МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 22

УТВЕРЖДАЮ

Руководитель образовательной программы

доц.,к.т.н.

(должность, уч. степень, звание)

Ю.В. Бакшеева

(инициалы, фамилия)

(подпись)

«24» июня 2024 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Радионавигационные системы» (Наименование дисциплины)

Код направления подготовки/ специальности	03.04.03
Наименование направления подготовки/ специальности	Радиофизика
Наименование направленности	Радиотехнические системы и комплексы
Форма обучения	очная
Год приема	2024

Лист согласования рабочей программы дисциплины

Программу составил (а)	612 11	
Проф., д.т.н., проф.	17.06.2024	А. А. Монаков
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Программа одобрена на заседа	нии кафедры № 22	
17 июня 2024 г., протокол № 5		
Заведующий кафедрой № 22 к.т.н.,доц.	H. 17.06.24	Н.В. Поваренкин
(уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Заместитель директора инстит	ута №2 по методической рабо	те
доц.,к.т.н.,доц.	17.06.24	Н.В. Марковская
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)

Аннотация

Дисциплина «Радионавигационные системы» входит в образовательную программу высшего образования — программу магистратуры по направлению подготовки/ специальности 03.04.03 «Радиофизика» направленности «Радиотехнические системы и комплексы». Дисциплина реализуется кафедрой «№22».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ПК-3 «Способен проводить исследования в области совершенствования характеристик радионавигационных систем»

Содержание дисциплины охватывает круг вопросов, связанных с освоением основных методов передачи, приема и обработки радионавигационных сигналов; методов обеспечения основных характеристик радионавигационных систем.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практические занятия, самостоятельная работа обучающегося.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 5 зачетных единиц, 180 часов.

Язык обучения по дисциплине «русский»

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Целями преподавания дисциплины является освоение студентами основ теории радионавигации и получения практических навыков по оценке показателей эффективности на этапе проектирования.

- 1.2. Дисциплина входит в состав части, формируемой участниками образовательных отношений, образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1	Папапапп	компатанний и	иншикаторов	их достижения
таолица т -	– перечень	компетенции и	индикаторов	их достижения

таолица т ттере тег	ів компетенции и инди	
Категория (группа) компетенции	Код и наименование компетенции	Код и наименование индикатора достижения компетенции
		ПК-3.3.1 знать теоретические основы
	ПК-3 Способен	радионавигации
	проводить	ПК-3.У.1 уметь проводить компьютерное
	исследования в	моделирование и анализ функциональных и
Профессиональные	области	структурных схем основных блоков
компетенции	совершенствования	радионавигационных систем с целью
	характеристик	совершенствования их характеристик
	радионавига-	ПК-3.В.1 владеть навыками расчета основных
	ционных систем	показателей качества радионавигационных
		систем

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- «Статистическая радиотехника»,
- «Теоретические основы радиолокации»,
- -«Устройства приема и обработки сигналов»

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и используются при изучении других дисциплин:

- «Спутниковые системы навигации»

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

		Трудоемкость по	
Вид учебной работы	Всего	семестрам	
		№2	
1	2	3	
Общая трудоемкость дисциплины, 3E/ (час)	5/ 180	5/ 180	
Из них часов практической подготовки	17	17	
Аудиторные занятия, всего час.	51	51	

в том числе:		
лекции (Л), (час)	34	34
практические/семинарские занятия (ПЗ), (час)	17	17
лабораторные работы (ЛР), (час)		
курсовой проект (работа) (КП, КР), (час)		
экзамен, (час)	54	54
Самостоятельная работа, всего (час)	75	75
Вид промежуточной аттестации: зачет,		
дифф. зачет, экзамен (Зачет, Дифф. зач,	Экз.	Экз.
Экз.**)		

Примечание: ** кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Разделы, темы дисциплины	Лекции (час)	ПЗ (СЗ) (час)	ЛР (час)	КП (час)	CPC (час)
Сем	естр 2				
Раздел 1. Элементы общей теории и физические основы радионавигации	4	2			12
Раздел 2. Влияние околоземного пространства на работу РНС	6	3			12
Раздел 3. Методы измерения дальности в радионавигации	6	3			13
Раздел 4. Методы измерения скорости в РНС	6	3			13
Раздел 5. Радионавигационные методы углометрии	6	3			13
Раздел 6. Применение радиотехнических методов для решения навигационных задач	6	3			12
Итого в семестре:	34	17			75
Итого	34	17	0	0	75

4.2. Содержание разделов и тем лекционных занятий.

Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Номер	Название и содержание разделов и тем лекционных занятий
раздела	пазвание и содержание разделов и тем лекционных занятии
1.	Раздел 1. Элементы общей теории и физические основы радионавигации.
	1.1. Системы координат, используемые в радионавигации
	1.2. Методы определения МП объектов
	1.3. Физические принципы радионавигации
2.	Раздел 2. Влияние околоземного пространства на работу РНС.
	2.1. Дальность действия РНС
	2.2. Особенности распространения радиоволн в навигационном пространстве
3.	Раздел 3. Методы измерения дальности в радионавигации.
	3.1. Фазовый метод измерения дальности
	3.2. Частотный метод измерения дальности
	3.3. Временной (импульсный) метод измерения дальности

4.	Раздел 4. Методы измерения скорости в РНС.	
	4.1. Метод измерения скорости на основе эффекта Доплера	
	4.2. Корреляционный метод измерения скорости	
5.	Раздел 5. Радионавигационные методы углометрии.	
	5.1. Одноканальные методы углометрии	
	5.2. Многоканальные методы углометрии	
6.	Раздел 6. Применение радиотехнических методов для решения навигационных задач.	
	6.1. Позиционные способы определения МП	
	6.2. Ошибки определения МП объектов	
	6.3. Зона обслуживания угломерно-дальномерной системы	

4.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

	•	1 5		Из них	Ŋ <u>o</u>
$N_{\underline{0}}$	Темы практических	Формы практических	Трудоемкость,	практической	раздела
Π/Π	занятий	занятий	(час)	подготовки,	дисцип
				(час)	лины
		Семестр 2			
1	Элементы общей				1
	теории и физические	Решение задач	2	2	
	основы	т сшение задач	2	2	
	радионавигации				
2	Влияние околоземного	-			2
	пространства на работу	Решение задач	3	3	
	PHC				2
3	Методы измерения	D	2	2	3
	дальности в	Решение задач	3	3	
	радионавигации				
4	Методы измерения	Решение задач	3	3	4
5	скорости в РНС Радионавигационные				5
3	методы углометрии	Решение задач	3	3	3
6	Применение				6
	радиотехнических				
	методов для решения	Решение задач	3	3	
	навигационных задач				
	, , , , , , , , , , , , , , , , , , , ,				
	Beer	0	17	17	

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

			Из них	$N_{\underline{0}}$
$N_{\underline{0}}$	Наименование наборатории у работ	Трудоемкость,	практической	раздела
Π/Π	п/п Наименование лабораторных работ	(час)	подготовки,	дисцип
			(час)	лины
	Учебным планом не п	редусмотрено		
	Всего			

4.5. Курсовое проектирование/ выполнение курсовой работы

Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

	Всего,	Семестр 2,
Вид самостоятельной работы	час	час
1	2	3
Изучение теоретического материала дисциплины (TO)	75	75
Курсовое проектирование (КП, КР)		
Расчетно-графические задания (РГЗ)		
Выполнение реферата (Р)		
Подготовка к текущему контролю		
успеваемости (ТКУ)		
Домашнее задание (ДЗ)		
Контрольные работы заочников (КРЗ)		
Подготовка к промежуточной		
аттестации (ПА)		
Всего:	75	75

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8. Таблица 8— Перечень печатных и электронных учебных изданий

таолица о- перечень печатных и электронных учесных издании			
Шифр/ URL адрес	Библиографическая ссылка	Количество экземпляров в библиотеке (кроме электронных экземпляров)	
621.396.9 M77	Теоретические основы радионавигации: учебник / А. А. Монаков Санкт-Петербург: Лань, 2024 431 с. : рис (Высшее образование) Библиогр.: с. 385 - 386 (20назв.) ISBN 978-5-507-45770-0	7	
621.396.9(ГУАП) M77	Теоретические основы радионавигации: учебное пособие / А. А. Монаков; СПетерб. гос. ун-т аэрокосм. приборостроения СПб. : Изд-во ГУАП, 2002 69 с.	44	

7. Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационно-

телекоммуникационной сети «Интернет»

URL адрес	Наименование	
	Не предусмотрено	

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

№ п/п	Наименование
	Не предусмотрено

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п	Наименование
	Не предусмотрено

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Мультимедийная лекционная аудитория	22-06

10. Оценочные средства для проведения промежуточной аттестации

10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Экзамен	Список вопросов к экзамену;
	Тесты.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

1 1	оценки уровня сформированности компетенции	
Оценка компетенции 5-балльная шкала	Характеристика сформированных компетенций	
5-0алльная шкала		
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий. 	
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 	
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий. 	
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 	

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	№ п/п Перечень вопросов (задач) для экзамена	
J\ <u>™</u> 11/11	перечень вопросов (задач) для экзамена	индикатора
1.	Системы координат, используемые в радионавигации.	ПК-3.3.1
	Методы определения МП объектов	
2.	Основные физические принципы радионавигации	ПК-3.У.1
3.	Уравнения дальности действия РНС в свободном	ПК-3.В.1
	пространстве и его анализ	
4.	Влияние атмосферы на дальность действия РНС:	
	рефракция и затухание волн в атмосфере	
5.	Влияние земной поверхности на дальность действия РНС	
6.	Импульсный метод измерения дальности	
7.	Частотный метод измерения дальности	
8.	Фазовый метод измерения дальности	
9.	Определение угловых координат цели методом линейного	

	сканирования. Методы максимума и минимума
10.	Амплитудный и фазовый пеленгаторы
11.	Доплеровский метод измерения угловой координаты
12.	Дифференциально-фазовый метод измерения угловой
	координаты
13.	Основные соотношения, характеризующие эффект
	Доплера, оценка скорости и ее потенциальная точность
14.	Корреляционный метод измерения скорости
15.	Измерение местоположения цели в многопозиционных
	системах, поверхность положения, линия положения
16.	Ошибка оценки местоположения цели в
	многопозиционных системах
17.	Ошибка оценки местоположения цели в угломерно-
	дальномерной системе
18.	Многопозиционные навигационные системы (MLAT,
	WAM). Алгоритмы оценки координат объектов в
	системах MLAT и WAM.

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16.

Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код индикатора
	Учебным планом не предусмотрено	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

$N_{\underline{0}}$		Код
п/	Примерный перечень вопросов для тестов	индикат
П		opa
	1 тип) Задание комбинированного типа с выбором одного верного ответа	
	из четырех предложенных и обоснованием выбора	
	Прочитайте текст, выберите правильный ответ и запишите аргументы,	
	обосновывающие выбор ответа	
	1 M	
	1. Можно ли синтезировать обнаружитель сигнала с	
	вероятностью правильного обнаружения $D=1$.	
	1. Нельзя.	
	2. Можно в некоторых случаях.	

3. Можно всегда.

Ответ: 3. Вероятность правильного обнаружения – условная вероятность события, когда выносится решение «сигнал есть» при условии, что в принимаемом сигнала он присутствует. Поэтому, если вне зависимости от присутствия или отсутствия сигнала в принимаемом сигнале всегда выносить решение «сигнал есть», то вероятность правильного обнаружения будет равна 1. При этом и вероятность ложной тревоги тоже всегда будет равна 1.

2 тип) Задание комбинированного типа с выбором нескольких вариантов ответа из предложенных и развернутым обоснованием выбора

Прочитайте текст, выберите правильные варианты ответа и запишите аргументы, обосновывающие выбор ответов

- 1. Выберите факторы влияющие на точность измерения дальности импульсным методом при использовании простого сигнала. Обоснуйте выбор ответов.
- 1. Несущая частота импульса.
- 2. Ширина полосы частот, занимаемая спектром импульса.
- 3. Поляризация сигнала.
- 4. Длительность импульса.
- 5. Средняя мощность шума в приемном тракте.

Ответ: 2, 4, 5. Точность оценки времени задержки определяется отношением сигнал/шум и эффективной шириной полосы сигнала. При простом сигнале длительность импульса обратно пропорциональна ширине спектра. Поэтому факторы 2, 4 и 5 влияют на точность оценки дальности.

3 тип) Задание закрытого типа на установление соответствия

Прочитайте текст и установите соответствие. К каждой позиции, данной в левом столбце, подберите соответствующую позицию в правом столбце.

1. Установите соответствие между методами измерения радионавигационных параметров и уравнениями для потенциальной точностью их оценивания. 1)

Метод измерения			Уравнение	
A	Импульсный метод измерения дальности	1	$\sigma = \frac{\lambda}{2^{3/2} \pi q}$	
Б	Фазовый метод измерения дальности	2	$\sigma = \frac{\lambda}{4\pi qT}$	
В	Частотный метод измерения дальности	3	$\sigma = \frac{c}{2\Delta\Omega q}$	

Г	Π	4		
1	Доплеровский метод измерения скорости	4	C	
			$O = \frac{1}{\Lambda \Omega a}$	
			∆329	

Ответ: А4, Б1, В3, Г2

4 тип) Задание закрытого типа на установление последовательности

Прочитайте текст и установите последовательность. Запишите соответствующую последовательность букв слева направо.

1. Три радионавигационные точки расположены на окружности в вершинах равнобедренного треугольника с углом при вершине α. Стоящие в точках приемные станции с одинаковой точностью измеряют дальность. Расположите радионавигационные системы в порядке увеличения точности оценки местоположения объекта, находящегося в центре окружности.

$$\begin{aligned} A-\alpha &= 0.1 \cdot \pi \, . \\ B-\alpha &= 0.2 \cdot \pi \, . \\ B-\alpha &= 0.3 \cdot \pi \, . \\ \Gamma-\alpha &= 0.4 \cdot \pi \, . \\ \ensuremath{\upsigma} -\alpha &= 0.5 \cdot \pi \, . \\ \ensuremath{\upalpha} -\alpha &= 0.5 \cdot \pi \, . \end{aligned}$$
 Otbet: ASMFB

5 тип) Задание открытого типа с развернутым ответом.

Прочитайте текст и запишите развернутый обоснованный ответ

1. Определите доплеровские сдвиги частот сигналов, принимаемых в каналах двухлучевого ДИСС, если: а) воздушная скорость воздушного судна $V = 720\,$ км/ч; б) скорость ветра $U = 40\,$ м/с; в) направление бокового ветра составляет $\theta = 90^\circ$ относительно продольной оси; г) угол наклона луча антенны относительно горизонта $\gamma = 30^\circ$; д). лучи расположены симметрично относительно оси воздушного судна под углом $\alpha = 90^\circ$ друг к другу; е). рабочая частота ДИСС $f_0 = 9\,$ ГГц.

Решение:

$$\begin{cases} \mathbf{e}_{1} = \left[\cos\frac{\alpha}{2}\cos\gamma, -\sin\gamma, -\sin\frac{\alpha}{2}\cos\gamma\right] \\ \mathbf{e}_{2} = \left[\cos\frac{\alpha}{2}\cos\gamma, -\sin\gamma, \sin\frac{\alpha}{2}\cos\gamma\right] \\ \mathbf{W} = \left[V, 0, U\right] \\ \begin{cases} F_{\mathcal{H}1} = \frac{2}{\lambda}(\mathbf{W}, \mathbf{e}_{1}) = \frac{2}{\lambda}\left(V\cos\frac{\alpha}{2}\cos\gamma - U\sin\frac{\alpha}{2}\cos\gamma\right) = 5.878 \ \kappa\Gamma\psi \\ F_{\mathcal{H}2} = \frac{2}{\lambda}(\mathbf{W}, \mathbf{e}_{2}) = \frac{2}{\lambda}\left(V\cos\frac{\alpha}{2}\cos\gamma + U\sin\frac{\alpha}{2}\cos\gamma\right) = 8.818 \ \kappa\Gamma\psi \end{cases}$$

$$\mathbf{Other:} \ F_{\mathcal{H}1} = 5.878 \ \kappa\Gamma\psi, F_{\mathcal{H}2} = 8.818 \ \kappa\Gamma\psi$$

Перечень тем контрольных работ по дисциплине обучающихся заочной формы

Таблица 19 – Перечень контрольных работ

обучения, представлены в таблице 19.

№ п/п		Перечень контрольных работ
	Не предусмотрено	

10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

11. Методические указания для обучающихся по освоению дисциплины

11.1. Методические указания для обучающихся по освоению лекционного материала..

Основное назначение лекционного материала – логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- Изложение материала по рассматриваемой теме;
- Демонстрация примеров решения конкретных задач;
- Ответы на возникающие вопросы по теме лекции.

11.2. Методические указания для обучающихся по прохождению практических занятий

Практическое занятие является одной из основных форм организации учебного процесса, заключающаяся в выполнении обучающимися под руководством преподавателя

комплекса учебных заданий с целью усвоения научно-теоретических основ учебной дисциплины, приобретения умений и навыков, опыта творческой деятельности.

Целью практического занятия для обучающегося является привитие обучающимся умений и навыков практической деятельности по изучаемой дисциплине.

Планируемые результаты при освоении обучающимся практических занятий:

- закрепление, углубление, расширение и детализация знаний при решении конкретных задач;
- развитие познавательных способностей, самостоятельности мышления, творческой активности;
- овладение новыми методами и методиками изучения конкретной учебной дисциплины;
- выработка способности логического осмысления полученных знаний для выполнения заданий;
- обеспечение рационального сочетания коллективной и индивидуальной форм обучения.

Требования к проведению практических занятий

- закрепление, углубление, расширение и детализация знаний при решении конкретных задач;
- развитие познавательных способностей, самостоятельности мышления, творческой активности;
- овладение новыми методами и методиками изучения конкретной учебной дисциплины;
- выработка способности логического осмысления полученных знаний для выполнения заданий;
- обеспечение рационального сочетания коллективной и индивидуальной форм обучения.
- 11.3. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихсяявляются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ (для обучающихся по заочной форме обучения).
- 11.4. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

11.5. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

— экзамен — форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой