МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 23

УТВЕРЖДАЮ

Руководитель образовательной программы

Ст. преподаватель

(должность, уч. степень, звание)

Е.П. Виноградова

(инициалы, фамилия)

(подпись)

«24» июня 2024 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Принципы построения распределенных систем сбора и обработки информации» (Наименование дисциплины)

Код направления подготовки/ специальности	11.04.04	
Наименование направления подготовки/ специальности	Электроника и наноэлектроника	
Наименование направленности	Системы сбора, обработки и отображения информации	
Форма обучения	очная	
Год приема	2024	

Лист согласования рабочей программы дисциплины

Программу составил (а)	A	
доц., к.т.н.		А.Л. Ляшенко
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Программа одобрена на заседа	нии кафедры № 23	
«24» июня 2024 г, протокол М	№10/24	
Заведующий кафедрой № 23	/	
д.т.н.,проф.	F	А.Р. Бестугин
(уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Заместитель директора инстит	ута №2 по методической ра	
доц.,к.т.н.,доц.	(Н.В. Марковская
(полжность, уч. степень, звание)	(полпись, лата)	(инициалы, фамилия)

Аннотация

Дисциплина «Принципы построения распределенных систем сбора и обработки информации» входит в образовательную программу высшего образования — программу магистратуры по направлению подготовки/ специальности 11.04.04 «Электроника и наноэлектроника» направленности «Системы сбора, обработки и отображения информации». Дисциплина реализуется кафедрой «№23».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

- УК-1 «Способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий»
- ПК-1 «Способен осуществлять сопровождение работ по проекту, контроль требований технического задания на аналоговые сложно-функциональные блоки»
- ПК-2 «Способен осуществлять описание поведенческих моделей отдельных аналоговых узлов и всей аналоговой части электронной системы в целом, описывающих функции и временные соотношения»

Содержание дисциплины охватывает круг вопросов, связанных с изучением сложных систем сбора, обработки и отображения информации, относящихся к классу распределённых систем..

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, практические занятия, самостоятельная работа обучающегося, курсовое проектирование.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 4 зачетных единицы, 144 часа.

Язык обучения по дисциплине «русский»

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Научиться выполнять: расчеты и производить оценку качества передачи по каналам аналоговых и цифровых систем связи; анализировать работу устройств проводной и радиосвязи при передаче и приеме сигналов; выполнять расчеты по проектированию первичных сетей связи с использованием цифровых систем передачи; выбирать методы измерения параметров передаваемых сигналов и оценивать качество полученных результатов; определять место и характер неисправностей в радиоэлектронном оборудовании, в аппаратуре и каналах связи.

- 1.2. Дисциплина входит в состав части, формируемой участниками образовательных отношений, образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа) компетенции	Код и наименование компетенции	Код и наименование индикатора достижения компетенции
Универсальные компетенции	УК-1 Способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий	УК-1.3.1 знать методы критического анализа и системного подхода; методики разработки стратегии действий для выявления и решения проблемных ситуаций УК-1.3.2 знать цифровые ресурсы, инструменты и сервисы, включая интеллектуальные, для решения задач/проблем профессиональной деятельности УК-1.У.1 уметь искать нужные источники информации; анализировать, сохранять и передавать информацию с использованием цифровых средств; вырабатывать стратегию действий для решения проблемной ситуации
Профессиональные компетенции	ПК-1 Способен осуществлять сопровождение работ по проекту, контроль требований технического задания на аналоговые сложнофункциональные блоки	ПК-1.3.1 знать методы и этапы проектирования аналоговых сложнофункциональных блоков, особенности представления схем на различных этапах проектирования, принципы построения физических и поведенческих моделей, их применимость к конкретным процессам и приборам ПК-1.У.1 уметь читать и интерпретировать требования системного уровня, спецификации, документацию по разработке и внедрению аналоговых сложно-функциональных блоков ПК-1.В.1 владеть навыками использования программных пакетов систем автоматизированного проектирования изделий электроники на основных этапах маршрута

		проектирования
Профессиональные компетенции	ПК-2 Способен осуществлять описание поведенческих моделей отдельных аналоговых узлов и всей аналоговой части электронной системы в целом, описывающих функции и временные соотношения	ПК-2.3.1 знать принципы описания поведенческих моделей аналоговых устройств; требования к оформлению технической документации ПК-2.У.1 уметь пользоваться нормами стандартизации, метрологии, унификации, автоматизированного проектирования при разработке описания блок-схем и временных диаграмм работы сложно-функциональных аналоговых блоков

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- «Математическое моделирование устройств и систем»,

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и могут использоваться при изучении других дисциплин:

- « Микропроцессорные информационно-измерительные и управляющие устройства»,
- « Специфика моделирования сложных электронных устройств сбора, обработки и отображения информации».

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

Вид учебной работы	Всего	Трудоемкость по семестрам №2
1	2	3
Общая трудоемкость дисциплины, ЗЕ/ (час)	4/ 144	4/ 144
Из них часов практической подготовки	22	22
Аудиторные занятия, всего час.	51	51
в том числе:		
лекции (Л), (час)	17	17
практические/семинарские занятия (ПЗ), (час)	17	17
лабораторные работы (ЛР), (час)	17	17
курсовой проект (работа) (КП, КР), (час)		
экзамен, (час)	54	54
Самостоятельная работа, всего (час)	39	39
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Экз.	Экз.

Примечание: **кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Разделы, темы дисциплины	Лекции (час)	П3 (C3)	ЛР (час)	КП (час)	СРС (час)
Сем	естр 2				
Раздел 1. Многоканальные системы сбора и обработки информации	3	3	3		7
Раздел 2. Принципы построения аналоговых система сбора и обработки информации	4	4	4		8
Раздел 3. Основы цифровых систем сбора и обработки информации	4	4	4		8
Раздел 4. Преобразование сигналов в цифровых системах	3	3	3		8
Раздел 5. Расчет каналов связи и оценка работы распределенных сетей сбора и обработки информации	3	3	3		8
Итого в семестре:	17	17	17		39
Итого	17	17	17	0	39

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

таолица 4— содержание разделов и тем лекционного цикла				
Номер раздела	Название и содержание разделов и тем лекционных занятий			
1	Многоканальные системы сбора и обработки информации			
	Понятие об информации и сообщении. Виды информации, общие принципы передачи			
	информации на расстоянии. Принципы передачи сообщений при помощи			
	электрической энергии. Система электрической связи и ее элементы, канал связи			
2	Принципы построения аналоговых система сбора и обработки			
	информации			
	Принципы построения систем передачи с частотным разделением каналов. Метод			
	уравновешенного моста, сущность, условия независимой передачи, достоинства,			
	недостатки, область применения			
3	Основы цифровых систем сбора и обработки информации			
	Развитие и преимущества цифровых систем передачи информации. Состояние			
	аналоговой сети связи, ее недостатки; основные направления развития сети связи			
	МПС. Иерархии цифровых систем передачи информации. Общие понятия о			
	цифровых иерархиях скоростей передачи; три системы цифровой иерархии.			
4	Преобразование сигналов в цифровых системах			
	Принцип временного разделения каналов (ВРК). Схема, поясняющая принцип ВРК.			
	Сущность метода ВРК. Теорема В.А. Котельникова Сравнить принципы частотного и			
	временного разделения каналов.			

5	Расчет каналов связи и оценка работы распределенных сетей сбора и
	обработки информации
	Теорема Коши, виды разделений каналов, распределение ресурсов.

4.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

№ π/π	Темы практических занятий	Формы практических занятий	Трудоемкость, (час)	Из них практической подготовки, (час)	№ раздела дисцип лины
		Семестр 2			
1	Решение задач с помощью формулы Хартли	Решение задач	3	3	1
2	Кодирование и декодирование текстовой информации различными способами	Решение задач	3	3	2
3	Передача информации средствами коммуникаций	Решение задач	3	3	3
4	Вычисление пропускной способности сети связи	Решение задач	4	4	3
5	Ознакомление с методами решения задач статической маршрутизации в сети.	Решение задач	4	4	4
	Всего		17		

