МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

образования "САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 23

УТВЕРЖДАЮ

Руководитель образовательной программы

ДОЦ.,К.Т.Н.,ДОЦ. (должность, уч. степень, звание)

В.А. Ненашев

(инициалы, фамилия)

(подпись) «24» июня 2024 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Наноматериалы и наноструктуры электронных средств» (Наименование дисциплины)

Код направления подготовки/ специальности	11.04.03
Наименование направления подготовки/ специальности	Конструирование и технология электронных средств
Наименование направленности	Проектирование и технология аэрокосмических приборов и электронных средств
Форма обучения	очная
Год приема	2024

Санкт-Петербург- 2024

Лист согласования рабочей программы дисциплины

Программу составил (а)	12	
доц., к.т.н., доц.	114	О.М. Филонов
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Программа одобрена на заседании	и кафедры № 23	
«24» июня 2024 г, протокол № 1	0/24	
Заведующий кафедрой № 23		
д.т.н.,проф.		А.Р. Бестугин
(уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
	- Ann	
Заместитель директора института	№2 по методической р	аботе
доц.,к.т.н.,доц.		Н.В. Марковская
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)

Аннотация

Дисциплина «Наноматериалы и наноструктуры электронных средств» входит в образовательную программу высшего образования — программу магистратуры по направлению подготовки/ специальности 11.04.03 «Конструирование и технология электронных средств» направленности «Проектирование и технология аэрокосмических приборов и электронных средств». Дисциплина реализуется кафедрой «№23».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

- ПК-1 «Способен формулировать цели и задачи научных исследований в соответствии с тенденциями и перспективами развития электронных средств и технологических процессов, а также смежных областей науки и техники, способность обоснованно выбирать теоретические и экспериментальные методы и средства решения сформулированных задач»
- ПК-2 «Способен разрабатывать эффективные алгоритмы решения сформулированных задач с использованием современных языков программирования, искусственного интеллекта и обеспечивать их программную реализацию»
- ПК-15 «Способен планировать и управлять производственными процессами при изготовлении изделий "система в корпусе"»

Содержание дисциплины охватывает круг вопросов, связанных с проектированием и производством микроэлектромеханических систем (МЭМС) и их компонентов — микроэлектромеханических датчиков и исполнительных устройств

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, практические занятия, самостоятельная работа обучающегося, курсовое проектирование.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 3 зачетных единицы, 108 часов.

Язык обучения по дисциплине «русский »

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Целью преподавания дисциплины «Наноматериалы и наноструктуры электронных средств» является формирование углубленной подготовки студентов направления «Конструирование и технология электронных средств». Основными задачами изучения дисциплины является получение студентами теоретических знаний и практических навыков по базовым технологиям и типовым конструкциям микросистемной техники (МСТ), наноматериалам и нанотехнологиям

- 1.2. Дисциплина входит в состав части, формируемой участниками образовательных отношений, образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа)	Код и наименование	Код и наименование индикатора достижения
компетенции	компетенции	компетенции
Профессиональные компетенции	ПК-1 Способен формулировать цели и задачи научных исследований в соответствии с тенденциями и перспективами развития электронных средств и технологических процессов, а также смежных областей науки и техники, способность обоснованно выбирать теоретические и экспериментальные методы и средства решения сформулированных задач	ПК-1.3.1 знать принципы построения и функционирования электронных средств и технологических процессов ПК-1.У.1 уметь рассчитывать режимы работы электронных средств ПК-1.В.1 владеть навыками выбора теоретических и экспериментальных методов исследований
Профессиональные компетенции	ПК-2 Способен разрабатывать эффективные алгоритмы решения сформулированных задач с	ПК-2.3.1 знать методы разработки интеллектуальных алгоритмов решения научно-исследовательских задач ПК-2.У.1 уметь использовать алгоритмы решения исследовательских задач с использованием современных языков
	использованием современных языков	программирования, в том числе алгоритмы с использованием искусственного интеллекта ПК-2.В.1 владеть навыками разработки

	программирования, искусственного интеллекта и обеспечивать их программную реализацию	стратегии и методологии исследования конструкций электронных средств и технологических процессов
Профессиональные компетенции	ПК-15 Способен планировать и управлять производственными процессами при изготовлении изделий "система в корпусе"	ПК-15.3.1 знать технологию изготовлении изделий "система в корпусе" ПК-15.3.2 знать основы экономики и организации производства изделий микро- и наноэлектроники ПК-15.У.1 уметь разрабатывать планы и планы-графики реализации эффективного производства изделий "система в корпусе" ПК-15.В.1 владеть навыками организовывать работу сотрудников, задействованных в производстве изделий "система в корпусе"

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- «Материалы и компоненты электронных средств»,
- «Физико-химические основы технологии электронных средств»,
- «Физические основы микроэлектроники»,
- «Технология производства ЭС».

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и могут использоваться при изучении других дисциплин:

«Технологии микросистемной техники».

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

Вид учебной работы	Всего	Трудоемкость по семестрам №3
1	2	3
Общая трудоемкость дисциплины, 3E/ (час)	3/ 108	3/ 108
Из них часов практической подготовки	34	34
Аудиторные занятия, всего час.	51	51
в том числе:		
лекции (Л), (час)	17	17
практические/семинарские занятия (ПЗ), (час)		
лабораторные работы (ЛР), (час)	34	34
курсовой проект (работа) (КП, КР), (час)		
экзамен, (час)	36	36
Самостоятельная работа, всего (час)	21	21
Вид промежуточной аттестации: зачет,	Экз.	Экз.

дифф.	зачет,	экзамен	(Зачет,	Дифф.	зач,		
Экз.**)	<u> </u>						

Примечание: **кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Разделы, темы дисциплины	Лекции	П3 (С3)	ЛР	КП	CPC	
	(час)	(час)	(час)	(час)	(час)	
Семестр 3						
Раздел 1. Классификация и принципы построения средств микросистемной техники	1		4		1	
Раздел 2. Материалы, применяемые для производства МЭМС	1		4		2	
Раздел 3. Особенности проектирования МЭМС	1		4		1	
Раздел 4. Технологический синтез МЭМС	2		2		2	
Раздел 5. Типовые и перспективные конструкции МЭМС	2		2		1	
Раздел 6. Типовые технологические операции в производстве МЭМС	2		4		2	
Раздел 7. Конструирование и расчет элементов МЭМС, основанных на различных технологиях	2		2		1	
Раздел 8. Перспективные технологии производства МЭМС	1		2		2	
Раздел 9. Нанотехнология. Наноструктуры и наноматериалы	1		2		1	
Раздел 10. Самосборка и катализ наноструктур	1		2		2	
Раздел 11. Механические и электрические свойства наноматериалов	1		2		2	
Раздел 12. Наноэлектромеханические системы	1		2		2	
Раздел 13. Методы исследования наноструктур	1		2		2	
Итого в семестре:	17		34		21	
Итого	17	0	34	0	21	

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Номер раздела	Название и содержание разделов и тем лекционных занятий
Раздел 1.	Классификация и принципы построения средств
	микросистемной техники. История развития
	микросистемной техники. Микроэлектромеханические
	системы – современный этап технической эволюции

	тран чатан уууй муун аа науны аууууу Инааауу Ауууауу МЭМС
	твердотельной микроэлектроники. Классификация МЭМС.
	Планарные и объемные микроконструкции и основные
	принципы их построения и изготовления. Перспективные
D 4	направления развития средств микросистемотехники
Раздел 2.	Материалы, применяемые для производства устройств
	МЭМС. Характеристика основных материалов,
	применяемых для изготовления изделий МЭМС.
	Конструкционные материалы изделий МЭМС: кремний,
	металлы, керамика, стекла, полимеры.
Раздел 3.	Особенности проектирования устройств МЭМС.
	Основные элементы конструкций МЭМС. Проектирование
	консолей, мембран, мостов – элементов МЭМС. Взаимосвязь
	между планарными принципами проектирования МЭМС и
	планарной технологией их изготовления.
Раздел 4.	Технологический синтез устройств МЭМС. Исходные
	условия синтеза. Объемные технологии. Поверхностные
	технологии. LIGA – технология.
Раздел 5.	Типовые и перспективные конструкции устройств
	МЭМС. Датчики давления. Датчики линейных ускорений.
	Датчики абсолютных угловых скоростей. Датчики
	химического состава. Микрохроматографы. Биосенсоры и
	экспресс-анализаторы.
Раздел 6.	Типовые технологические операции в производстве
	устройств МЭМС. Операции очистки поверхности
	подложек. Осаждение пассивирующих диэлектрических
	пленок (SiO2, Si3 N4). Осаждение металлических и
	ферромагнитных пленок. Литографические операции.
	«Жидкостное» и «сухое» травление. Сборка МЭМС.
Раздел 7.	Конструирование и расчет элементов устройств МЭМС,
	основанных на различных технологиях. Конструкции,
	основанные на кремниевой технологии. Конструирование и
	основанные на кремниевой технологии. Конструирование и методы расчета кремниевых подвижных микромеханических
	основанные на кремниевой технологии. Конструирование и методы расчета кремниевых подвижных микромеханических систем и микрогироскопов на поверхностных акустических
	основанные на кремниевой технологии. Конструирование и методы расчета кремниевых подвижных микромеханических систем и микрогироскопов на поверхностных акустических волнах (ПАВ). Конструирование и метод расчета ремниевых
	основанные на кремниевой технологии. Конструирование и методы расчета кремниевых подвижных микромеханических систем и микрогироскопов на поверхностных акустических волнах (ПАВ). Конструирование и метод расчета ремниевых акселерометров. Анализ и подход к конструированию и
	основанные на кремниевой технологии. Конструирование и методы расчета кремниевых подвижных микромеханических систем и микрогироскопов на поверхностных акустических волнах (ПАВ). Конструирование и метод расчета ремниевых акселерометров. Анализ и подход к конструированию и расчету МЭМС на основе тензорезистивных
	основанные на кремниевой технологии. Конструирование и методы расчета кремниевых подвижных микромеханических систем и микрогироскопов на поверхностных акустических волнах (ПАВ). Конструирование и метод расчета ремниевых акселерометров. Анализ и подход к конструированию и расчету МЭМС на основе тензорезистивных полупроводниковых структур. Конструирование и расчет
	основанные на кремниевой технологии. Конструирование и методы расчета кремниевых подвижных микромеханических систем и микрогироскопов на поверхностных акустических волнах (ПАВ). Конструирование и метод расчета ремниевых акселерометров. Анализ и подход к конструированию и расчету МЭМС на основе тензорезистивных полупроводниковых структур. Конструирование и расчет МЭМС, основанных на пьезоэлектрических принципах.
	основанные на кремниевой технологии. Конструирование и методы расчета кремниевых подвижных микромеханических систем и микрогироскопов на поверхностных акустических волнах (ПАВ). Конструирование и метод расчета ремниевых акселерометров. Анализ и подход к конструированию и расчету МЭМС на основе тензорезистивных полупроводниковых структур. Конструирование и расчет МЭМС, основанных на пьезоэлектрических принципах. Конструирование и расчет пьезоэлектрических мембран,
	основанные на кремниевой технологии. Конструирование и методы расчета кремниевых подвижных микромеханических систем и микрогироскопов на поверхностных акустических волнах (ПАВ). Конструирование и метод расчета ремниевых акселерометров. Анализ и подход к конструированию и расчету МЭМС на основе тензорезистивных полупроводниковых структур. Конструирование и расчет МЭМС, основанных на пьезоэлектрических принципах. Конструирование и расчет пьезоэлектрических мембран, предназначенных для работы на объемных акустических
	основанные на кремниевой технологии. Конструирование и методы расчета кремниевых подвижных микромеханических систем и микрогироскопов на поверхностных акустических волнах (ПАВ). Конструирование и метод расчета ремниевых акселерометров. Анализ и подход к конструированию и расчету МЭМС на основе тензорезистивных полупроводниковых структур. Конструирование и расчет МЭМС, основанных на пьезоэлектрических принципах. Конструирование и расчет пьезоэлектрических мембран, предназначенных для работы на объемных акустических волнах (ОАВ). Конструирование и расчет резонаторов и
Розпол 9	основанные на кремниевой технологии. Конструирование и методы расчета кремниевых подвижных микромеханических систем и микрогироскопов на поверхностных акустических волнах (ПАВ). Конструирование и метод расчета ремниевых акселерометров. Анализ и подход к конструированию и расчету МЭМС на основе тензорезистивных полупроводниковых структур. Конструирование и расчет МЭМС, основанных на пьезоэлектрических принципах. Конструирование и расчет пьезоэлектрических мембран, предназначенных для работы на объемных акустических волнах (ОАВ). Конструирование и расчет резонаторов и линий задержки на ПАВ.
Раздел 8.	основанные на кремниевой технологии. Конструирование и методы расчета кремниевых подвижных микромеханических систем и микрогироскопов на поверхностных акустических волнах (ПАВ). Конструирование и метод расчета ремниевых акселерометров. Анализ и подход к конструированию и расчету МЭМС на основе тензорезистивных полупроводниковых структур. Конструирование и расчет МЭМС, основанных на пьезоэлектрических принципах. Конструирование и расчет пьезоэлектрических мембран, предназначенных для работы на объемных акустических волнах (ОАВ). Конструирование и расчет резонаторов и линий задержки на ПАВ. Перспективные технологии производства устройств
Раздел 8.	основанные на кремниевой технологии. Конструирование и методы расчета кремниевых подвижных микромеханических систем и микрогироскопов на поверхностных акустических волнах (ПАВ). Конструирование и метод расчета ремниевых акселерометров. Анализ и подход к конструированию и расчету МЭМС на основе тензорезистивных полупроводниковых структур. Конструирование и расчет МЭМС, основанных на пьезоэлектрических принципах. Конструирование и расчет пьезоэлектрических мембран, предназначенных для работы на объемных акустических волнах (ОАВ). Конструирование и расчет резонаторов и линий задержки на ПАВ.

	ELTRAN				
Раздел 9.	Нанотехнология. Наноструктуры и наноматериалы.				
	Нанотехнология как основное направление развития				
	высоких технологий. Основные направления научных				
	исследований и практические применения нанотехнологий.				
	Нанокластеры металлов и полупроводников. Газовые				
	молекулярные кластеры. Углеродные наноструктуры и				
	нанотрубки. Объемные наноструктурированные материалы.				
	Разупорядоченные структуры и нанокристаллы. Кристаллы				
	из металлических наночастиц.				
Раздел 10.	Самосборка и катализ наноструктур. Процессы				
	самосборки. Полупроводниковые осровковые структуры и				
	монослои. Катализ наноструктур. Пористые материалы,				
	коллоиды.				
Раздел 11.	Механические и электрические свойства				
	наноматериалов				
Раздел 12.	Наноэлектромеханические системы. Наномашины и				
	наноприборы. Методы синтеза наноустройств.				
Раздел 13.	Методы исследования наноструктур. Исследования с				
	применением атомного силового микроскопа. Возможности				
	сканирующего туннельного микроскопа и направления				
	исследований.				

4.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

	тионици в прикти техкие зимити и из грудовиковтв						
				Из них	№		
$N_{\underline{0}}$	Темы практических	Формы практических	Трудоемкость,	практической	раздела		
Π/Π	занятий	занятий	(час)	подготовки,	дисцип		
				(час)	лины		
		Учебным планом не про	едусмотрено				
	Всег						

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

	иомици о этисориторимо заимим и их трудосикость					
			Из них	№		
No	№ Наименование лабораторных работ	Трудоемкость,	практической	раздела		
п/п		(час)	подготовки,	дисцип		
			(час)	ЛИНЫ		
	Семестр	3				
1	Исследование моделей сканирующей	7	2	2		
	зондовой микроскопии					
2	Исследование поверхности твердых тел	7	2	2		
	методом сканирующей туннельной					

	микроскопии			
3	Исследование процессов на модели	7	2	2
	сканирующей туннельной микроскопии			
4	Исследование процессов на модели	7	2	2
	атомно-силовой микроскопии			
5	Исследование процессов на модели	6	2	2
	ближнепольной оптической микроскопии			
	Всего	34		

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего,	Семестр 3,
Вид самостоятельной расоты	час	час
1	2	3
Изучение теоретического материала	7	7
дисциплины (ТО)	,	/
Курсовое проектирование (КП, КР)		
Расчетно-графические задания (РГЗ)		
Выполнение реферата (Р)		
Подготовка к текущему контролю	7	7
успеваемости (ТКУ)	,	/
Домашнее задание (ДЗ)		
Контрольные работы заочников (КРЗ)		
Подготовка к промежуточной	7	7
аттестации (ПА)	/	/
Всего:	21	21

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8.

Таблица 8- Перечень печатных и электронных учебных изданий

		Количество экземпляров в	
Шифр/	Библиографическая ссылка	библиотеке	
URL адрес		(кроме электронных	
		экземпляров)	
629.7(ЛИАП)	Конструирование и технология	20	
П22	измерительно- вычислительных		
	комплексов летательных аппаратов		

	[Текст] : учебное пособие / В. П. Пашков,	
	Я. А. Поповская, О. М. Филонов СПб. :	
	Изд-во ЛИАП, 1991 100 с.	
621.396.6(075)	Конструирование и технология	44
B67	изготовления радиоэлектронной	
	аппаратуры [Текст] : учебник / Н.	
	Ф. Воллернер Киев : Вища шк., 1970	
	363 c.	
621.396	Конструирование радиоэлектронной	32
П28	аппаратуры :Основные проблемы и	
	современное состояние [Текст] / В.	
	Б.Пестряков М.: Сов. радио, 1969	
	208 c.	
621.38 Б90	Булычев А.Л. Электронные приборы. –	4
	М.: Лайт, 2000. – 416 с.	
681.2 (ГУАП)	Ларин В.П., Шелест Д.К.	300
Л25	Конструирование и производство	
	типовых приборов и устройств: Учеб.	
	пособие для вузов / СПбГУАП. СПб.	
	2005. – 300 экз.	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 — Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет»

URL адрес	Наименование
http://lib.aanet.ru/	Доступ в ЭБС «Лань» осуществляется по договору № 26 и №27 от 31.01.2021
	Доступ в ЭБС «ZNANIUM» осуществляется по договору № 058 от 27.02.2023
	Доступ в ЭБС «ЮРАЙТ» осуществляется по договору № 257 от 29.05.2023

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

№ п/п	Наименование
	Не предусмотрено

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Таблица 11- Перечень информационно-справочных систем

№ п/п		Наименование
	Не предусмотрено	

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Лекционная аудитория	13-07 (БМ)

- 10. Оценочные средства для проведения промежуточной аттестации
- 10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

1 1 1	
Вид промежуточной аттестации	Перечень оценочных средств
Экзамен	Список вопросов к экзамену;
	Экзаменационные билеты;
	Задачи;
	Тесты.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции	Характеристика сформированных компетенций	
5-балльная шкала		
- обучающийся глубоко и всесторонне усвоил программ материал; - уверенно, логично, последовательно и грамотно его излагает - опираясь на знания основной и дополнительной литерат тесно привязывает усвоенные научные положения с практиче деятельностью направления; - умело обосновывает и аргументирует выдвигаемые им идеи; - делает выводы и обобщения; - свободно владеет системой специализированных понятий.		
«хорошо» «зачтено»	 – обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; – не допускает существенных неточностей; – увязывает усвоенные знания с практической деятельностью направления; – аргументирует научные положения; 	

Оценка компетенции 5-балльная шкала	Характеристика сформированных компетенций – делает выводы и обобщения; – владеет системой специализированных понятий.	
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий. 	
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 	

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	Код
J\2 11/11	перечень вопросов (задач) для экзамена	индикатора
1	Классификация методов изготовления МЭМС	ПК-1.3.1
2	Типы механических датчиков	ПК-1.3.1
3	Термовакуумное напыление	ПК-1.У.1
4	Монтаж кремниевых компонентов методом сплавления)	ПК-2.В.1
5	Процессы фотолитографии в технологии электронной аппаратуры и МСТ	ПК-1.3.1
6	Материалы для микрообработки	ПК-1.3.1
7	Формирование тонких пленок из оксида кремния методом	ПК-1.У.1
	термоокисления	
8	Осаждение диоксида и нитрида кремния	ПК-1.У.1
9	Термокомпрессионная микросварка	ПК-1.У.1
10	Тепловые датчики (термомеханические,	ПК-1.У.1
	терморезистивные, термопары)	
11	Материалы, используемые в микросистемах	ПК-1.3.1
12	Поверхностная микрообработка	ПК-1.У.1
13	Выращивание кристаллов по методу Чохральского	ПК-1.3.1
14	Механические преобразователи (пьезорезистивные,	ПК-2.В.1
	пьезоэлектрические, емкостные и резонансные)	
15	Основные этапы технологического процесса изготовления	ПК-1.У.1
	полупроводниковых подложек	
16	Механические приводы (электростатические и	ПК-1.3.1
	пьезоэлектрические)	
17	Полупроводники в технологии МСТ	ПК-1.У.1
18	Преобразователи (датчики) излучений (от фотодиодов до	ПК-1.3.1

	пирометров)	
19	Методы осаждения тонких пленок из SiO2	
20	Классификация методов изготовления МЭМС устройств	
21	Упаковка МЭМС устройств в металлические корпуса	
22	Средства измерения параметров окружающей среды,	
	основные типы датчиков	
23	3 Применение емкостных приводов в МСТ	
24	24 Осаждение поликристаллического кремния	
25	25 Метод анодного соединения	
26	26 Плазменное химическое травление (ПХТ)	
27	27 Схема установки для осаждения тонких пленок из SIO2 и	
	Si3N4(химическое осаждение из газовой фазы при низком	
	давлении)	
28	Типы микроструктур, входящих в состав МЭМС	
29	Сварка давлением СКИН	ПК-1 У.1
30	Технология объемной микрообработки	ПК-1.У.1

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16.

Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код индикатора
	Учебным планом не предусмотрено	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

№ п/п	Примерный перечень вопросов для тестов	Код
	примерный перечень вопросов для тестов	индикатора
1	Особенности конструкции МЭМС.	ПК-2.В.1
2	Материалы, применяемые в конструкции МЭМС.	ПК-1.3.1
3	Объемная технология синтеза МЭМС.	ПК-1.3.1
4	Поверхностная технология синтеза МЭМС.	ПК-1.3.1
5	Основные технологические операции, применяемые в производстве	ПК-1.3.1
	МЭМС.	
6	Основные термические операции, применяемые в производстве	ПК-1.3.1
	МЭМС.	
7	Виды литографии, применяемые в производстве МЭМС.	ПК-1.3.1
8	Основные виды резисторов, применяемые в производстве МЭМС.	ПК-1.3.1
9	Виды фотолитографии.	ПК-1.3.1
10	Электронная литография.	ПК-1.У.1
11	Ионная литография.	ПК-1.У.1
12	Рентгеновская литография.	ПК-1.У.1
13	Иммерсионная литография.	ПК-1.У.1

14	Лазерная литография.	ПК-1.У.1
15	Основные технологические операции формообразования,	
	применяемые в объемной стехнологии МЭМС.	
16	Основные технологические операции формообразования,	ПК-1.3.1
	применяемые в поверхностной технологии МЭМС.	
17	Специфические сборочные операции, применяемые в технологии	ПК-2.В.1
	МЭМС.	

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/г		Перечень контрольных работ
	Не предусмотрено	

10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

11. Методические указания для обучающихся по освоению дисциплины

11.1. Методические указания для обучающихся по освоению лекционного материала

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- тематические лекции по разделам курса;

- демонстрация слайдов;
- контрольные вопросы к разделам курса.

Лекционные материалы имеются в изданном виде, в виде электронных ресурсов библиотеки ГУАП.

11.2. Методические указания для обучающихся по выполнению лабораторных работ

В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задание и требования к проведению лабораторных работ

Лабораторные работы выполняются в лаборатории на лабораторных установках с заполнением протокола измерений.

Структура и форма отчета о лабораторной работе

Отчет по лабораторной работе включает обязательные пункты, представленные в методических указаниях.

Требования к оформлению отчета о лабораторной работе

Требования к оформлению отчета представлены в методических указаниях

Методические указания изданы в виде электронных ресурсов библиотеки ГУАП

11.3. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающих сяявляются:

- учебно-методический материал по дисциплине;

- методические указания по выполнению контрольных работ (для обучающихся по заочной форме обучения).
- 11.4. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

При проведении текущего контроля успеваемости используются контрольные тестовые вопросы, представленные в методических указаниях по прохождению текущего контроля успеваемости. Результаты текущего контроля оцениваются и учитываются при проведении промежуточной аттестации.

11.5. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине включает в себя Экзамен. Экзамен проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой