МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 24

УТВЕРЖДАЮ

Руководитель образовательной программы

доц.,к.т.н.

(дилжность, уч. степень, звание)

Е.В. Силяков

(инопиналу, фамилия)

(noamics)

«24» mail 2024s

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Интегрированные системы навигации» (Наименование дисциплины)

Код направления подготовки/ специальности	11.05.01
Наименование направления подготовки/ специальности	Радиоэлектронные системы и комплексы
Наименование направленности	Радиоэлектронные системы передачи информации
Форма обучения	очная
Год приема	2024

Лист согласования рабочей программы дисциплины

Программу составил (а)	0 1	
Who delich Bis L. Cale	(wonneek nara)	(инненалы фомерия)
Программа одобрена на заседани	и кафедры № 24	
«24»05 2024 г, прото		
Заведующий кафедрой № 24	on	
К.Т.Н.,ДОЦ.	Olaha	О.В. Тихоненкова
(уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
	6:	
Заместитель директора институт:	а №2 по методической р	аботе
доц.,к.т.н.,доц.	(OM1)	Н.В. Марковская
(должность, уч. степень, звание)	(nonnega/nara)	(инициалы, фамилия)

Аннотация

Дисциплина «Интегрированные системы навигации» входит в образовательную программу высшего образования – программу специалитета по направлению подготовки/ специальности 11.05.01 «Радиоэлектронные системы и комплексы» направленности «Радиоэлектронные системы передачи информации». Дисциплина реализуется кафедрой «№24».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ПК-1 «Способен определять цели и выполнять постановку задач проектирования»

ПК-2 «Способен знать технологию и разрабатывать структурные и функциональные схемы радиоэлектронных систем и комплексов, а также принципиальные схемы радиоэлектронных устройств с применением современных САПР и пакетов прикладных программ»

ПК-4 «Способен разрабатывать радиоэлектронные устройства на современной элементной базе с использованием современных пакетов прикладных программ»

Содержание дисциплины охватывает круг вопросов, связанных с принципами построения и функционирования радионавигационных систем, комплексов и средств, поиском обнаружением и сопровождением сигналов, методов позиционирования подвижных объектов и оценки точности определения местоположения.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции и лабораторные работы, а также самостоятельная работа, коллоквиумы и консультации.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 4 зачетных единицы, 144 часа.

Язык обучения по дисциплине «русский»

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Целью преподавания дисциплины является *изучение* студентами основ построения интегрированных систем навигации (ИСН), технологий радионавигации, телекоммуникации, электронно-картографических и программно-математических средств обеспечения, опорных станций (ОС), навигационной аппаратуры пользователя (НАП) и их функционирования по предназначению, а также обработку радионавигационных сигналов в условиях непреднамеренных и преднамеренных помех. В области воспитания личности целью подготовки по данной дисциплине является формирование социально-личностных и общекультурных компетенций, таких качеств, как целеустремленность, организованность, трудолюбие и ответственность Дисциплина входит в состав части, формируемой участниками образовательных отношений, образовательной программы высшего образования (далее – ОП ВО).

1.2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

таолица т ттеретен	в компетенции и индикаторов их д	цоетижения
Категория (группа)	Код и наименование компетенции	Код и наименование индикатора до-
компетенции	Trod ii iidiiii oliobaliii o koimie i eliqiiii	стижения компетенции
Профессиональные	ПК-1 Способен определять цели и	ПК-1.В.1 владеть навыками разра-
компетенции	выполнять постановку задач про-	ботки технического задания и этапа-
	ектирования	ми проектирования
Профессиональные	ПК-2 Способен знать технологию	ПК-2.У.1 уметь проводить расчеты
компетенции	и разрабатывать структурные и	характеристик радиоэлектронных
	функциональные схемы радио-	устройств, радиоэлектронных систем
	электронных систем и комплексов,	и комплексов
	а также принципиальные схемы	
	радиоэлектронных устройств с	
	применением современных САПР	
	и пакетов прикладных программ	
Профессиональные	ПК-4 Способен разрабатывать ра-	ПК-4.3.1 знать принципы построения
компетенции	диоэлектронные устройства на со-	и функционирования приемной и
	временной элементной базе с ис-	передающей аппаратуры, аппаратно-
	пользованием современных паке-	программные средства цифровой
	тов прикладных программ	обработки сигналов, основные прин-
		ципы радиолокации и радионавига-
		ции, средства связи

2. Место дисциплины в структуре ОП

Дисциплина базируется на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин: электротехники и электроники, основы теории связи, теориия радиотехнических цепей и сигналов устройств формирования и генерирования сигналов устройств приема и обработки сигналов.

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и используются при изучении других дисциплин: производственная преддипломная практика, используются при написании выпускной квалификационной работы.

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

Вид учебной работы		Трудоемкость по семестрам
1		№ 9
1	2	3
Общая трудоемкость дисциплины , 3E/ (час)	4/ 144	4/ 144
Из них часов практической подготовки	34	34
Аудиторные занятия, всего час.	68	68
в том числе:		
лекции (Л), (час)		34
практические/семинарские занятия (ПЗ), (час)		
лабораторные работы (ЛР), (час)		34
курсовой проект (работа) (КП, КР), (час)		
экзамен, (час)		36
Самостоятельная работа, всего (час)		40
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)		Экз.

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Разделы, темы дисциплины	Лек. (час)	П3 (час)	ЛР (час)	CPC (час)
Семестр 7	(ide)	(ide)	(ide)	(Iuc)
Раздел 1. Принципы построения ИНС подвижных объектов (ПО).				
Тема 1.1. Общая характеристика, структура и состав радионавига-				
ционных систем (РНС).				
Тема 1.2. Классификация навигационных систем и технологии по-	8		4	12
зиционирования.	Ü		-	
Тема 1.3. Принципы построения современных систем определения				
местоположения (ОМП) и ее элементов.				
Тема 1.4. Основные характеристики РНС и требования к ним.				
Раздел 2. Интегрированные системы навигации ПО.				
Тема 2.1. Системы дальней навигации. Импульсно-фазовые радио-				
навигационные системы (ИФ РНС) Чайка и LORAN.				
Тема 2.2. Глобальные навигационные спутниковые системы (ГНСС).				
Тема 2.3. Сигналы в спутниковых радионавигационных системах.				
Тема 2.4 Содержание сообщения спутниковых радионавигацион-				
ных сигналов (СРНС) ГЛОНАСС и GPS.	20		26	24
Тема 2.5. Системы ОМП в сетях связи с подвижными объектами.				
Тема 2.6. Системы ОМП в сетях спутниковой связи.				
Тема 2.7. Инерциальные системы навигации подвижных объектов.				
Тема 2.8. Навигационная аппаратура пользователя (НАП).				
Тема 2.9. Интегрированная навигационная аппаратура пользователя.				
Тема 2.10. Системы мобильной и спутниковой связи с ПО.				
Раздел 3. Функциональные дополнения ИСН подвижных объектов.	6		1	4
Тема 3.1. Наземные дифференциальные подсистемы. Методы по	0		4	4

вышения точности позиционирования и защиты от помех. Тема 3.2. Разновидности дифференциального режима. Спутниковые системы передачи дифференциальных поправок.			
Тема 3.3. Применение глобальных навигационных спутниковых систем. Системы мониторинга и диспетчеризации транспорта.			
Итого в семестре:	34	34	40
Итого	34	34	49

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий.

Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

№ разд	Название и содержание разделов и тем лекционных занятий
1	Принципы построения интегрированных системы навигации (ИСН) подвижных
	объектов (ПО). Общая характеристика, структура и состав РНС. Классификация
	навигационных систем и технологии позиционирования. Опорные станции (ОС) со-
	здания радионавигационного поля и навигационная аппаратура пользователя (НАП).
	Системные и технические характеристики современных радионавигационных си-
	стем и требования к ним.
2	, , , , , , , , , , , , , , , , , , ,

Интегрированные системы навигации подвижных объектов. Системы дальней навигации. Импульсно-фазовые (глобальные и локальные) радионавигационные системы (ИФ РНС). Принципы построения и функционирования РНС и устройств. Структура, состав и функционирование системы. Сигналы и импульсно-фазовый метод измерения навигационных параметров. Дальномерный и разностнодальномерный методы определения координат и оценка их погрешности. Фазовая многозначность и ее разрешение. Технические характеристики ИФРНС.

Глобальные навигационные спутниковые системы (ГНСС). Особенности спутниковой навигации. Общая характеристика и состав ГНСС. Принцип функционирования системы и ее технические характеристики. Радионавигационные сигналы и навигационные сообщения ГЛОНАСС и GPS их содержание. Псевдодальномерный и псевдодоплевский методы определения РНП. Содержание сообщения спутниковых радионавигационных сигналов (СРНС) ГЛОНАСС и GPS. Состояние и перспективы развития ГНСС.

Телекоммуникационное обеспечение. Системы и сети мобильной связи. Сети спутниковой связи с ПО. Системы позиционирования в подвижной связи. Услуга позиционирования в системах связи с ПО. Технологии реализации позиционирования в сотовых системах связи. Методы позиционирования и оценка погрешности ОМП. Технология A-GPS. Системы позиционирования в спутниковой связи.

Основы инерциальной навигации. Инерциальные системы навигации ПО, ее элементы и их характеристики. Повышение надежности позиционирования.

Навигационная аппаратура пользователя (НАП). Принципы построения навигационных приемников. Алгоритмы первичной и вторичной обработки информации. Поиск (обнаружение) и синхронизация радионавигационного сигнала. Способ измерения задержки сигнала и определения дальности. Способ измерения частотного сдвига сигнал и определение скорости перемещения ПО. Комплексирование автономных систем позиционирования по первичным и вторичным трактам обработки информации. Повышение помехоустойчивости точности ОМП.

Интегрированная навигационная аппаратура пользователя. Интеграция систем позиционирования, связи и управления. Системы мониторинга и диспетчеризации

подвижных объектов. Комплексирование разнородных навигационных сигналов. Двухчастотные навигаторы и угломеры.

3. Дифференциальный режим и контроль целостности РНС. Региональные и широкозоновые дифференциальные подсистемы (ДПС). Система дифференциальной коррекции и мониторинга (СДКМ) ЛУЧ и SBAS (EGNOS).

Применение ГНСС в наземном, морском и речном транспорте, в авиации и космосе, в горном деле, сельском хозяйстве, строительстве и контроле сооружений. Управление машинами, робототехника, относительная навигация.

Оценка эффективности применения радионавигационных систем. Расчет уровня средней мощности на входе приемника НАП и зон обслуживания РНС. Расчет помехозащищенности приемника НАП Оценка показателей точности ОМП и помехозащищенности Расчет погрешности преобразования радионавигационных сигналов и оценка эффективности применения РНС. Требования потребителей к ГНСС.

4.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

$N_{\underline{0}}$	Темы практиче-	Формы практических	Трудоемкость,	Из них практической	№ разд.	
п/п	ских занятий	занятий	(час)	подготовки, (час)	дисципл.	
		Учебным планом	и не предусмотрен	НО		
Всего						

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

№ Tuosingu o siacoparophisie sanistiis ii ni ii pydoesikoeris	Трудоем-	Из них практич.	No
Наименование лабораторных работ	10.	подготовки, (час)	
Семестр 7	1 / /		1 7
1. Исследование преобразования аналогового сигнала в цифро	- 4	2	
вой в навигационных приемниках современных радионавига			
ционных систем			
2. Исследования параметров фазовой модуляции радионавига	- 4	2	
ционных сигналов и их помехоустойчивости.			
3. Исследование когерентного корреляционного приема радио	- 4	2	2
навигационных сигналов в навигационном приемнике.			
4 Исследование точности измерения задержки времени распро	4	2	
странения радионавигационных сигналов (корреляционных	<u> </u>		
свойств измерительных сигналов)			
5 Исследование помехозащищенности приема радионавигаци	- 4	2	
онных сигналов на фоне влияния узкополосных помех			
6. Исследование процесса демодуляции в радионавигационных	4	2	
системах.			
7. Исследование искажения сигналов в согласованных фильтрах	4	2	2
измерителей временных задержек.			
8. Исследование помехоустойчивости системы синхронизации	ı 4	2	2
радиосигналов с фазовой подстройкой частоты.			
9. Расчетные задачи по исследования параметров интегрирован	- 4	3	1,2,
ных навигационных систем			3
Beere	34	19	

4.5. Курсовое проектирование/ выполнение курсовой работы

Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся

Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы		Семестр 9,
		час
1		3
Изучение теоретического материала дисциплины (ТО)		14
Подготовка к текущему контролю успеваемости (ТКУ)		6
Подготовка к промежуточной аттестации (ПА)		20
Всего:	40	40

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий

Перечень печатных и электронных учебных изданий приведен в таблице 8.

Таблица 8– Перечень печатных и электронных учебных изданий

		Кол. экз. в биб-
Шифр/ URL адрес	Библиографическая ссылка	лиотеке (кроме
		электр.экз.)
621.396.96	Ю.Г. Сосулин Теоретические основы радиолокации	55
(075)-C66	и радионавигации. – М.: Радио и связь, 1992. – 304 с.	33
	Радиотехнические системы: учебник/ Ю. М. Казари-	
621.396- P 15	нов [и др.]; ред. Ю. М. Казаринов М.: Академия,	110
	2008 589 c.	
621 206 06	ГЛОНАСС. Принципы построения и функционирова	
621.396.96	ния/ Под ред. А.И.Перова, В.Н. Харисова. Изд.3-е	20
(075)-C12	перераб. – М.: Радиотехника, 2011, 688 с., ил.	
https://e.lanbook.com	Денисов, В.П. Радиолокационные системы [: учеб	
/book/10881.	метод. пособие – Электрон. дан. – Москва : ТУСУР,	
	2012. – 21 с. Электронный ресурс]	
URL:http://biblioclub.ru	Технологии определения местоположения в GSM и	
/index.php?page=	UMTS / Ю.А. Громаков, А.В. Северин, В.А. Шевцов	
book&id=239260	Учеб. пособие М.: Эко-Трендз, 2005 144с.: ил.	
	[Электронный ресурс]	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9. Таблица 9 – Перечень электронных образовательных ресурсов информационно-

телекоммуникационной сети «Интернет»

URL адрес	Наименование
http://www.intuit.ru/.	Национальный открытый университет «ИНТУИТ»
https://e.lanbook.com/	Электронно-библиотечная система «Лань»
http://www.edu.ru/.	Федеральный портал. Российское образование
http://www.rsl.ru/.	Российская Государственная Библиотека (Информационно-
	поисковая система РГБ), Москва
http://www.nlr.ru/	Российская национальная библиотека (РНБ), Санкт-Петербург
http://www.study.urfu.ru/	Радиоэлектронные системы дистанционного мониторинга [Элек-
Aid/ViewMeta/7219	тронный ресурс]. УМК № 12082. – 2007. – Режим доступа:

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

№ п/п	Наименование
	Не предусмотрено

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11– Перечень информационно-справочных систем

№ п/п	Наименование		
	Не предусмотрено		

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории	
1	Мультимедийная лекционная аудитория		
2	Специализированная лаборатория с установленным на компьютеры		
	программного обеспечения «MultiSim»		

- 10. Оценочные средства для проведения промежуточной аттестации
- 10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств	
Экзамен	Список вопросов к экзамену;	
	Экзаменационные билеты;	
	Задачи;	
	Тесты.	

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции	V	
5-балльная шкала	Характеристика сформированных компетенций	
	 обучающийся глубоко и всесторонне усвоил программный материал; 	
«отлично»	уверенно, логично, последовательно и грамотно его излагает;опираясь на знания основной и дополнительной литературы,	
«зачтено»	тесно привязывает усвоенные научные положения с практической деятельностью направления;	
	– умело обосновывает и аргументирует выдвигаемые им идеи;– делает выводы и обобщения;	
	- свободно владеет системой специализированных понятий.	
	– обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной	
	литературы;	
«хорошо»	– не допускает существенных неточностей;	
«зачтено»	– увязывает усвоенные знания с практической деятельностью	
	направления; – аргументирует научные положения;	
	делает выводы и обобщения;	
	 владеет системой специализированных понятий. 	
	– обучающийся усвоил только основной программный матери-	
	ал, по существу излагает его, опираясь на знания только ос-	
	новной литературы;	
«удовлетворительно»	 допускает несущественные ошибки и неточности; 	
«удовяетворительно» «зачтено»	- испытывает затруднения в практическом применении знаний	
(Sa ITOIO)	направления;	
	– слабо аргументирует научные положения;	
	– затрудняется в формулировании выводов и обобщений;	
	 частично владеет системой специализированных понятий. 	
	– обучающийся не усвоил значительной части программного	
	материала;	
«неудовлетворительно»	– допускает существенные ошибки и неточности при рассмот-	
«не зачтено»	рении проблем в конкретном направлении;	
	 испытывает трудности в практическом применении знаний; 	
	– не может аргументировать научные положения;	
	– не формулирует выводов и обобщений.	

10.3. Типовые контрольные задания или иные материалы.

Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	Код ин- дикат.	
1.	Принципы построения ИСН подвижных объектов (ПО).		
2.	Общая характеристика, структура, состав функционирование ИНС.		
3.	Классификация ИНС и технологии позиционирования.		
4.	Принципы построения, структура, состав и функции опорных станций РНС.		
5.	Технология создания радионавигационное поля и принципы радионавигации		
6.	Структура, состав НАП и назначение ее элементов.		
7.	Системные (тактические) характеристики ИНС (РНС) и требования к ним.		
8.	Технические показатели ОС и НАП и требования к ним.		
9.	Энергетические характеристики радионавигационных линий.		
9.	Интегрированные системы навигации. Состав, технологии, их назначение	ПК-	
10.	Системы дальней навигации. Импульсно-фазовые РНС (Чайка).	4.3.1	
11.	Сигналы и импульсно-фазовый метод измерения РНП, оценка его погрешности.	1.5.1	
12.	Дальномерный и разностно-дальномерный методы ОМП, оценка его погрешности		
13.	Глобальных навигационных спутниковых систем ГЛОНАСС и GPS. Их особенности.		
	Радиосигналы и навигационные сообщения ГЛОНАСС (GPS) их содержание.		
	Псевдодальномерный и псевдодоплевский методы определения РНП.		
	Содержание сообщения спутниковых РНС ГЛОНАСС и GPS		
	Способы обработки сигналов в НАП. Навигационное уравнение.		
	Инерциальные системы определения местоположения ПО. Технологии ОМП.		
	Системы мониторинга и диспетчеризации транспорта.		
20.	Телекоммуникационное обеспечение ИСН. Системы и сети мобильной связи.		
21.	Телекоммуникационное обеспечение ИСН Сети спутниковой связи с ПО.		
22.	Технологии реализации позиционирования в сотовых системах связи.		
	Методы позиционирования и оценка погрешности ОМП. Технология A-GPS.		
	Системы позиционирования в спутниковой связи.		
	Когерентный прием и корреляционная обработка радионавигационных сигналов.		
	Критерий Неймана-Пирсона и Байеса. Оценка показателей качества.		
	Алгоритмы ПОИ. Поиск (обнаружение) и синхронизация радионавигационного сигнала.		
	Способ измерения задержки сигнала и определения дальности.		
	Способ измерения частотного сдвига сигнал и определение скорости перемещения ПО.		
30.	Алгоритмы ВОИ. Решения навигационного задачи на фоне аддитивного гауссовского шума.		
31.	Алгоритмы ВОИ. Решения навигационного задачи на фоне многолучевости радиосигналов.		
32.	Помехозащищенность РНС и НАП. Методы защиты от преднамеренных помех.		
33.	Способы комплексирования автономных навигационных сигналов в НАП.		
34.	Способы комплексирования навигационных сигналов и сигналов связи.		
35.	Устройства комплексирования сигналов и их характеристики.		
36.	Комплексирование сигналов разнородных навигационных систем по трактам ПОИ и ВОИ.		
37.	Источники погрешности ОМП РНС. Методы повышение точности позиционирования ПО.	ПК-	
38.	Функциональные дополнения ГНСС. Наземные дифференциальные подсистемы (ДПС).	2.У.1	
39.	Широкозоновые ДПС. Спутниковые СДКМ «Луч» и SBAS (EGNOS).		
40.	Применение ИСН в различных отраслях экономики (авиа, авто, морском и речном транспорте)		
41.	Оценка эффективности применения ИНС в отраслях экономики. Относительная навигация.		
42.	Расчет уровня средней мощности на входе приемника НАП и зон обслуживания РНС.		
43.	Расчет помехозащищенности приемника НАП и ее оценка.		
44.	Расчет показателей точности ОМП и ее оценка.		
45.	Требования потребителей к ГНСС.		
46.	Мировые и отечественные тенденции развитие ИНС		

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16.

Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код индикатора
	Учебным планом не предусмотрено	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

6.	1. Что является интегратором (оптимальным объединителем) навигационных сигна-	ПК-4.3.
	лов двух и более автономных навигационных систем:	
	1) - фильтр Котельникова; 2) - фильтр Кальмана;	
	2) - сумматор по модулю 2; 3) - интегрирующая цепь.	
	11; $22;$ $33;$ $44.$	
7	2. Какие параметры влияют на погрешность определения координат (Δx , Δy) в инер-	
	циальных навигационных системах (два ответа):	
	1) - текущее местоположение ПО- координаты $x(\tau)$, $y(\tau)$;	
	2) - значение пройденного расстояния пути S(t) ПО;	
	3) - значение угла поворота ПО (приращение азимута $\Delta \alpha(t)$);	
	3) - значение угла поворота ПО (приращение азимута $\Delta \alpha(t)$), 4) - точность определения начальной точки маршрута ПО (x_0, y_0).	
0	1. — 1,2; 2. — 1-3; 3. — 2, 3; 4. — 3, 4 3.Поставте в соответствие номеру блока на схеме НАП (рисунка) его названию:	
8	3.11оставте в соответствие номеру олока на схеме НАП (рисунка) его названию:	
	А. Измерительная часть: Б. Радиочастотная часть; В. Расчетно-сервисная часть	
	Устройство Ф	
	(3) ввода	
	Устр. Защиты ЖИШУ Ж АДП АЗІЯ п-канальный коррелятор Q (навигационный вычиситель)	
	Устройство отображения информации	
	Спутниковая навигационная аппаратура потребителя	
	1. 1-А, 2-Б, 3-В; 2. 1-Б, 2-В, 3-А; 3. 1-Б, 2-А, 3-В.	
9	4.Перчислите 4 принципа навигации (условия определения местоположения РНС):	
	1. Наличие опорных станций (ОС);	
	2.Точное знание местоположения (координат) ОС;	
	3. Синхронизация ОС по единому эталону;	
	4. Точное знание скорости распространения радиосигнала;	
	5. Многостанционный доступ.	
1.0	1. 1-2-3-4; 2. 1-2-4-5; 3. 1-2-4-5; 4. 1-2-3-5.	
10	5. Выберите математическую модель навигационного уравнения, реализованного в раз-	
	ностно-дальномерных РНС. Поясните выбор:	
	1) $D_i = \sqrt{(x_i - x)^2 + (y_i - y)^2 (z_i - z)^2}$,	
	2) $\hat{D}_i = \sqrt{(x_i - x)^2 + (y_i - y)^2 (z_i - z)^2} + c\Delta T_n$	
	3) $\Delta \dot{D}_i = \Delta \dot{D}_i = [(x_i - x) + (y_i - y) + (z_i - z)] - [(x_j - x) + (y_j - y) + (z_j - z)];$	
	4) $\dot{D}_i = (1/D_i)[(x_i - x)(\dot{x}_i - \dot{x}) + (y_i - y)(\dot{y}_i - \dot{y})(z_i - z) + (\dot{z}_i - \dot{z})],$	
11	1.К какой группе методов определения местоположения (МП) абонентов системы	ПК-
		2.У.1
	1) - на основе мобильной станции (МС);	
	2) - на основе МС с поддержкой сети ССС;	
	3) - на основе сети ССС с поддержкой МС;	
	4) - на основе сети ССС;	
	11; $22;$ $33;$ $44.$	
12	1. — 1; 2. — 2; 3. — 3; 4. — 4. 2.Какие принципы положены в основу построения и функционирования РНС (2 ответа):	
	1) широкая база радионавигационного сигнала;	
	2) - точное знание координат местоположения опорных станций (ОС) РНС;	
	3) – скорость распространение радиоволн постоянная по известной траектории;	
	4) - высокая стабильность частоты опорного генератора навигационных приемников.	
	1. 1-2; 2. 1-3; 3. 2-3; 4. 2-4	
13	3.Укажите соответствие между устройствами ИНС и параметрами, которые они из-	
	меряют:	
	1. Акселерометр А. Углы поворота	
	2. Гироскопом Б. Путевую скорость	
	3. Вычислитель В. Координаты, курс, крен, тангаж	
	1) 1-А, 2-Б, 3-3В 2) 1-Б, 2-А, 3-В; 3) 1-В, 2-А, 3-Б 4) 1-В, 2-Б, 3-А.	

4.Укажите последовательность формирования радионавигационного сигнала на космическом аппарате ГЛОНАСС из псевдодальномерного кода (исходный) Задержка T....=20мс (1) ПДК₂ Формирователь широкополосного сигнала 1) 1-2-3-4; 2) 4-5-6; 5.Основное предназначение эфемеридной информации, излучаемой навигационным космическим аппаратом (КА) ГНСС ГЛОНАС (GPS). Поясните выбор: 1) для предоставления НАП информации о пространственно-временном состоянии всех навигационных КА орбитальной группировки ГНСС; 2) - для предоставления НАП информации о пространственно-временном состоянии одного навигационного КА ГНСС; 3) для формирования ключевых слов, времени начала кадра и признака их достоверности в НАП. 1) - 1; 2) -2; 3) - 3; 4) - 4.

Примечание: Система оценивания тестовых заданий:

1 тип) Задание комбинированного типа с выбором одного верного ответа из четырех предложенных и обоснованием выбора считается верным, если правильно указана цифра и приведены конкретные аргументы, используемые при выборе ответа. Полное совпадение с верным ответом оценивается 1 баллом, неверный ответ или его отсутствие — 0 баллов.

Инструкция: прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа.

2 тип) Задание комбинированного типа с выбором нескольких вариантов ответа из предложенных и развернутым обоснованием выбора считается верным, если правильно указаны цифры и приведены конкретные аргументы, используемые при выборе ответов. Полное совпадение с верным ответом оценивается 1 баллом, если допущены ошибки или ответ отсутствует – 0 баллов.

Инструкция: прочитайте текст, выберите правильные варианты ответа и запишите аргументы, обосновывающие выбор ответов.

3 тип) Задание закрытого типа на *установление* соответствия считается верным, если установлены все соответствия (позиции из одного столбца верно сопоставлены с позициями другого столбца). Полное совпадение с верным ответом оценивается 1 баллом, неверный ответ или его отсутствие —0 баллов.

Инструкция: прочитайте текст и установите соответствие. К каждой позиции, данной в левом столбце, подберите соответствующую позицию в правом столбце.

4 тип) Задание закрытого типа на *установление* последовательности считается верным, если правильно указана вся последовательность цифр. Полное совпадение с верным ответом оценивается 1 баллом, если допущены ошибки или ответ отсутствует – 0 баллов.

Инструкция: прочитайте текст и установите последовательность. Запишите соответствующую последовательность букв слева направо

5 тип) Задание открытого типа с развернутым ответом считается верным, если ответ совпадает с эталонным по содержанию и полноте. Правильный ответ за задание оценивается в 3 балла, если допущена одна ошибка \неточность \ ответ правильный, но не полный - 1 балл, если допущено более 1 ошибки \ ответ неправильный \ ответ отсутствует -0 баллов.

Инструкция: прочитайте текст и запишите развернутый обоснованный ответ

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п	Перечень контрольных работ	
	Не предусмотрено	

10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

11. Методические указания для обучающихся по освоению дисциплины

11.1. Методические указания для обучающихся по освоению лекционного материала

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала: тема лекции; вопросы лекции и распределение времени по вопросам; цели лекции (учебные и воспитательные); литература; материальное обеспечение лекции; учебно-методические указания по проведению лекции; текст лекции: введении; основная часть; заключение; задание на самостоятельную работу.

Тексты лекций и методические указания к ним по освоению лекционного материала имеются в виде электронных ресурсов библиотеки ГУАП, системы LMS, кафедры и личном кабинете дисциплины.

11.2. Методические указания для обучающихся по выполнению лабораторных работ

В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задание и требования к проведению лабораторных работ

Для проведения лабораторной работы разрабатываются:

- 1. Методические указания для проведения лабораторной работы, которые является основным методическим документом преподавателя. Они состоят, как правило, из семи разделов, которые определяют: учебные и воспитательные цели занятия; содержание и последовательность отработки учебных вопросов и распределение времени; учебноматериальное обеспечение лабораторной работы; методические рекомендации преподавателю по подготовке и проведению лабораторной работы: литература и другие учебнометодические материалы, рекомендуемые преподавателю для подготовки и проведения лабораторной работы; приложения к методической разработке, необходимые для проведения лабораторной работы.
- 2. Задание на лабораторную работу является основным документом обучаемого при подготовке и проведении исследований и связано с соответствующим практическим занятием. Оно состоит, как правило, из четырех разделов: учебные вопросы, подлежащие исследованию при выполнении лабораторной работы; задание обучающимся по подготовке и выполнению лабораторной работы (вопросы теоретического материала, связанного с выполнением данной лабораторной работы; задание, содержание и порядком выполнения работы); изучение мер по технике безопасности при выполнении лабораторной работы; вычерчивание необходимых схем, таблиц и выписку расчетных формул; перечень литературы и учебно-методических материалов, необходимых для самостоятельной работы; сроки, форма отчета по выполненной лабораторной работе и порядок его защиты.

Структура и форма отчета о лабораторной работе

Описание лабораторной работы является основным регламентирующим документом для обучаемых в проведении исследований. Оно включает в себя четыре раздела: учебные вопросы исследования; описание и схема экспериментов, порядок замеров и обработки полученных результатов измерений; определяется содержание отчета по лабораторной работе; меры по технике безопасности при подготовке и выполнении лабораторной работы.

Результаты исследования оформляются отчетом. Отчет должен содержать: титульный лист (тема, вариант, дата, группа, фамилия инициалы); цели, учебные вопросы, схему лабораторной установки и задание на исследования в соответствии с вариантом; результаты исследования, оформленные пунктуально графиками или таблицами; расчетно-аналитическую часть; выводы по результатам исследования.

Требования к оформлению отчета о лабораторной работе

Отчет о выполненной работе должен быть подготовлен индивидуально и оформлен на стандартных листах в соответствии с требованиями ГОСта. Выводы конкретные по каждому пункту исследования. Зачет по работе студент получает после представления отчета на бумажном носителе и успешного ответа на вопросы преподавателя, задаваемые по тематике защищаемой лабораторной работы.

Задание на лабораторную работу и методические указания к ее выполнению имеются в виде электронных ресурсов библиотеки ГУАП, системы LMS, кафедры и личном кабинете дисциплины.

11.3. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия. Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихся являются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ (заочное обучение).

Литература для самостоятельной работы студента указана в таблице 8 и 9, настоящего документа, а также в электронном виде в личном кабинете преподавателя (студента) локальной компьютерной сети по данной дисциплине. Преподаватель в конце занятий указывает источники и страницы по теме изложенного материала для самостоятельной работы студентов.

11.4. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины. Текущий контроль успеваемости необходимо проводить после изучения каждой темы в форме тестов. В тесте должно быть не менее десяти вопросов, охватывающих всю тему. Тест проводить на лекционном занятии в течении 5 минут. Также, текущий контроль необходимо проводить перед каждой лабораторной работой в форме тестов по вопросам, связанным с тематикой лабораторной работы. Кроме того, студент должен отчитаться по результатам выполнения задания по каждой теме практического занятия и лабораторной работы.

11.5. Методические указания обучающихся по прохождению промежсуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя экзамен — форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Промежуточная аттестация проводится в день указанном в расписании занятий ГУАП на семестр. В зависимости от уровня подготовки группы преподаватель может проводить экзамен в форме накопления по результатам оценок знаний студентов по каждой теме дисциплины, в форме общего теста в день экзамена, вопросы которого охватывают все темы дисциплины или по классической форме с использованием экзаменационных билетов. Форма проведения промежуточной аттестации зависит от уровня первичной подготовки студентов и объявляется преподавателем за один месяц до сессии. Оценка в первом случае выставляется как среднеарифметическая оценка, во втором случае по результатам теста и в третьем – по результатам знаний при ответе на вопросы билета. При выставлении оценки преподаватель может учитывать своевременность и качество защиты лабораторных работ и выполнения заданий по практическим занятиям. Студент не допускается к экзамену если на начало сессии у него имеется хотя бы одна задолженность по лабораторным работам.

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № про- токола засе- дания кафед- ры	Подпись зав. кафед- рой