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

№ п/п	Наименование лабораторных работ	Трудоемкость, (час)	Из них практической подготовки, (час)	№ раздела дисцип лины
	Семестр	2		
1	Изучение условий передачи сигнала без	4	4	2
	искажений.			
2	Изучение импульсных видов модуляции,	4	4	3
	способов получения модулированных			
	сигналов и их демодуляции			
3	Ознакомление с методами передачи	4	4	3
	дискретных сообщений и изучение			
	методов оценки помехоустойчивости			
	систем связи с дискретной модуляцией.			
4	Вычисление скорости передачи	5	5	4
	информации и пропускной способности			

каналов связи.			
Bcer	o 17		

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

таолица / Виды самостоятельной расоты и се грудосикость				
Вид самостоятельной работы	Всего,	Семестр 2,		
Вид самостоятсявной рассты	час	час		
1	2	3		
Изучение теоретического материала	19	19		
дисциплины (ТО)	19	19		
Курсовое проектирование (КП, КР)				
Расчетно-графические задания (РГЗ)				
Выполнение реферата (Р)				
Подготовка к текущему контролю	10	10		
успеваемости (ТКУ)	10	10		
Домашнее задание (ДЗ)				
Контрольные работы заочников (КРЗ)				
Подготовка к промежуточной	10	10		
аттестации (ПА)	10	10		
Всего:	39	39		

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8. Таблица 8— Перечень печатных и электронных учебных изданий

Количество экземпляров в Шифр/ библиотеке Библиографическая ссылка URL адрес (кроме электронных экземпляров) 621.391 Журавлев, Анатолий Константинович (проф.,). 393 Ж91. Радиотехнические системы передачи информации: учебное пособие / А. К. Журавлев, Г. И. Никитин; Ленингр. ин-т авиац. приборостроения. - Л.: Изд-во ЛИАП, 1984 621.391 Галлагер, Роберт. Теория информации и 20 надежная связь = Information Theory and Reliable Γ15 Communication / Г. Р. Галлагер; Пер.: М. С.

Пинскер и др М. : Сов. радио, 1974 720 с. :	
ил., табл., схем Библиогр. : с. 695 - 708	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационно-

телекоммуникационной сети «Интернет»

URLадрес	Наименование
http://lib.aanet.ru/	Доступ в ЭБС «Лань» осуществляется по договору № 26 и №27 от31.01.2021 Доступ в ЭБС «ZNANIUМ» осуществляется по договору № 058от 27.02.2023 Доступ в ЭБС «ЮРАЙТ» осуществляется по договору № 257 от29.05.2023

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

№ п/п	Наименование
	Не предусмотрено

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11– Перечень информационно-справочных систем

№ п/п		Наименование
	Не предусмотрено	

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Мультимедийная лекционная аудитория	14-06 Γ
2	Специализированная лаборатория «Конструирования и технологии приборов и ЭС»	13-17

10. Оценочные средства для проведения промежуточной аттестации

10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Экзамен	Список вопросов к экзамену;
	Экзаменационные билеты;
	Тесты.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

	оценки уровня сформированности компетенции	
Оценка компетенции	Характеристика сформированных компетенций	
5-балльная шкала		
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий. 	
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 	
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий. 	
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 	

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	Код
-------	--	-----

		индикатора
1	Классификация типов передаваемой информации.	УК-1.3.1
2	Частотная полоса сигнала. Динамический диапазон	УК-1.3.1
3	Методы критического анализа и системного подхода	УК-1.3.1
4	Методики разработки стратегии действий для выявления и	УК-1.3.1
	решения проблемных ситуаций	
5	Классификация систем и сетей передачи информации	УК-1.3.2
6	Топология сетей передачи данных.	УК-1.3.2
7	Цифровые ресурсы	УК-1.3.2
8	Модель взаимодействия открытых систем OSI.	УК-1.У.1
9	Выработка стратегии действий для решения проблемной ситуации	УК-1.У.1
10	Методы и этапы проектирования аналоговых сложно-	ПК-1.3.1
	функциональных блоков	
11	Особенности представления схем на различных этапах	ПК-1.3.1
	проектирования	
12	Принципы построения физических и поведенческих моделей	ПК-1.3.1
13	Применимость физических и поведенческих моделей к	ПК-1.3.1
	конкретным процессам и приборам	
14	Выбор и описание модели электронной компонентной базы на	ПК-1.У.1
	различных этапах проектирования	
15	Спецификации и документация по разработке и внедрению	ПК-1.У.1
	изделий электроники	
16	Программные пакеты систем автоматизированного	ПК-1.В.1
	проектирования изделий электроники	
17	Этапы проектирования изделий электроники	ПК-1.В.1
18	Принципы описания поведенческих моделей аналоговых	ПК-1.В.1
	устройств	
19	Требования к оформлению технической документации	ПК-1.В.1
20	Нормы стандартизации, метрологии, унификации,	ПК-2.У.1
	автоматизированного проектирования при разработке описания	
	блок-схем	
21	Нормы стандартизации, метрологии, унификации,	ПК-2.У.1
	автоматизированного проектирования при разработке временных	
	диаграмм работы сложно-функциональных аналоговых блоков	
22	Разработка цифровых устройств	ПК-2.3.1
23	Верификация цифровых устройств	ПК-2.3.1
24	Проблемы обеспечения соответствия результатов функционально-	ПК-2.3.1
	логического моделирования и схемотехнического моделирования	
	изделий электроники	
25	Специализированные системы автоматизированного	ПК-2.3.1
	проектирования для моделирования и верификация моделей	
26	Тестирование цифровых устройств	ПК-2.У.1
27	Сравнение результатов функционально-логического	ПК-2.У.1
	моделирования и схемотехнического моделирования	
20		ПСОМ
28	Проверки функционирования разработанного изделия	ПК-2.У.1
20	электронной техники	THE OXY
29	Создание набора тестов, необходимых для полной проверки	ПК-2.У.1
	изделия электронной техники	

Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код индикатора
	Учебным планом не предусмотрено	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

№ п/п	Примерный перечень вопросов для тестов	Код индикатора
1	Укажите правильное определение системы	
	1 Система - это множество взаимосвязанных элементов или	
	подсистем, которые сообща функционируют для достижения общей	
	цели +	УК-1.3.1
	2 Система – это множество объектов	
	3 Система – это не связанные между собой элементы	
	4 Система – это множество процессов	
2	Назначение математического обеспечения ИС – это	УК-1.3.1
	1. Информировать о неисправностях в системе.	
	2. Реализация информационных потребностей всех составных	
	компонентов ИС.	
	3. Описание процессов. +	
	4. Формировать управляющие воздействие.	
3	Системой автоматического управления называется система	
	1. выполняющая функции контроля объектов управления;	
	2. в которой функции управления делят поровну машина и	УК-1.3.1
	человек;	J R 1.5.1
	3. осуществляющая основной процесс без участия человека; +	
	4. осуществляющая управление наилучшим образом.	
4	По принципу управления системы делятся на	
	1. с управлением с обратной связью;	
	2. с разомкнутым циклом управления;	УК-1.3.1
	3. с управлением по возмущениям;	
	4. все вышеперечисленные. +	
5	Обратной связью называется	УК-1.3.1
	1. путь, на котором сигналу присваивается обратный знак;	
	2. путь от выхода ко входу системы; +	
	3. непрерывная последовательность направленных звеньев;	
	4. последовательность звеньев, образующая замкнутый контур.	XIIC 1 2 2
6	Что представляет собой процесс	УК-1.3.2
	1 Преобразование входных потоков данных в выходные в	
	соответствие с определенным алгоритмом. +	
	2 Хранение потоков данных	
	3 Сортировка входных полученных данных	

	4 При получении входных потоков данных, автоматическое	
	удаление ненужных	
7	Информационная технология это	УК-1.3.2
	1 Совокупность операций по сбору, обработке, передачи и	
	хранению данных с использованием методов и средств	
	автоматизации +	
	2 Совокупность технических средств	
	3 Совокупность программных средств	
	4 Совокупность организационных средств	
8	Какова роль измерений в теоретических науках?	УК-1.3.2
	1. Синтез управления	
	2. Описание окружающего мира +	
	3. Выработка стратегий	
	4. Повышение точности результатов	
9	Что такое физическая величина?	УК-1.3.2
	1. Величина, общая в количественном отношении многим	
	физическим системам, их состояниям и происходящим в них	
	процессам, но в качественном отношении индивидуальная	
	2. Свойство, общее в качественном и в количественном	
	отношении для каждого объекта	
	3. Объект, общий в количественном отношении многим	
	физическим объектам, но в качественном отношении	
	индивидуальный	
	4. Свойство, общее в качественном отношении многим	
	физическим объектам, но в количественном отношении	
	индивидуальное для каждого из них +	
10	Схема измерения пассивного объекта должна содержать	УК-1.3.2
10	1. внутренний источник энергии	711 1.3.2
	2. пассивный преобразующий элемент	
	3. активный преобразующий элемент	
	4. внешний источник энергии +	
11	Как расшифровывается аббревиатура САПР?	УК-1.У.1
11	1 система автоматизированного производства;	J IC 1.J .1
	2 система автоматизированного производетва,	
	3 системный анализ производства.	
	4 совокупность автономных программ	
12	Для чего необходим аналого-цифровой преобразователь	УК-1.У.1
12		J IX-1. J . I
	1 определяет уровень звукового сигнала и превращает в	
	цифровой код;	
	2 аналоговые сигналы преобразует в цифровые;	
	3 цифровое видео – изображение переводит в аналоговое;	
	4 одновременно звук и видео из аналогового сигнала	
	переводит в цифровой	
13	Операционный усилитель имеет:	УК-1.У.1
	1) два выхода и два входа	
	2) один вход и два выхода	
	3) два входа и один выход +	
	4) один вход и два выхода	
14	Схема делителя напряжения это	УК-1.У.1
	1. вклчение резистора и катушки индуктивности	
	2. последовательное включение резисторов +	
	7.1	

	3. включение резистора и конденсатора	
	4. параллельное включение резисторов	УК-1.У.1
15	Логические интегральные микросхемы используют для построения:	
	1) цифровых устройств +	
	2) усилителей напряжений	
	3) выпрямителей	
	4) генераторов	ПК-1.3.1
16	Датчики, у которых сигнал на выходе пропорционален измеряемой	
	величине, называется	
	1.нелинейным	
	2.циклическим	
	3.пропорциональным	
	4.импульсным	
17	Датчики, у которых сигнал на выходе нелинейно зависит от сигнала	ПК-1.3.1
	на входе, называется	
	1.нелинейным	
	2.пропорциональным	
	3.релейным	
	4.циклическим	
18	Какие факторы учитывают при проектировании РЭА	ПК-1.3.1
	1. режимы работы элементов и деталей +	
	2. электрическое поле	
	3. магнитное поле	
	4. радиопомехи	
19	Потенциометрический датчик применяется для измерения	ПК-1.3.1
	1. сопротивления	
	2. перемещения +	
	3. тока	
	4. напряжения	
20	Какие факторы учитывают при проектировании РЭА	ПК-1.3.1
	1. режимы работы элементов и деталей +	
	2. электрическое поле	
	3. магнитное поле	
	4. радиопомехи	
21	Виды измерительных приборов	ПК-1.У.1
	1.аналоговые и цифровые	
	2.сжатые	
	3.деформирующие	
	4.разжимающие	
22	Исполнительные механизмы бывают:	ПК-1.У.1
	1 гидравлические и пневматические	
	2 гидравлические, пневматические и электрические +	
	3 пневматические	
	4 электрические и гидравлические	
23	Тип датчика, представляющий собой переменный резистор	ПК-1.У.1
	1.индуктивный	
	2.потенциометрический +	
	3.емкостный	
	4.поплавковый	
24	Элемент измерительного, сигнального, регулирующего или	ПК-1.У.1
	управляющего устройства, преобразующий контролируемую	
	величину (температуру, давление, частоту, силу света,	

	электрическое напряжение, ток и т.д.) в сигнал, удобный для	
	измерения, передачи, хранения, обработки, регистрации называется	
	1.генератором	
	2.датчиком +	
	3.мультиметром	
	4.осциллографом	
25	Датчики, у которых сигнал на выходе пропорционален измеряемой	ПК-1.У.1
	величине, называется	
	1.нелинейным	
	2.циклическим	
	3.пропорциональным +	
	4.импульсным	
26	Передаточная функция W(p) – отношение изображения по Лапласу	ПК-1.В.1
	1 выходной величины к входной при любых начальных условиях.	
	2 выходной величины к входной при нулевых начальных условиях.	
	3 входной величины к входной.	
27	4 выходной величины к управляющему воздействию.	TH/ 1 D 1
27	Объект управления – это: 1. устройство (совокупность устройств), которое без непосредственного	ПК-1.В.1
	участия человека выполняет процессы приема, преобразования, использования и	
	передачи энергии, материалов или информации в соответствии с заданной	
	программой.	
	2. техническая система, на состояние которой необходимо воздействовать	
	для достижения той или иной цели.	
	3. источник воздействия, которое с той или иной целью прикладывается к	
	объекту управления. 4. совокупность связанных и взаимодействующих между собой	
	определенным образом объектов управления и управляющих устройств.	
28	Вторичный прибор:	ПК-1.В.1
	1. Показывает, преобразует сигнал от датчика	1111 11211
	2. Воспринимает сигнал от датчика и выражает его в числовом	
	виде с помощью отсчетного устройства +	
	3. Показывает и записывает сигнал от датчика	
	4. Дублирует датчик	
29	4. дуолирует датчик Датчик прибора установливается:	ПК-1.В.1
49		11K-1.D.1
	1. на объекте измерения +	
	2. в цепи вторичных приборов	
	3. параллельно усилителю	
	4. в цепи контроллера	
30	Датчики, у которых сигнал на выходе нелинейно зависит от сигнала	ПК-1.В.1
	на входе, называется	
	1.нелинейным +	
	2.пропорциональным	
	3.релейным	
	4.циклическим	
31	Что называется обратной связью?	ПК-2.У.1
	1. любой путь, если его сигнал вычитается из входного	
	сигнала.	
	2. путь от выхода к входу системы.	
	3. непрерывная последовательность направленных звеньев.	
	4. последовательность звеньев, образующая замкнутый контур.	
32	4. последовательность звеньев, образующах замкнутый контур. Моделирование — это:	ПК-2.У.1
34	*	11IX-2. y . 1
	1. процесс замены реального объекта (процесса, явления)	
	другим материальным или идеальным объектом.	
	2. процесс демонстрации моделей.	

	3. процесс неформальной постановки конкретной задачи.	
	4. процесс исследования реальной системы,	
33	Датчики, осуществляющие непосредственное преобразование	ПК-2.У.1
	входной величины в электрический сигнал	
	1.параметрические	
	2.инерционные	
	3. пропорциональные	
	4.генераторные +	
34	Классификация датчиков по принципу действия:	ПК-2.У.1
	1. гравитационные, гидравлические, объёмные	
	2. скоростные, массовые, электрические	
	3. пневматические, гидравлические, электрические +	
	4. энергетические, емкостные, гравитационные	
35	Прибор для измерения сопротивления:	ПК-2.У.1
	1. омметр +	
	2. вольтметр	
	3. амперметр	
	4. дозиметр	
36	Обеспечивающие предметные информационные технологии (ИТ)	ПК-2.3.1
	предназначены для создания:	
	1 Функциональных подсистем информационных систем +	
	2 Автоматизированных рабочих мест	
	3 Электронного офиса	
	4 Программного продукта	
37	Технологии проектирования – это совокупность:	ПК-2.3.1
	1 Критериев и правил, на основании которых определяется	
	техническое задание	
	2 Пошаговых процедур, определяющих последовательность	
	технологических операций проектирования +	
	3 Таблиц, используемых для оценки проектируемой системы в	
	баллах.	
	4 Различных программных продуктов	
38	Индуктивные датчики с перемещающимся сердечником способны	ПК-2.3.1
50	измерять.	111 2.5.1
	1. Большие перемещения.	
	2. Малые перемещения.	
	3.Средние перемещения.	
	4.Все перемещения. +	
39	Датчик уровня - это устройство для измерения:	ПК-2.3.1
37	1. Уровня веществ. +	11K 2.5.1
	2. Уровня газов.	
	3. Уровня газов и веществ.	
	4. Уровней некоторых веществ.	
40	Виды измерительных приборов	ПК-2.3.1
1 0	1.аналоговые и цифровые +	1112.5.1
	1.аналоговые и цифровые т 2.сжатые	
	3.деформирующие	
	4.разжимающие]

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п	Перечень контрольных работ	
	Не предусмотрено	

10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

11. Методические указания для обучающихся по освоению дисциплины

11.1. Методические указания для обучающихся по освоению лекционного материала.

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- Обзор проблематики. Постановка задач.
- Анализ методологических приемов решения поставленных задач.
- Рассмотрение решений поставленных задач на конкретных примерах.
- Выводы и рекомендации по использованию рассмотренных методов.
- Ответы на вопросы аудитории.

11.2. Методические указания для обучающихся по прохождению практических занятий

Практическое занятие является одной из основных форм организации учебного процесса, заключающаяся в выполнении обучающимися под руководством преподавателя

комплекса учебных заданий с целью усвоения научно-теоретических основ учебной дисциплины, приобретения умений и навыков, опыта творческой деятельности.

Целью практического занятия для обучающегося является привитие обучающимся умений и навыков практической деятельности по изучаемой дисциплине.

Планируемые результаты при освоении обучающимся практических занятий:

- закрепление, углубление, расширение и детализация знаний при решении конкретных задач;
- развитие познавательных способностей, самостоятельности мышления, творческой активности;
- овладение новыми методами и методиками изучения конкретной учебной лисшиплины;
- выработка способности логического осмысления полученных знаний для выполнения заданий;
- обеспечение рационального сочетания коллективной и индивидуальной форм обучения.

Требования к проведению практических занятий

Методические указания по проведению практических занятий имеются в виде электронных ресурсов кафедры

11.3. Методические указания для обучающихся по выполнению лабораторных работ

В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задание и требования к проведению лабораторных работ

Задание и требования к проведению лабораторных работ приводятся для каждой работы в методических указаниях.

Структура и форма отчета о лабораторной работе

- 1. Титульный лист
- 2. Цель и задачи работы.
- 3. Теоретические сведения о методах решения поставленных задач.
- 4. Схема лабораторной установки
- 5. Результаты измерений и расчетов.
- 6. Графические зависимости.
- 7. Выводы.

Требования к оформлению отчета о лабораторной работе

Отчет предоставляется студентом индивидуально, в печатной форме. Должен соответствовать принятой структуре и форме. Таблицы и графики должны иметь названия. Выводы по работе должны быть сформулированы в форме ответов на поставленные в работе задачи, обязательно со ссылками на полученные расчетные значения и графические зависимости.

11.4. Методические указания для обучающихся по прохождению курсового проектирования/выполнения курсовой работы (если предусмотрено учебным планом по данной дисциплине)

Курсовой проект/ работа проводится с целью формирования у обучающихся опыта комплексного решения конкретных задач профессиональной деятельности.

Курсовой проект/ работа позволяет обучающемуся:

<u>Структура пояснительной записки курсового проекта/ работы</u> *Обязательно для заполнения преподавателем*

<u>Требования к оформлению пояснительной записки курсового проекта/ работы</u> Обязательно для заполнения преподавателем

Если методические указания по курсовому проектированию/ выполнению курсовой работы имеются в изданном виде, в виде электронных ресурсов библиотеки ГУАП, системы LMS, кафедры и т.д., необходимо дать на них ссылку или привести URL адрес.

11.5. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихсяявляются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ (для обучающихся по заочной форме обучения).
- 11.6. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

Система оценок при проведении текущего контроля успеваемости осуществляется в соответствии с требованиями Положений «О текущем контроле успеваемости и промежуточной аттестации студентов ГУАП, обучающихся по программам высшего образования» и «О модульно-рейтинговой системе оценки качества учебной работы студентов в ГУАП».

11.7. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

- экзамен форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».
- зачет это форма оценки знаний, полученных обучающимся в ходе изучения учебной дисциплины в целом или промежуточная (по окончании семестра) оценка знаний обучающимся по отдельным разделам дисциплины с аттестационной оценкой «зачтено» или «не зачтено».
- дифференцированный зачет это форма оценки знаний, полученных обучающимся при изучении дисциплины, при выполнении курсовых проектов, курсовых работ, научно-исследовательских работ и прохождении практик с аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Система оценок при проведении промежуточной аттестации осуществляется в соответствии с требованиями Положений «О текущем контроле успеваемости и промежуточной аттестации студентов ГУАП, обучающихся по программам высшего образования» и «О модульно-рейтинговой системе оценки качества учебной работы студентов в ГУАП».

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой