем	
https://e.lanbook.com/book/52366	Илюхин, И. М. Авиационные	
	оптико-электронные системы	

	прицеливания и наведения:	
	учебное пособие / И. М.	
	Илюхин. — Москва : МГТУ им.	
	H.Э. Баумана, 2011. — 46 c. —	
	Текст: электронный // Лань:	
	электронно-библиотечная	
	система	
629.7	Иванов, Ю. П.	120
И 20	Комплексирование	
	информационно-измерительных	
	устройств летательных	
	аппаратов: учебное пособие для	
	вузов / Ю. П. Иванов, А. Н.	
	Синяков, И. В. Филатов; Ред.: В.	
	А. Боднер Л. :	
	Машиностроение. Ленингр. отд-	
	ние, 1984 207 с	
621.396	В. А. Ненашев	20
И 21	Пространственно-распределенные	
	системы радиолокационного и	
	оптического мониторинга:	
	монография / В. А. Ненашев, А. А.	
	Сенцов ; СПетерб. гос. ун-т	
	аэрокосм. приборостроения	
	Санкт-Петербург : Изд-во ГУАП,	
	2022 191 c.	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет»

URL адрес	Наименование
https://e.lanbook.com	Лань: электронно-библиотечная система

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

№ п/п	Наименование
	Не предусмотрено

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п		Наименование
	Не предусмотрено	

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ π/π	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Лекционная аудитория	

- 10. Оценочные средства для проведения промежуточной аттестации
- 10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Экзамен	Список вопросов к экзамену;
	Экзаменационные билеты;
	Задачи;
	Тесты.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции	Vanartanyatyira ahan ginanatyi iy kargiataiyiyi
5-балльная шкала	Характеристика сформированных компетенций
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий.

Оценка компетенции	V		
5-балльная шкала	Характеристика сформированных компетенций		
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 		
«удовлетворительно» «зачтено»	– обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; – допускает несущественные опибки и неточности:		
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 		

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

	Вопросы (зада ін) для экзамена	
№ п/п	Перечень вопросов (задач) для экзамена	Код индикатора
1	Методы наведения. Этапы наведения. Требования к траекториям полета	ПК-2.У.1
2	Глобальные и локальные системы координат в навигации	ПК-2.У.1
3	Метод наведения по кривой погони. Метод совмещения	ПК-3.У.3
4	Метод параллельного сближения	ПК-3.У.3
5	Метод совмещения	ПК-3.У.3
6	Полиноминальные модели траектории с неизвестными коэффициентами	ПК-3.В.1
7	Вектор состояния динамического объекта	ПК-4.У.1
8	Поиск, обнаружение и оценивание параметров сигнала	
9	Различия в оценивании угловых координат, дальности и скорости объектов в оптическом и в радиодиапазоне	ПК-4.У.1
10	Измерение дальности. Китайская теорема об остатках, перебор частот повторения импульсов	ПК-4.У.1
11	Измерение скорости. Способы измерения в радио и оптическом диапазоне	ПК-4.У.1
12	Измерение угловых координат. Способы измерения в радио и оптическом диапазоне	ПК-4.У.1
13	Рекуррентные фильтры с конечной памятью	ПК-3.У.1
14	Оценка параметров траекторий, заданных детерминированными функциями	ПК-4.У.1

15	Оценивание параметров траекторий, описываемых	ПК-4.У.1
	марковскими моделями	
16	Основные схемы, способы и задачи комплексирования	ПК-3.У.1
17	Совместная функция информации при группировании однотипных данных от нескольких измерителей	ПК-3.У.3
18	Экстраполяция траектории	ПК-3.У.3
19	Интерполяция траектории	ПК-3.У.3
20	Влияние габаритных ограничений на разработку бортовых систем наведения	ПК-3.У.1
21	Схема лидара с внешней модуляцией огибающей	ПК-3.У.1
22	Схема комплексирования в случае разработки системы КЭНС	ПК-3.У.1

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16.

Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код индикатора
	Учебным планом не предусмотрено	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

№ п/п	Примерный перечень вопросов для тестов	
0 (2 11) 11	1 1 1	индикатора
1	Прочитайте текст, выберите один правильный ответ и запишите	ПК-2.У.1
	аргументы, обосновывающие выбор ответа:	
	При заданном размере излучающей апертуры теоретический	
	переход от меньшей длины волны излучения к большей	
	позволяет получить?	
	а) лучшую когерентность излучения	
	б) сужение основного луча функции направленности	
	в) расширение основного луча функции направленности	
	г) увеличение коэффициента направленного действия	
2	Прочитайте текст, выберите несколько правильных ответов и	ПК-2.У.1
	запишите аргументы, обосновывающие выбор ответов:	
	Укажите преимущества бортовых радиолокаторов над	
	лидарами	
	а) меньшая типовая угловая расходимость основного луча	
	б) возможности формирования зондирующих сигналов с	
	частотной модуляцией	
	в) меньшее затухание в сложных погодных условиях	
	г) возможность создания фемтосекундных импульсов в режиме	
	синхронизации мод	

3	Выберите правильно соответствие	е межлу вопросами и ответами	ПК-2.У.2
	Поиск номера частотного	оценивания дальности до	1111 2.0 .2
	фильтра принятого	объекта	
	зондирующего сигнала	OODERIU	
	используется для		
	Китайская теорема об остатках	оценивании доплеровского	1
	используется для	смещения	
	Моноимпульсный метод оценки	улучшения точности оценки	-
	используется для	скорости сближения	
	используется для	скорости солижения	
	Стабильность частоты	улучшения точности пеленгации	-
	гетеродина в приемном тракте		
	повышают для		
4	Опишите правильную последовате	ельность при формировании	ПК-2.У.1
	излучения в газовом лидаре	1 1 1	
	1) ионизация газа		
	2) формирование внешнего электр	рического поля	
	3) усиление в оптическом резонат		
	4) создание инверсии населенност	•	
5	Пояснить метод электронного упр	авление лучом в ФАР или АФАР	ПК-2.У.1
6	Прочитайте текст, выберите один		ПК-3.У.1
	аргументы, обосновывающие выб		
		сближения при неизменной	
	скорости носителя РЛС и п		
	а) азимут и угол места цели	<u> </u>	
	б) значение пеленгационно		
	в) доплеровское смещение		
	г) разница курсов между но	осителем РЛС и целью	
7	· · · · · · · · · · · · · · · · · · ·	есколько правильных ответов и	ПК-3.У.3
	запишите аргументы, обосновыва	нющие выбор ответов:	
	При использовании сигналов с	о средней частотой повторения	
	импульсов для носителя РЛС и це	ели на догонном курсе	
	а) значение частоты отраженно	ого сигнала лежит в области	
	частот переотражений от земн	ой поверхности	
	б) есть только неоднозначност	ь по скорости сближения	
	в) есть неоднозначность по ско	ррости сближения и по дальности	
	г) целесообразно переходить н		
	высокой частотой повторения		
8	Выберите правильно соответствие	е между вопросами и ответами	ПК-3.У.3
	Для ближней локации с высоким	РЛС с синтезированием	
	угловым разрешением по обоим	апертуры	
	угловым координатам		
	используют]
	Для ближней локации с высоким	лидар	
	угловым разрешением только по		
	азимуту используют]
	Для оценивания угла сноса	многолучевую систему]
	Для реализации	РСЛ с разведением излучающей	
	моноимпульсного метода для	апертуры на прием на две	
	измерения по азимуту	симметричные в	
	используют	меридиональной плоскости	
		половины	

0	O		писама
9	Опишите правильную последовато	ПК-3.У.3	
	возможного значения физической		
	времени), измеряемой в ходе лазер		
	предыдущих результатов измерен		
	1) выбор модели зависимости физ		
	2) интерполяция данных с датчика		
	3) фильтрация данных с датчика		
	4) аппроксимация данных с датчи		
10	Определить правильно основную :	•	ПК-3.У.3
11	Прочитайте текст, выберите один		
	аргументы, обосновывающие выб		
	Для поиска вектора скорости объе		
	а) измерить скорость допле	-	
	б) измерить скорость по да		
	в) знать скорость по Допле	•	
	г) знать несколько взаимны	іх положений РЛС и объекта в	
	пространстве относительно	стабильной системы координат,	
	полученные синхронно во	времени	
12	Прочитайте текст, выберите не	есколько правильных ответов и	ПК-4.У.1
	запишите аргументы, обосновыва	ающие выбор ответов:	
	для формирования сложного сиги	=	
	1) Линейное изменение часто	ГЫ	
	2) Круговую поляризацию эле	ектромагнитных волн	
	3) Фазо-манипулированные сигналы с кодом Баркера		
	4) Самосинхронизирующийся		
13	Выберите правильно соответствие		ПК-4.У.1
	При решении задачи оценивания	метод калмановской фильтрации	
	точности по вектору данных		
	измеренных значений		
	пеленгации объекта при помощи		
	лазерного лидара какой		
	параметр или метод будете		
	использовать		
	для экстраполяции значений при	среднеквадратическое	
	оценивании угловой координаты	отклонение	
	объекта, зондируемого лазерным		
	лидаром какой метод или		
	характеристика позволяет найти		
	параметры кривой,		
	аппроксимирующей закон		
	изменения угла?		
	При априорно известной	метод наименьших квадратов	
	математической модели закона	,,	
	изменения угловой координаты		
	объекта, зондируемого лазерным		
	лидаром, какой метод или		
	параметр позволяет реализовать		
	более быструю сходимость		
	оценивания пеленга при		
	реализации последовательного		
	дискретного по времени		
	зондирования		
	эондирования		

	Какой метод для оценивания	моноимпульсный метод	ПК-4.У.1
	пеленга в лазерной локации не		
	может быть применим из-за		
	сложности фазовой		
	автоподстройки разностных		
	каналов приема		
14	Опишите правильную последовато	ельность получения	
	прогнозируемого на будущее врем		
	величины (например, при прогноз		
	независимом канале измерений)		
	1) заполнение вектора данных		
	2) медианная фильтрация дан		
	3) регрессионный анализ		
	4) интерполяция аппроксимирующей функции		
15	Указать правильно достоинства и недостатки бортовых		ПК-4.У.1
	локационных систем оптического	диапазона	

ПРИМЕЧАНИЕ: в таблице предусмотрена следующая система оценивания тестовых заданий:

1 тип) Задание комбинированного типа с выбором одного верного ответа из предложенных обоснованием выбора четырех считается верным, если приведены конкретные правильно указана цифра и аргументы, используемые при выборе ответа. Полное совпадение c верным ответом оценивается баллом, неверный отсутствие баллов. ответ или его

2 тип) Задание комбинированного типа с выбором нескольких вариантов ответа из предложенных и развернутым обоснованием выбора считается верным, если правильно указаны цифры и приведены конкретные аргументы, используемые при выборе ответов. Полное совпадение с верным ответом оценивается 1 баллом, если допущены ошибки или ответ отсутствует – 0 баллов.

3 тип) Задание закрытого типа на установление соответствия считается если установлены соответствия (позиции одного все ИЗ столбца). верно сопоставлены имкидикоп другого Полное совпадение верным ответом оценивается 1 баллом, неверный ответ или его отсутствие -0 баллов

Задание закрытого типа на установление последовательности если вся считается верным, правильно указана последовательность Полное совпадение с верным ответом оценивается баллом, если допущены ошибки отсутствует ответ

5 тип) Задание открытого типа с развернутым ответом считается верным, если ответ совпадает с эталонным по содержанию и полноте. Правильный ответ за задание оценивается в 3 балла, если допущена одна ошибка \неточность \ ответ правильный, но не полный - 1 балл, если допущено более 1 ошибки \ ответ неправильный \ ответ отсутствует – 0 баллов.

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п		П	еречень контрольных работ
	Не предусмотрено		

10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в

локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

- 11. Методические указания для обучающихся по освоению дисциплины
- 11.1. Методические указания для обучающихся по освоению лекционного материала.

Лекционные занятия по дисциплине учебным планом не предусмотрены.

11.2. Методические указания для обучающихся по участию в семинарах

Основной целью для обучающегося является систематизация и обобщение знаний по изучаемой теме, разделу, формирование умения работать с дополнительными источниками информации, сопоставлять и сравнивать точки зрения, конспектировать прочитанное, высказывать свою точку зрения и т.п. В соответствии с ведущей дидактической целью содержанием семинарских занятий являются узловые, наиболее трудные для понимания и усвоения темы, разделы дисциплины. Спецификой данной формы занятий является совместная работа преподавателя и обучающегося над решением поставленной проблемы, а поиск верного ответа строится на основе чередования индивидуальной и коллективной деятельности.

При подготовке к семинарскому занятию по теме прослушанной лекции необходимо ознакомиться с планом его проведения, с литературой и научными публикациями по теме семинара.

Требования к проведению семинаров

Аудиторная работа на семинарах по дисциплине выполняется на учебных занятиях под непосредственным руководством преподавателя и по его заданию. В ходе семинара предусматривается осуществление контроля за подготовкой студентами конспектов, таблиц, схем и др. материалов, отражающих результаты самостоятельной работы с литературой до семинара и в ходе его проведения; наличие мобилизации, организации и активизации деятельности студентов в ходе вступительного слова преподавателя; побуждение студентов к высказыванию, выступлению, анализ выступлений и замечаний, сделанных по ходу семинарского занятия; наличие микровведения и микрозаключения до и после каждого вопроса семинара; подведение итогов, корректировка недостатков, оценка работы студентов, советы по улучшению подготовки студентов, ответы на вопросы студентов в ходе заключительного слова; согласование рассматриваемого на семинарском занятии материала с содержанием других видов аудиторной и самостоятельной работы студентов.

11.3. Методические указания для обучающихся по прохождению практических занятий

Практическое занятие является одной из основных форм организации учебного процесса, заключающаяся в выполнении обучающимися под руководством преподавателя комплекса учебных заданий с целью усвоения научно-теоретических основ учебной дисциплины, приобретения умений и навыков, опыта творческой деятельности.

Целью практического занятия для обучающегося является привитие обучающимся умений и навыков практической деятельности по изучаемой дисциплине.

Планируемые результаты при освоении обучающимся практических занятий:

- закрепление, углубление, расширение и детализация знаний при решении конкретных задач;
- развитие познавательных способностей, самостоятельности мышления, творческой активности;

- овладение новыми методами и методиками изучения конкретной учебной дисциплины;
- выработка способности логического осмысления полученных знаний для выполнения заданий;
- обеспечение рационального сочетания коллективной и индивидуальной форм обучения.

Практические занятия по дисциплине состоят из трех структурных единиц:

- вводная часть,
- основная часть,
- заключительная часть.

Вводная часть обеспечивает подготовку студентов к выполнению заданий работы. В ее состав входят:

- формулировка темы, цели и задач занятия, обоснование его значимости в профессиональной подготовке студентов;
 - рассмотрение связей данной темы с другими темами курса;
 - изложение теоретических основ работы;
- характеристика состава и особенностей заданий работы и объяснение подходов(методов, способов, приемов) к их выполнению;
 - характеристика требований к результату работы;
- вводный инструктаж по технике безопасности при эксплуатации технических средств;
 - проверка готовности студентов к выполнению заданий работы;
 - пробное выполнение заданий под руководством преподавателя.

Основная часть предполагает самостоятельное выполнение заданий студентами.

Может сопровождаться:

- дополнительными разъяснениями по ходу работы;
- текущим контролем и оценкой результатов работы;
- ответами на вопросы

студентов. Заключительная часть

содержит:

- подведение общих итогов (позитивных, негативных) занятия;
- оценку результатов работы отдельных студентов;
- ответы на вопросы студентов;
- выдачу рекомендаций по улучшению показателей работы и устранению пробеловв системе знаний и умений студентов;
- сбор отчетов студентов по выполненной работе для проверки преподавателем; изложение сведений о подготовке к выполнению следующей работы, в частности, о подлежащей изучению учебной литературе.
- 11.4. Методические указания для обучающихся по выполнению лабораторных работ
- В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач обучающегося:

приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;

- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задание и требования к проведению лабораторных работ

Задание к выполнению лабораторной работы выдаются каждому обучающемуся индивидуально. Перед выполнением лабораторной работы проводится коллоквиум с проверкой базовых теоретических знаний по теме лабораторной работы и по ходу ее выполнения. Лабораторная работа выполняется студентом самостоятельно. При сдаче лабораторной работы оценивается уровень освоения обучающимся темы лабораторной работы и корректность ответов на дополнительные вопросы.

Структура и форма отчета о лабораторной работе

Отчет о лабораторной работе выполняется в письменном виде. Титульный лист соответствует требованиям κ оформлению, представленным на сайте ГУАП по электронному адресу: https://guap.ru/standart/doc.

Отчет содержит следующие обязательные разделы: Цель работы, задачи работы, исходные данные, полученные результаты, выводы.

Требования к оформлению отчета о лабораторной работе

Оформление отчета о лабораторной работе должно соответствовать ГОСТ 2.105-95 «Общие требования к текстовым документам». Все расчеты производятся в системе СИ с представлением в отчете промежуточных результатов. Выводы по лабораторной работе должны соответствовать цели и задачам лабораторной работы.

11.5. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихсяявляются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ (для обучающихся по заочной форме обучения).
- 11.6. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

Основными методами текущего контроля успеваемости являются:

- устный опрос по отдельным темам, разделам дисциплин (модулей);
- проверка выполнения письменных домашних и лабораторных заданий,

практических и расчетно-графических работ;

- тестирование, контроль самостоятельной работы (в письменной или устной форме);
 - проверка типовых расчетов, рефератов.

Требования к текущему контролю успеваемости:

- преподаватель информирует обучающихся о применяемой системе текущегоконтроля успеваемости на первом занятии.
- текущий контроль успеваемости по дисциплине проводится не менее двух раз всеместр.

При проведении промежуточной аттестации будут учитываться:

- посещаемость занятия студентами;
- подготовленность студентов к занятию;
- наличие в необходимом количестве защищенных отсчетов по лабораторным ипрактическим работам;
- наличие реферата и отчетов по домашним заданиям, выполненным в ходе самостоятельной работы;
- число баллов, набранных обучающимся по дисциплине на момент реализациитекущего контроля успеваемости.
- 11.7. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

— экзамен — форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Допуск к сдаче экзамена обучающийся получает при условии:

- наличия в необходимом количестве защищенных отсчетов по лабораторным ипрактическим работам;
 - наличия реферата, выполненного в ходе самостоятельной работы.

Экзаменационная оценка выставляется с учетом итогового количества баллов, набранных в ходе текущего контроля по дисциплине, а также результата аттестации письменных и устных ответов на два вопроса из перечня вопросов к экзамену по дисциплине.

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой