МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 23

УТВЕРЖДАЮ Руководитель образовательной программы доц.,к.т.н. (должность, уч. степень, звание) В.И. Казаков (иняциялы, фамилия) (подписы) (подписы) (подписы)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Методы оптической и лазерной спектроскопии» (Наименование дисциплины)

Код направления подготовки/ специальности	12.03.05	
Наименование направления подготовки/ специальности	Лазерная техника и лазерные технологии	
Наименование направленности	Лазерная техника и лазерные технологии	
Форма обучения	очная	
Год приема	2024	

Санкт-Петербург – 2024

Лист согласования рабочей программы дисциплины

Программу составил (а)		
ДОЦ., К.Т.Н. (должность, уч. степень, звание)	Я Л 27, 06. (подпись, дата)	СФЕЗВ.И. Казаков (инициалы, фамилия)
Программа одобрена на заседа	нии кафедры № 23	
«24» июня 2024 г, протокол №	10/24	
Заведующий кафедрой № 23 д.т.н.,проф.	1	А.Р. Бестугин
(уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Заместитель директора инстит	ута №2 по метолической ра	боте
ДОЦ.,К.Т.Н.,ДОЦ. (должность, уч. степень, звание)	(подпусь, дата)	H.B. Марковская (инициалы, фамилия)
Заведующий кафедрой № 23	(подуксь, дата) ута №2 по методической ра	(инициалы, фамилия) боте Н.В. Марковская

Аннотация

Дисциплина «Методы оптической и лазерной спектроскопии» входит в образовательную программу высшего образования — программу бакалавриата по направлению подготовки/ специальности 12.03.05 «Лазерная техника и лазерные технологии» направленности «Лазерная техника и лазерные технологии». Дисциплина реализуется кафедрой «№23».

Дисциплина не является обязательной при освоении обучающимся образовательной программы и направлена на углубленное формирование следующих компетенций:

ПК-5 «Лазерные технологии».

Содержание дисциплины охватывает круг вопросов, связанных с исследованием и анализом веществ, материалов и изделий методами оптической и лазерной спектроскопии.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, самостоятельная работа обучающегося.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 4 зачетных единицы, 144 часа.

Язык обучения по дисциплине «русский»

- 1. Перечень планируемых результатов обучения по дисциплине
- 1.1. Цели преподавания дисциплины

Целью преподавания дисциплины является получение студентами дополнительных знаний, умений и навыков в области оптической спектроскопии, а также предоставление обучающимся возможности получения дополнительных компетенции в области эксплуатации и применения лазерного и спектроскопического оборудования в рамках реализации трека «Технологический».

- 1.2. Дисциплина является факультативной дисциплиной по направлению образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа) компетенции	Код и наименование компетенции	Код и наименование индикатора достижения компетенции
Профессиональные компетенции	ПК-5 Лазерные технологии	ПК-5.3.1 знать принципы организации и технологии работы лазерного оборудования, а также этапы его наладки ПК-5.У.1 уметь настраивать и подготавливать лазерное оборудование к работе ПК-5.В.1 владеть навыком работы с лазерным оборудованием, его наладки и подготовки к использованию

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- «Физика»,
- «<u>Электроника</u>»,
- «Лазерные технологии»,
- «Производственная проектно-конструкторская практика».

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и используются при изучении других дисциплин:

- «Акустооптические устройства»,
- «Приемники лазерного излучения»,
- «Взаимодействие лазерного излучения с веществом»,
- «Лазерные измерения».

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

D C C C		Трудоемкость по семестрам		
Вид учебной работы	Всего	№ 5	№6	
1	2	3	4	
Общая трудоемкость дисциплины, 3E/ (час)	4/ 144	2/72	2/ 72	
Из них часов практической подготовки	34	17	17	
Аудиторные занятия, всего час.	68	34	34	
в том числе:				
лекции (Л), (час)	34	17	17	
практические/семинарские занятия (ПЗ),				
(час)	2.4	177	17	
лабораторные работы (ЛР), (час)	34	17	17	
курсовой проект (работа) (КП, КР), (час)				
экзамен, (час)	36		36	
Самостоятельная работа, всего (час)	40	38	2	
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Зачет, Экз.	Зачет	Экз.	

Примечание: ** кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Разделы, темы дисциплины	Лекции (час)	ПЗ (СЗ) (час)	ЛР (час)	КП (час)	CPC (час)
Сем	естр 5				
Раздел 1. Методы спектрального анализа Тема 1.1. Эмиссионная и абсорбционная спектроскопия Тема 1.2. Спектроскопия комбинационного рассеяния Тема 1.3. Флуоресцентный анализ Тема 1.4. Фурье-спектроскопия	4		4		12
Раздел 2. Аппаратура оптической спектроскопии Тема 2.1. Дифракционный призменный спектрометр Тема 2.2. Дифракционный решеточный спектрометр. Оптические схемы приборов. Тема 2.3. Спектрометр на базе акустооптического фильтра	8		8		14

Раздел 3. Инновационные методы оптической спектроскопии Тема 3.1 Высокопорядковые дифракционные решетки и их применение в оптической спектроскопии Тема 3.2. Многоканальный параллельный оптический спектрометр	5		5		12
Итого в семестре:	17		17		38
Семестр	o 6				
Раздел 4. Лазерная аналитическая спектроскопия Тема 4.1 Введение в лазерную аналитическую спектроскопию Тема 4.2 Методы, основанные на взаимодействии лазерного излучения с твердыми веществами Тема 4.3 Методы, основанные на селективном воздействии лазерного излучения Тема 4.4 Методы лазерного дистанционного зондирования Тема 4.5 Статистическая обработка результатов измерений	17		17		2
Итого в семестре:	17		17		2
Итого	34	0	34	0	40

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

	<u>, , , , , , , , , , , , , , , , , , , </u>
Номер раздела	Название и содержание разделов и тем лекционных занятий
1	Лекция 1. Спектроскопия, общие понятия. Применения
	методов оптической спектроскопии. Эмиссионная и
	абсорбционная спектроскопия. Спектроскопия
	комбинационного рассеяния. Оптические схемы,
	реализующие эти методы.
1	Лекция 2. Флуоресцентный анализ. Фурье-спектроскопия.
	Оптические схемы, реализующие эти методы.
2	Лекция 3. Дифракционный призменный спектрометр.
	Оптическая схема и математическая модель обработки
	оптических сигналов в нем.
2	Лекция 4. Дифракционный решеточный спектрометр. Виды
	дифракционных решеток. Математическая модель обработки
	оптических сигналов в нем.
2	Лекция 5. Дифракционный решеточный спектрометр.
	Оптические схемы приборов. Современные приборы: обзор.
2	Лекция 6. Спектрометр на базе акустооптического
	перестраиваемого фильтра. Оптическая схема и
	математическая модель обработки оптических сигналов в

	нем.
3	Лекция 7. Высокопорядковые дифракционные решетки и их
	применение в оптической спектроскопии. Варианты
	топологий их реализации.
3	Лекция 8. Многоканальный параллельный оптический
	спектрометр. Оптическая схема, варианты применения.
4	Лекция 9. Лазеры как высокоэнергетические источники
	излучения. Свойства лазерного излучения. Взаимодействие
	лазерного излучения с веществом. Высокоэнергетическое и
	селективное воздействие
4	Лекция 10. Методы, основанные на взаимодействии
	лазерного излучения с твердыми веществами. Лазерная
	искровая эмиссионная спектроскопия, физические основы,
	аппаратурное оформление. Спектры поглощения и
	испускания пробы при лазерной атомизации. Лазерный
	пробоотбор и его сочетание со спектроскопическими
	методами анализа. Применения: локальный анализ, анализ
	поверхностей и микропроб, послойный анализ, анализ
	удаленных, в том числе, токсичных, радиоактивных и
	высокотемпературных объектов
4	Лекция 11. Методы, основанные на селективном
	воздействии лазерного излучения, их физические основы,
	аппаратурное оформление, области применения и
	метрологические характеристики. Мешающие влияния в
	различных методах.
	Лазерная атомно-флуоресцентная спектроскопия, лазерная
	атомно-ионизационная спектрометрия. Механизмы
	возбуждения и ионизация атомов лазерным излучением.
	Резонансная ионизационная спектроскопия. Детектирование
	единичных атомов. Атомизаторы, химические равновесия в
	атомизаторах различного типа, оптимизация условий
	определения. Лазерные и классические атомизаторы твердых
	проб. Оптическое возбуждение молекул. Лазерная молекулярная
	флуориметрия, оптико-акустическая и оптико-
	рефрактометрическая спектроскопия, комбинационное
	рассеяние света. Сочетание методов лазерной молекулярной
	аналитической спектроскопии с методами разделения
	(хроматографическим и электрофоретическим).
	Спектроскопия комбинационного рассеяния света.
	Применение спектроскопии когерентного антистоксова
	рассеяния света для анализа поверхности (метод Surface
	Enhanced Raman Spectroscopy, SERS
4	Лекция 12. Методы лазерного дистанционного
	зондирования, их физические основы и области применения.
	· · · · · · · · · · · · · · · · · · ·

	Рэлеевское, Ми-, комбинационное и резонансное рассеяние,		
	молекулярная флуоресценция, поглощение,		
	дифференциальное поглощение и рассеяние		
4	Лекция 13. Статистическая обработка результатов		
	измерений. Систематические и случайные погрешности		
	определения. Шумы и чувствительность измерений.		
	Коррекция аналитического сигнала в различных лазерных		
	методах с помощью обычного и корреляционного		
	нормирования		

4.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

				Из них	$N_{\underline{0}}$		
$N_{\underline{0}}$	Темы практических	Формы практических	Трудоемкость,	практической	раздела		
п/п	занятий	занятий	(час)	подготовки,	дисцип		
				(час)	лины		
	Учебным планом не предусмотрено						
	Всег						

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

			Из них	$N_{\underline{0}}$
$N_{\underline{0}}$	Наименование лабораторных работ	Трудоемкость,	практической	раздела
Π/Π	паименование лаоораторных раоот	(час)	подготовки,	дисцип
			(час)	лины
	Семестр :	5		
1	Измерение оптических спектров тестовых	2	2	1
	источников излучения			
2	Изучение принципов работы призменного	2	2	2
	оптического спектрометра			
3	Изучение принципов работы	4	4	2
	дифракционного решеточного			
	спектрометра			
4	Изучение принципов работы спектрометра	4	4	2
	на базе акустооптического			
	перестраиваемого фильтра			
5	Изучение топологий высокопорядковых	3	3	3
	дифракционных решеток			
6	Изучение принципов работы	2	2	3
	многоканального оптического			
	спектрометра			
	Семестр (5		
7	Использование метода лазерно-искровой			
	эмиссионной спектроскопии для	6	6	4
	идентификации веществ			

8	Работа в программном обеспечении AUTOMATED LIBS. Определение	6	6	4
	температуры плазмы			
9	Автоматическое распознавание веществ методом ЛИЭС	5	5	4
	Всего	34		

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего, час	Семестр 5, час	Семестр 6, час
1	2	3	4
Изучение теоретического материала дисциплины (TO)	32	32	
Курсовое проектирование (КП, КР)			
Расчетно-графические задания (РГЗ)			
Выполнение реферата (Р)			
Подготовка к текущему контролю успеваемости (ТКУ)	4	2	1
Домашнее задание (ДЗ)			
Контрольные работы заочников (КРЗ)			
Подготовка к промежуточной аттестации (ПА)	4	2	1
Всего:	40	38	2

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8. Таблица 8– Перечень печатных и электронных учебных изданий

			Количество
Шифр/	Библиографическая ссылка	экземпляров	
		в библиотеке	
URL адрес		(кроме	
		электронных	
			экземпляров)
621.373		Лазерные технологии: учебное	
Л17		пособие / В. Ф. Лебедев, К. В.	5
J11 /		Сердюк, И. Н. Фоменко; ред. А. Р.	

	г сп с	1
	Бестугин ; СПетерб. гос. ун-т	
	аэрокосм. приборостроения Санкт-	
	Петербург: Изд-во ГУАП, 2021 146	
	с.: рис Библиогр.: с. 142 - 143 (29	
	назв.) ISBN 978-5-8088-1675-6 : Б. ц.	
	- Текст: непосредственный.	
54	Таблицы спектральных линий:	1
T12	справочник / А. Н. Зайдель [и др.] 4-	
	е изд., испр. и доп М. : Наука. Гл.	
	ред. физмат. лит., 1977 800 с 5.60	
	р Текст : непосредственный.	
535	Инновационные методы	5
Б53	дистанционной оптической	
	спектроскопии в прикладных задачах	
	контроля: монография / А. Р.	
	Бестугин, М. А. Ваганов, В. И.	
	Казаков ; СПетерб. гос. ун-т	
	аэрокосм. приборостроения Санкт-	
	Петербург : Изд-во ГУАП, 2023 130	
	с. : рис Библиогр.: с. 121 - 122 (31	
	назв.) ISBN 978-5-8088-1902-3 : Б. ц.	
	- Текст : непосредственный.	
535	Методы и аппаратура бесконтактной	5
B12	оптической спектроскопии: учебно-	
	методическое пособие / М. А.	
	Ваганов, В. И. Казаков, О. Д.	
	Москалец; СПетерб. гос. ун-т	
	аэрокосм. приборостроения Санкт-	
	Петербург: Изд-во ГУАП, 2019 45	
	с. : рис., табл Библиогр.: с. 42 - 44	
	(32 назв.) Б. ц Текст :	
https://headraifma/f:1-/15/0500 16	непосредственный.	
https://books.ifmo.ru/file/pdf/2502.pdf	Лебедев В.Ф. Лазерная фотоника:	-
	Учебно-методическое пособие	
	Санкт-Петербург: Университет	
	ИТМО, 2019 105 с экз.	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9. Таблица 9 – Перечень электронных образовательных ресурсов информационно-

телекоммуникационной сети «Интернет»

URL адрес	Наименование
http://lib.aanet.ru/	Доступ в ЭБС «Лань» осуществляется по договору № 25, 26, 27, от 31.01.2024 Доступ в ЭБС «ZNANIUM» осуществляется по договору № 058 от 27.02.2023
	Доступ в ЭБС «ЮРАЙТ» осуществляется по договору № 257 от 29.05.2023
https://www.elibrary.ru/	Доступ в БД по договору SU-675/2024/746 от 27.12.2023 г.

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

№ п/п	Наименование
	Не предусмотрено

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п		Наименование	
	Не предусмотрено		

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Лекционная аудитория	
5	Специализированная лаборатория «Лазерной техники и лазерных технологий»	51-06-03
6	Лабораторные стенды	51-06-03

10. Оценочные средства для проведения промежуточной аттестации

10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Экзамен	Список вопросов к экзамену;
	Экзаменационные билеты
Зачет	Список вопросов;

Тесты;
Задачи.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции	оценки уровня сформированности компетенции		
5-балльная шкала	Характеристика сформированных компетенций		
узачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; 		
	— умело обосновывает и аргументирует выдвигаемые им идеи; — делает выводы и обобщения; — свободно владеет системой специализированных понятий.		
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 		
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий. 		
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 		

10.3. Типовые контрольные задания или иные материалы. Вопросы для экзамена представлены в таблице 15.

Таблица 15 – Вопросы для экзамена

№ п/п	Перечень вопросов для экзамена	Код индикатора
1	Лазеры как высокоэнергетические источники излучения. Свойства лазерного излучения	ПК-5.3.1

2	D ~	писта 1
2	Взаимодействие лазерного излучения с веществом.	ПК-5.3.1
2	Высокоэнергетическое и селективное воздействие	THE CALL
3	Лазерная искровая эмиссионная спектроскопия,	ПК-5.У.1
	физические основы, аппаратурное оформление. Спектры	
	поглощения и испускания пробы при лазерной	
	атомизации	
4	Лазерный пробоотбор и его сочетание со	ПК-5.В.1
	спектроскопическими методами анализа. Применения:	
	локальный анализ, анализ поверхностей и микропроб,	
	послойный анализ, анализ удаленных, в том числе,	
	токсичных, радиоактивных и высокотемпературных	
	объектов	
5	Лазерная десорбция и абляция в масс-спектрометрии	ПК-5.3.1
6	Лазерная атомно-флуоресцентная спектроскопия, лазерная	ПК-5.3.1
	атомно-ионизационная спектрометрия. Механизмы	
	возбуждения и ионизация атомов лазерным излучением.	
	Резонансная ионизационная спектроскопия.	
	Детектирование единичных атомов	
7	Атомизаторы, химические равновесия в атомизаторах	ПК-5.3.1
	различного типа, оптимизация условий определения.	
	Лазерные и классические атомизаторы твердых проб	
8	Оптическое возбуждение молекул. Лазерная молекулярная	ПК-5.3.1
	флуориметрия, оптико-акустическая и оптико-	
	рефрактометрическая спектроскопия, комбинационное	
	рассеяние света	
9	Сочетание методов лазерной молекулярной	ПК-5.У.1
	аналитической спектроскопии с методами разделения	
	(хроматографическим и электрофоретическим).	
	Спектроскопия комбинационного рассеяния света.	
	Применение спектроскопии когерентного антистоксова	
	рассеяния света для анализа поверхности (метод Surface	
	Enhanced Raman Spectroscopy, SERS)	
10	Рэлеевское, Ми-, комбинационное и резонансное	ПК-5.3.1
-	рассеяние, молекулярная флуоресценция, поглощение,	
	дифференциальное поглощение и рассеяние	
11	Систематические и случайные погрешности определения.	ПК-5.В.1
	Шумы и чувствительность измерений. Коррекция	
	аналитического сигнала в различных лазерных методах с	
	помощью обычного и корреляционного нормирования.	
	помощью обычного и корреляционного нормирования.	<u> </u>

Вопросы (задачи) для зачета представлены в таблице 16. Таблица 16 – Вопросы (задачи) для зачета

№ п/п	Перечень вопросов (задач) для зачета	Код
JN≌ 11/11	перечень вопросов (задач) для зачета	индикатора
1	Спектроскопия, общие понятия. Применения методов	ПК-5.3.1
	оптической спектроскопии.	
2	Эмиссионная и абсорбционная спектроскопия.	ПК-5.3.1
	Спектроскопия комбинационного рассеяния. Оптические	
	схемы, реализующие эти методы	
3	Флуоресцентный анализ. Фурье-спектроскопия.	ПК-5.3.1
	Оптические схемы, реализующие эти методы	
4	Дифракционный призменный спектрометр. Оптическая	ПК-5.3.1

схема и математическая модель обработки оптических		
сигналов в нем		
Дифракционный решеточный спектрометр. Виды	ПК-5.3.1	
обработки оптических сигналов в нем		
Спектрометр на базе акустооптического перестраиваемого		
фильтра. Оптическая схема и математическая модель		
обработки оптических сигналов в нем		
Высокопорядковые дифракционные решетки и их	ПК-5.3.1	
применение в оптической спектроскопии. Варианты		
топологий их реализации		
Многоканальный параллельный оптический спектрометр.	ПК-5.3.1	
Оптическая схема, варианты применения		
Задача: Расчет эффективности дифракции в различных	ПК-5.У.1	
порядках для решетки с заданной топологией		
(индивидуальный вариант топологии для каждого		
студента).		
Задача: Оценка разрешающей способности спектрометра	ПК-5.В.1	
по заданным параметрам оптической схемы		
(индивидуальный вариант параметров для каждого студента).		

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
Учебным планом не предусмотрено	

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

№ п/п	Примерный перечень вопросов для тестов	
	примерный перечень вопросов для тестов	индикатора
1	Какой оптический элемент относится к категории дифракционных:	ПК-5.3.1
	а) интерференционный фильтр;	
	б) акустооптический фильтр;	
	в) резонатор;	
	г) диафрагма	
2	В чем может быть измерена разрешающая способность оптического	ПК-5.3.1
спектрометра:		
	а) нм; б) см;	
	B) B;	
	г) Вт.	
3	Какой из дифракционных оптических элементов может	ПК-5.3.1
	формировать только один порядок дифракции:	
	а) призма;	
	б) дифракционная решетка;	
	в) акустооптический фильтр;	
	г) ни один из них.	

4	Укажите из приведенных все параметры оптической схемы,	ПК-5.3.1
	влияющие на разрешающую способность спектрометра:	
	а) период дифракционной решетки;	
	б) размер апертуры дифракционной решетки;	
	в) фокусное расстояние линзы;	
	г) размер входной щели	
5	Укажите режим работы акустооптического фильтра, позволяющий	ПК-5.3.1
	сформировать один порядок дифракции:	
	а) режим дифракции Брэгга;	
	б) режим дифракции Рамана-Ната;	
	в) режим дифракции Фраунгофера;	
	г) любой из этих режимов.	

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п		Перечень контрольных работ
_	Не предусмотрено	

10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

11. Методические указания для обучающихся по освоению дисциплины

11.1. Методические указания для обучающихся по освоению лекционного материала

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- Общие сведения об оптической спектроскопии;
- Аппаратура, выполняющая анализ оптических спектров;
- Инновационные методы оптической спектроскопии;
- Методы лазерно-искровой оптической спектроскопии.
- 11.2. Методические указания для обучающихся по выполнению лабораторных работ

В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задание и требования к проведению лабораторных работ

Лабораторные работы выполняются бригадой студентов, состоящей из 2-3 человек. Протокол ведется в 1 экземпляре на бригаду.

Структура и форма отчета о лабораторной работе

Отчет должен содержать: название и цель работы, схему измерения, результаты измерений, результаты расчетов, выводы, графический материалы

Требования к оформлению отчета о лабораторной работе

Отчет оформляется согласно требованиям, размещенным на сайте ГУАП

11.3. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихсяявляются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ (для обучающихся по заочной форме обучения).
- 11.4. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

Текущий контроль успеваемости проводится в форме тестирования с индивидуальным расчетным заданием.

11.5. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

- экзамен форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».
- зачет это форма оценки знаний, полученных обучающимся в ходе изучения учебной дисциплины в целом или промежуточная (по окончании семестра) оценка знаний обучающимся по отдельным разделам дисциплины с аттестационной оценкой «зачтено» или «не зачтено».

Система оценок при проведении промежуточной аттестации осуществляется в соответствии с требованиями Положений «О текущем контроле успеваемости и промежуточной аттестации студентов ГУАП, обучающихся по программы высшего образования» и «О модульно-рейтинговой системе оценки качества учебной работы студентов в ГУАП».

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой