МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 31

УТВЕРЖДАЮ

Руководитель образовательной программы

к.т.н.,доц.

(должность, уч. степень, звание)

(инципалы фамилия)

«27» июня 2024 г

С.В. Солёный

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Теория автоматического управления» (Наименование дисциплины)

Код направления подготовки/ специальности	13.05.02
Наименование направления подготовки/ специальности	Специальные электромеханические системы
Наименование направленности	Электромеханические системы специальных устройств и изделий
Форма обучения	евнью
Год приема	2024

Лист согласования рабочей программы дисциплины

Программу составил (а)		
Ст.преп.	27.06.2024	Н.В. Решетникова
(должность, уч. степень, звание)	отблись, дата)	(инициалы, фамилия)
Программа одобрена на заседан	нии кафедры № 31	
«27» июня 2024 г, протокол М	⊵ 8	
Заведующий кафедрой № 31		
д.т.н.,проф.	27.06.2024	В.Ф. Шишлаков
(уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Заместитель директора институ	та №3 по методической рабо	оте
Ст.преп.	27.06.2024	Н.В. Решетникова
(должность, уч. степень, звание)	(поличев, дата)	(инициалы, фамилия)

Аннотация

Дисциплина «Теория автоматического управления» входит в образовательную программу высшего образования — программу специалитета по направлению подготовки/ специальности 13.05.02 «Специальные электромеханические системы» направленности «Электромеханические системы специальных устройств и изделий». Дисциплина реализуется кафедрой «№31».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ОПК-4 «Способен использовать методы анализа, моделирования и оценки качества действующих и проектируемых образцов элементов специальных электромеханических систем»

ОПК-6 «Способен применять нормы законодательства Российской Федерации в профессиональной деятельности»

Содержание дисциплины охватывает круг вопросов, связанных с изучением теоретических основ и прикладных алгоритмов разработки и исследования систем автоматического управления, в том числе:

- основные положения теории управления, современные тенденции в развитии и применении систем автоматического управления.
- применение теоретических знаний к решению конкретных инженерных задач проектирования систем автоматического управления различными объектами;
- использование современных пакетов математического моделирования для решения задач анализа и синтеза систем автоматического управления.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, практические занятия, самостоятельная работа обучающегося.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 9 зачетных единиц, 324 часа.

Язык обучения по дисциплине «русский»

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Целью преподавания дисциплины является изучение студентами основ теории автоматического управления, а также получение практических навыков, необходимых при создании, исследовании и эксплуатации систем и средств автоматизации и управления.

- 1.2. Дисциплина входит в состав обязательной части образовательной программы высшего образования (далее ОП BO).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

	пстенции и индикаторо	
Категория (группа)	Код и наименование	Код и наименование индикатора
компетенции	компетенции	достижения компетенции
Общепрофессиональные компетенции	ОПК-4 Способен использовать методы анализа, моделирования и оценки качества действующих и проектируемых образцов элементов специальных электромеханических систем	ОПК-4.3.1 знает особенности режимов работы электроэнергетического и электротехнического оборудования объектов электроэнергетики; назначение, конструкцию, технические параметры и принцип работы электрооборудования
Общепрофессиональные компетенции	ОПК-6 Способен применять нормы законодательства Российской Федерации в профессиональной деятельности	ОПК-6.В.1 владеет навыками обеспечения оптимальных режимов и параметров технологического процесса после проведённых работ с учетом требований норм законодательства Российской Федерации и технических регламентов в сфере профессиональной деятельности

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- «Математика. Математический анализ»,
- «Теоретическая механика».

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и могут использоваться при изучении других дисциплин:

- «Основы теории переходных процессов и устойчивости».

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

Prin vinofinoŭ poforti	Всего	Трудоемкость по семестрам		
Вид учебной работы		№5	№6	

1	2	3	4
Общая трудоемкость дисциплины, 3E/ (час)	9/ 324	5/ 180	4/ 144
Из них часов практической подготовки			
Аудиторные занятия, всего час.	136	68	68
в том числе:			
лекции (Л), (час)	68	34	34
практические/семинарские занятия (ПЗ), (час)	34	17	17
лабораторные работы (ЛР), (час)	34	17	17
курсовой проект (работа) (КП, КР), (час)			
экзамен, (час)	90	54	36
Самостоятельная работа, всего (час)	98	58	40
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Экз., Экз.	Экз.	Экз.

Примечание: **кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

таолица 5 – газделы, темы дисциплины, их трудоемкость					
Разделы, темы дисциплины	Лекции	П3 (С3)	ЛР	КП	CPC
т издены, темы днециины	(час)	(час)	(час)	(час)	(час)
Сем	естр 5				
Раздел 1. Основные понятия теории	4				14
автоматического управления.	7	-	-		17
Раздел 2. Преобразование Лапласа и аппарат	10	8	6		14
передаточных функций	10	8	U		14
Раздел 3. Корневые оценки устойчивости и	8	6	5	_	15
качества систем управления	O	U	<i>J</i>	_	13
Раздел 4. Частотные методы анализа и синтеза	12	3	6	_	15
систем управления	12	3	U		13
Итого в семестре:	34	17	17		58
Семест	o 6				
Раздел 5. Модели в пространстве состояний	10	8	-	-	13
Раздел 6. Модальное управление и наблюдающие	12	9	14		13
устройства	12	9	14	_	13
Раздел 7. Оптимальное и адаптивное управление в	12	_	3	_	14
пространстве состояний	14	_	3	-	17
Итого в семестре:	34	17	17		40
Итого	68	34	34	0	98

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий.

Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

	- ' '		/ 1	<u> </u>	1	
Номер		Назван	ие и содеј	ржание раздело	ов и тем	лекционных занятий

раздела	
1	Основные понятия теории автоматического управления (ТАУ).
	История развития ТАУ. классификация объектов и систем управления (СУ);
	этапы синтеза системы управления; примеры СУ техническими, экономическими
	и организационными объектами; задачи теории управления. Разомкнутые и
	замкнутые системы; компенсация возмущений; системы с компенсацией
	параметрических возмущений; идентификация, адаптивное управление.
2	Классификации СУ: по типу сигналов; по типу алгоритма.
2	Преобразование Лапласа и аппарат передаточных функций.
	Линейные СУ и их свойства. Принципы и примеры линеаризации. Линеаризация
	системы со многими входами. Операторная форма записи уравнений СУ.
	Преобразование Лапласа. Передаточная функция. Нули и полюса. Типовые
	динамические звенья. Единичная ступенчатая функция и дельта-функция.
	Переходная функция и функция веса. Правила преобразования структурных схем
	систем автоматического управления. Использование графовой модели: формула
	Мейсона. Преимущества и недостатки введения обратной связи. Частные
	передаточные функции. Чувствительность систем управления. Точность в
	установившихся режимах. Инвариантные системы.
3	Корневые оценки устойчивости и качества систем управления.
	Показатели качества переходного процесса во временной области. Корневые
	оценки качества переходного процесса. Влияние нулей. Интегральные оценки
	качества переходного процесса. Установившаяся ошибка системы управления с
	обратной связью. Статические и астатические системы. Необходимое и
	достаточное условие устойчивости. Алгебраический критерий устойчивости.
	Структурно неустойчивые системы. Корневые показатели качества переходного
	процесса. Корневой годограф. Прямой синтез параметров регулятора.
4	Частотные методы анализа и синтеза систем управления.
	Частотная характеристика динамического звена. Полоса пропускания и частота
	среза. Логарифмические частотные характеристики: ЛАЧХ и ЛФЧХ. Алгоритм
	построения ЛАЧХ разомкнутой системы. Критерий устойчивости Михайлова.
	Формулировка частотного критерия устойчивости Найквиста. Критерий
	Найквиста для систем с запаздыванием. Оценка запасов устойчивости по ЛАЧХ
	и ЛФЧХ разомкнутой системы. Частотные критерии качества. Запасы
	устойчивости. Точность при гармоническом воздействии. Оценка качества
	следящей системы по виду ЛАЧХ разомкнутой системы. Коррекция с помощью
	дифференцирующего устройства и интегро-дифференцирующей цепи.
	Частотный синтез последовательного корректирующего устройства общего вида.
	Типовые аналоговые корректирующие звенья.
5	Модели в пространстве состояний.
	Метод пространства состояний. Общие понятия. Модели систем в переменных
	состояния в виде сигнального графа. Временные характеристики и переходная
	матрица состояния. Линеаризация в пространстве состояний. Структурные
	преобразования в пространстве состояний. Переходная матрица состояния.
	преооразования в пространстве состоянии. Переходная матрица состояния. Решение уравнений состояния. Матричные передаточные функции.
	Каноническая форма управляемости; наблюдаемости; идентифицируемости.
	Диагональная каноническая форма. Уравнения состояния и сигнальный граф.
	Преобразование подобия
6	Модальное управление и наблюдающие устройства.
	Критерий управляемости. Устойчивость линейной системы в пространстве
	состояний. Собственные значения и собственные векторы. Модальное
	управление. Синтез модального регулятора в канонической форме
	управляемости. Выбор полюсов желаемой замкнутой системы. Формула

	Аккермана. Устранение статической ошибки расширением вектора состояния.
	Критерий наблюдаемости. Наблюдатель полного порядка. Редуцированные
	наблюдающие устройства.
7	Оптимальное и адаптивное управление в пространстве состояний.
	Оптимальное управление в пространстве состояний. Критерии оптимальности.
	Линейные квадратичные регуляторы. Прямое и непрямое адаптивное
	управление. Принципы адаптивного управления с эталонной моделью.
	Адаптивный регулятор с эталонной моделью в пространстве состояний.
	Критерий идентифицируемости. Методы идентификации. Адаптивная система с
	идентификатором в пространстве состояний.

4.3. Практические (семинарские) занятия Темы практических занятий и их трудоемкость приведены в таблице 5. Таблица 5 – Практические занятия и их трудоемкость

1 403	пица з търакти теские	занятия и их трудоемкос	71B	Из них	No
№	Темы практических	Формы практических	Трудоемкость,	практической	л <u>е</u> раздела
Π/Π	занятий	занятий	(час)	подготовки,	дисцип
11/11	эшинн	Sanatini	(iue)	(час)	лины
		Семестр 5		()	
1	Линеаризация	Решение задач	2	_	2
	статических и		_		_
	динамических				
	систем				
2	Преобразование	Решение задач	3	_	2
	структурных схем				_
	СУ и формула				
	Мейсона				
3	Преобразование	Решение задач	3	-	2
	Лапласа	, ,			
4	Алгебраический	Решение задач	3	-	3
	критерий				
	устойчивости				
5	Прямой синтез	Решение задач	3	-	3
	регулятора				
6	Частотные критерии	Решение задач	3	-	4
	устойчивости				
		Семестр 6			
7	Передаточная	Решение задач	2	-	5
	функция и				
	уравнения				
	состояния				
8	Линеаризация в	Решение задач	3	-	5
	пространстве				
	состояний				
9	Матричная	Решение задач	3	-	5
	экспонента и				
	матричная				
	передаточная				
	функция				
10	Преобразования	Решение задач	3	-	6
	подобия и				
	канонические				

	формы				
11	Диагональная	Решение задач	3	-	6
	каноническая форма				
12	Модальный синтез	Решение задач	3	-	6
	системы 2го				
	порядка				
	Всего	34			

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

140.	пица о — лаоораторные запитии и их трудоемк		14	Ma
No		Трудоемкость,	Из них практической	№ раздела
п/п	Наименование лабораторных работ	трудоемкость, (час)	подготовки,	дисцип
11/11		(4ac)	(час)	лины
	Семестр :	<u> </u> 5	(-lac)	JIMIIDI
	Исследование типовых динамических	2		
1	звеньев		-	2
_	Исследование типовых динамических	2		2
2	звеньев на лабораторном стенде		-	2
3	Структурные преобразования	2	-	2
4	Исследование устойчивости систем с	2		2
4	обратной связью		-	3
5	Метод корневого годографа	1	-	3
6	Синтез ПИД-регуляторов	2	-	3
7	Частотные характеристики динамических	2		4
/	звеньев		-	4
8	Частотный синтез корректирующего звена	2	-	4
9	Синтез регулятора двигателя постоянного	2		4
9	тока		_	7
	Семестр	6		T
	Синтез модального регулятора с помощью	3	_	6
	формулы Аккермана	5		Ŭ
	Синтез модального регулятора с	4	_	6
	расширенным вектором состояния			
	Синтез модального регулятора с	2		(
	наблюдающим устройством полного	3	-	6
	порядка			
	Синтез модального регулятора с	4		6
	наблюдающим устройством пониженного	4	_	o o
	порядка Адаптивная система управления с			
	эталонной моделью	3	-	7
	Всего	34		
	DCCIO	J 1		

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся

Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

		1 3 7 1	
Вид самостоятельной работи	Всего, час	Семестр 5, час	Семестр 6, час
1	2	3	4
Изучение теоретического материала дисциплины (TO)	49	24	25
Подготовка к текущему контролю успеваемости (ТКУ)	19	14	5
Подготовка к промежуточной аттестации (ПА)	30	20	10
Bce	го: 98	58	40

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8. Таблица 8– Перечень печатных и электронных учебных изданий

Шифр/ URL адрес	Библиографическая ссылка	Количество экземпляров в библиотеке (кроме электронных экземпляров)
	Теория автоматического управления: учебное пособие. Ч. 1 / М. В. Бураков; СПетерб. гос. ун-т аэрокосм. приборостроения Электрон. текстовые дан СПб.: Изд-во ГУАП, 2013 254 с.	
	Теория автоматического управления: учебное пособие. Ч. 2 / М. В. Бураков; СПетерб. гос. ун-т аэрокосм. приборостроения Электрон. текстовые дан СПб.: Изд-во ГУАП, 2015 143 с.	
681.5 E 78	Ерофеев, А. А. Теория автоматического управления [Текст]: учебник для вузов / А. А. Ерофеев 2-е изд., доп. и перераб СПб.:	99

	Политехника, 2005 302 с.	
	Бесекерский, Виктор	
	Антонович (проф., лауреат Гос. премии). Теория	
681.5 Б 53	систем автоматического	
	управления [Текст] / В.	10
	А. Бесекерский, Е. П. Попов 4-е изд., перераб.	
	и доп СПб. : Профессия,	
	2007 752 c.	
	Панкратов, В. В.	
	Избранные разделы	
	современной теории	
	автоматического	
https://new.znanium.com/catalog/product/548433	управления/ПанкратовВ.В.,	
https://new.zhamum.com/catalog/product/348455	НосО.В., ЗимаЕ.А	
	Новосибирск: НГТУ, 2011.	
	- 223 c.: ISBN 978-5-7782-	
	1810-9 Текст:	
	электронный.	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационно-

телекоммуникационной сети «Интернет»

URL адрес	Наименование
	Не предусмотрено

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10– Перечень программного обеспечения

N	о п/п	Наименование
	1	Matlab

8.2. Перечень информационно-справочных систем,используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11– Перечень информационно-справочных систем

№ п/п		Наименование
	Не предусмотрено	

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ π/π	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Лекционная аудитория	
2	Компьютерный класс	
3	Специализированная лаборатория «Теория	
	автоматического управления»	

- 10. Оценочные средства для проведения промежуточной аттестации
- 10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Экзамен	Список вопросов к экзамену;
	Тесты.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции	Упракториятия сформированности компетенции	
5-балльная шкала	Характеристика сформированных компетенций	
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий. 	
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 	
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; 	

Оценка компетенции	Vanagramueriusa adapantinananuu iy isaaristatuuu		
5-балльная шкала	Характеристика сформированных компетенций		
	– слабо аргументирует научные положения;		
	– затрудняется в формулировании выводов и обобщений;		
	 – частично владеет системой специализированных понятий. 		
	– обучающийся не усвоил значительной части программного		
	материала;		
//HOVHODHOTDOOM/TOHLHOW	– допускает существенные ошибки и неточности при		
«неудовлетворительно»	рассмотрении проблем в конкретном направлении;		
«не зачтено»	– испытывает трудности в практическом применении знаний;		
	– не может аргументировать научные положения;		
	– не формулирует выводов и обобщений.		

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	Код индикатора	
	5 семестр		
1.	Типовые динамические звенья	ОПК-4.3.1	
2.	Анализ систем управления в частотной области. Получение	ОПК-6.В.1	
	частотных характеристик по передаточным функциям		
3.	Частотная характеристика динамического звена. Полоса	ОПК-4.3.1	
	пропускания и частота среза		
4.	Частотные критерии качества	ОПК-4.3.1	
5.	Примеры ЛЧХ типовых звеньев	ОПК-4.3.1	
6.	Физический смысл критерия устойчивости Найквиста	ОПК-4.3.1	
7.	Способы математического описания объектов управления	ОПК-4.3.1	
8.	Линейные системы управления и их свойства. Принципы	ОПК-4.3.1	
	линеаризации.		
9.	Единичная ступенчатая функция и дельта-функция.	ОПК-4.3.1	
	Переходная функция и функция веса		
10.	Инвариантные системы	ОПК-4.3.1	
11.	Интегральные оценки качества переходного процесса	ОПК-4.3.1	
12.	Корневые оценки качества переходного процесса. Влияние нулей	ОПК-4.3.1	
13.	Необходимое условие устойчивости систем управления	ОПК-4.3.1	
14.	Метод <i>D</i> -разбиения	ОПК-4.3.1	
15.	Критерий устойчивости Рауса-Гурвица	ОПК-4.3.1	
16.	Логарифмические частотные характеристики	ОПК-6.В.1	
17.	Критерий устойчивости Михайлова	ОПК-4.3.1	
18.	Формулировка частотного критерия устойчивости Найквиста	ОПК-4.3.1	
19.	Оценка запасов устойчивости по ЛАЧХ и ЛФЧХ разомкнутой системы	ОПК-4.3.1	
20.	Этапы синтеза системы управления	ОПК-6.В.1	
21.	Линеаризация: системы со многими входами	ОПК-6.В.1	
22.	Операторная форма записи уравнений системы управления Преобразование Лапласа	ОПК-4.3.1	
23.	Передаточная функция. Нули и полюса	ОПК-4.3.1	
24.	Частные передаточные функции	ОПК-4.3.1	
25.	Теорема о конечном значении и установившаяся ошибка	ОПК-4.3.1	
	систем управления с обратной связью		

26.	Устойчивые и неустойчивые системы. Оценка устойчивости по	ОПК-4.3.1
	полюсам передаточной функции	OFFICA D.1
27.	Корневой годограф	ОПК-4.3.1
28.	ПИД-регуляторы	ОПК-6.В.1
29.	Передаточная функция системы с обратной связью	ОПК-4.3.1
30.	Правила преобразования структурных схем систем автоматического управления	ОПК-4.3.1
31.	Сигнальные графы и метод Мейсона	ОПК-6.В.1
32.	Показатели качества переходного процесса во временной	ОПК-6.В.1
32.	области	OHK-0.B.1
33.	Алгоритм построения ЛАЧХ разомкнутой системы. Пример	ОПК-6.В.1
34.	Прямой синтез параметров регулятора	ОПК-6.В.1
35.	Частотный синтез последовательного корректирующего	ОПК-6.В.1
	устройства	
36.	Чувствительность систем управления	ОПК-4.3.1
37.	Коррекция с помощью дифференцирующих устройств	ОПК-6.В.1
38.	Коррекция с помощью интегрирующих устройств	ОПК-6.В.1
39.	Коррекция с помощью интегро-дифференцирующих устройств	ОПК-6.В.1
40.	Корректирующие звенья на операционных усилителях	ОПК-6.В.1
	6 семестр	1
1.	Связь между передаточной функцией и уравнениями состояния	ОПК-4.3.1
2.	Переход от уравнений состояния к передаточной функции для RLC-цепи	ОПК-6.В.1
3.	Выбор переменных состояния. Запись уравнений состояния по дифференциальному уравнению системы	ОПК-6.В.1
4.	Модальные характеристики системы (собственные значения и собственные векторы)	ОПК-4.3.1
5.	Модальное управление. Основная теорема	ОПК-4.3.1
6.	Формула Аккермана	ОПК-4.3.1
7.	Матричная запись уравнений состояния	ОПК-4.3.1
8.	Линеаризация в пространстве состояний	ОПК-4.3.1
9.	Переход от передаточной функции к уравнениям состояния	ОПК-4.3.1
10.	Фундаментальная (переходная) матрица системы в	ОПК-4.3.1
10.	пространстве состояний	
11.	Понятие управляемости системы	ОПК-4.3.1
12.	Понятие наблюдаемости системы	ОПК-4.3.1
13.	Понятие идентифицируемости системы	ОПК-4.3.1
14.	Критерии управляемости и наблюдаемости	ОПК-4.3.1
15.	Критерий управляемости и наолюдаемости Критерий идентифицируемости	ОПК-4.3.1
16.	Каноническая форма управляемости	ОПК-4.3.1
17.	Каноническая форма управляемости Каноническая форма наблюдаемости	ОПК-4.3.1
18.	Диагональная каноническая форма	ОПК-4.3.1
19.	Преобразования подобия	ОПК-4.3.1
	1 1	
20.	Синтез модального регулятора с использованием канонической формы управляемости	ОПК-4.3.1
21.	Наблюдающие устройства. Основные понятия	ОПК-4.3.1
22.	Метод пространства состояний. Общие понятия. Примеры	ОПК-4.3.1
23.	Структурные преобразования в пространстве состояний	ОПК-4.3.1
24.	Уравнения состояния и сигнальный граф	ОПК-4.3.1
	1 1	
25.	Выбор полюсов желаемой замкнутой системы	ОПК-4.3.1

27.	Использование внутренней модели эталонного сигнала	ОПК-4.3.1
28.	Пример синтеза модального регулятора	ОПК-4.3.1
29.	Принцип работы наблюдающего устройства	ОПК-4.3.1
30.	Редуцированные наблюдающие устройства	ОПК-6.В.1
31.	Оптимальное управление в пространстве состояний	ОПК-4.3.1
32.	Прямое и непрямое адаптивное управление	ОПК-6.В.1
33.	Адаптивный регулятор с эталонной моделью в пространстве	ОПК-6.В.1
	состояний	

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16.

Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код индикатора
	Учебным планом не предусмотрено	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
Учебным планом не предусмотрено	

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

Таолиц	т 16—примерный перечень вопросов дли тестов		
№ п/п	Примерный перечень вопросов для тестов	Код индикатора	
1	1 тип) Задание комбинированного типа с выбором одного верного	ОПК-4.3.1	
	ответа из четырех предложенных и обоснованием выбора.		
	Инструкция: Прочитайте текст, выберите правильный ответ и		
	запишите аргументы, обосновывающие выбор ответа.		
	Укажите, в каком бытовом приборе используется принцип		
	управления с обратной связью.		
	1. Микроволновая печь.		
	2. Холодильник.		
	3. Кофеварка.		
	4. Вентилятор.		
2	2 тип) Задание комбинированного типа с выбором нескольких	ОПК-4.3.1	
	вариантов ответа из предложенных и развернутым обоснованием		
	выбора.		
	Инструкция: Прочитайте текст, выберите правильные варианты		
	ответа и запишите аргументы, обосновывающие выбор ответов.		
	Укажите, какие САУ называются дискретными.		
	1. содержащая нелинейный элемент		
	2. содержащая импульсный элемент		
	3. САУ с экстремальной характеристикой		
	4. содержащая дискретный элемент	OFFICA D 1	
3	3 тип) Задание закрытого типа на установление соответствия.	ОПК-4.3.1	
	Инструкция: Прочитайте текст и установите соответствие. К		
	каждой позиции, данной в левом столбце, подберите		
	соответствующую позицию в правом столбце.		

	Соотнесите название нелинейных элементов с их характеристикой					
		НЭ		Характер	оистика	
	A)	b a s	1	реле с гист	ерезисом	
	Б)	-b b	2	звено типа	. «люфт»	
	В)	<i>y b b</i> ,	3	ограничение (насыщение)	
	Γ)	-b c	x 4	реле с з нечувствит		
	Д)	-b -c		мёртвая зо нечувствито	,	
	Запиш	ите выбранные цифр	ы под соотн	етствующими б	буквами:	
		АБ	В	Γ	Д	
4	4 4 тип) Задание закрытого типа на установление последовательности. Инструкция: Прочитайте текст и установите последовательность. Запишите соответствующую последовательность букв слева			ОПК-4.3.1		
	направо. Укажите верную последовательность построения асимптотической ЛАЧХ системы управления. А) Вычисление при частоте ω =1 ординаты $20 \log K$ Б) Разложение ПФ системы на типовые звенья. В) изменение наклона ЛАЧХ $L(\omega)$ на сопрягающих частотах ω_i Г) Определение сопрягающих частот					
	слева н	ге в таблицу соотв направо.				
5	5 тип) и Инстру	Задание открытого та укция: Прочитайте		онутым ответом и запишите	развернутый	ОПК-4.3.1

	обоснованный ответ.		
	Опишите комбинированный принцип управления – область		
	применения, пример применения.		
6	1 тип) Задание комбинированного типа с выбором одного верного	ОПК-6.В.1	
	ответа из четырех предложенных и обоснованием выбора.		
	Инструкция: Прочитайте текст, выберите правильный ответ и		
	запишите аргументы, обосновывающие выбор ответа.		
	Определите показатели качества переходного процесса системы при		
	подаче входного воздействия $g(t)=1(t)$		
	4		
	1,4		
	1,2		
	1		
	0,8		
	0,6		
	0,4		
	0,2		
	0/ 1 2 2 4 5 6 5		
	1 2 3 4 5 6		
	1. время переходного процесса <i>t</i> пп=5,6 с		
	перерегулирование б=35%		
	установившаяся ошибка $e_{yct}=0$		
	2. время переходного процесса $t_{\Pi\Pi}$ =5,6 с		
	перерегулирование δ =12%		
	установившаяся ошибка $e_{\text{уст}}=0.35$		
	3. время переходного процесса <i>t</i> _{ПП} =2,5 с		
	перерегулирование δ=12%		
	установившаяся ошибка $e_{\text{уст}}=0,35$		
	4. время переходного процесса $t_{\Pi\Pi}$ =5,6 с перерегулирование δ =12%		
	перерегулирование $\delta=12\%$		
	установившаяся ошибка $e_{ycr}=0$		
	5. система неустойчива 6. время переходного процесса тип=2.5 с		
	6. время переходного процесса t_{III} =2,5 с		
	перерегулирование б=35%		
	установившаяся ошибка $e_{ycr}=0$		
	7. время переходного процесса $t_{\Pi\Pi}$ =2,5 с		
	перерегулирование $\delta=12\%$		
7	установившаяся ошибка $e_{ycr}=0$ 2 тип) Задание комбинированного типа с выбором нескольких	ОПК-6.В.1	
	вариантов ответа из предложенных и развернутым обоснованием	O111X-0.D.1	
	выбора.		
	Инструкция: Прочитайте текст, выберите правильные варианты		
	ответа и запишите аргументы, обосновывающие выбор ответов.		
	Укажите, в чем заключаются основные отличия нелинейных САУ		
	от линейных.		
	от линеиных. 1. Устойчивость нелинейных САУ зависит от начальных условий		
	1. Устоичивость нелинеиных САУ зависит от начальных условии 2. К нелинейным САУ неприменима линейная теория		
	 2. К нелинеиным САУ неприменима линеиная теория 3. Для нелинейных САУ может существовать различное количество 		
	точек равновесия		
	4. Реакцией нелинейных САУ на гармоническое входное		
1	· · · · · · · · · · · · · · · · · · ·		

		армонический сигнал с измененной		
8	Инструкция: Прочитайте каждой позиции, данн соответствующую позицию	ипа на установление соответствия. текст и установите соответствие. К ой в левом столбце, подберите в правом столбце.	ОПК-6.В.1	
	Соотнесите типы управления и их особенности. Принцип управления Определение			
	Принцип программного (разомкнутого) управления	Включает задатчик, чувствительный элемент, 1. усилительно-преобразовательное устройство, исполнительное устройство.		
	Принцип Б) управления по возмущению	Такой способ управления, при котором определяется отклонение текущего значения выходной 2. переменной от требуемого значения и на его основе формируется управляющее воздействие.		
	Принцип В) управления по отклонению	При таком принципе управления управляющее устройство можно представить как устройство, состоящее из программатора и исполнительного устройства.		
	Принцип Г) комбинированного управления	Используется в тех случаях, когда на систему действует много различных возмущений, один 4. (или несколько) из которых оказывает наибольшее влияние на работу системы управления и может быть измерен.		
	Запишите выбранные цифр	ы под соответствующими буквами:		
	АБ	В Г		
9	последовательности. Инструкция: Прочитайте т Запишите соответствующи направо. Укажите верную последов	жерытого типа на установление текст и установите последовательность. Тую последовательность букв слева зательность построения ЛФЧХ системы	ОПК-6.В.1	
	управления. А) Построение фазовых характеристик типовых звеньев Б) Разложение ПФ системы на типовые звенья. В) Сложение характеристик. Г) Определение сопрягающих частот. Внесите в таблицу соответствующую последовательность букв слева направо.			
10	5 тип) Задание открытого ти Инструкция: Прочитайте	ипа с развернутым ответом. текст и запишите развернутый	ОПК-6.В.1	

Ī	обоснованный ответ.	
	Опишите подход оптимального управления – определение, области	
	применения, математический аппарат.	

Система оценивания тестовых заданий:

- 1 тип) Задание комбинированного типа с выбором одного верного ответа из четырех предложенных и обоснованием выбора считается верным, если правильно указана цифра и приведены конкретные аргументы, используемые при выборе ответа. Полное совпадение с верным ответом оценивается 1 баллом, неверный ответ или его отсутствие 0 баллов.
- 2 тип) Задание комбинированного типа с выбором нескольких вариантов ответа из предложенных и развернутым обоснованием выбора считается верным, если правильно указаны цифры и приведены конкретные аргументы, используемые при выборе ответов. Полное совпадение с верным ответом оценивается 1 баллом, если допущены ошибки или ответ отсутствует 0 баллов.
- 3 тип) Задание закрытого типа на установление соответствия считается верным, если установлены все соответствия (позиции из одного столбца верно сопоставлены с позициями другого столбца). Полное совпадение с верным ответом оценивается 1 баллом, неверный ответ или его отсутствие 0 баллов
- 4 тип) Задание закрытого типа на установление последовательности считается верным, если правильно указана вся последовательность цифр. Полное совпадение с верным ответом оценивается 1 баллом, если допущены ошибки или ответ отсутствует -0 баллов.
- 5 тип) Задание открытого типа с развернутым ответом считается верным, если ответ совпадает с эталонным по содержанию и полноте. Правильный ответ за задание оценивается в 3 балла, если допущена одна ошибка \ неточность \ ответ правильный, но не полный 1 балл, если допущено более 1 ошибки \ ответ неправильный \ ответ отсутствует 0 баллов.

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п		Перечень контрольных работ
	Не предусмотрено	

- 10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.
 - 11. Методические указания для обучающихся по освоению дисциплины
- 11.1. Методические указания для обучающихся по освоению лекционного материала.

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- Методы и средства ТАУ, связь с задачами реального мира;
- Разделы ТАУ, классификация решаемых задач и соответствующих им моделей;
- Классическая ТАУ, использование аппарата передаточных функций;
- Современная ТАУ, методы линейной алгебры;
- Нелинейные системы, особенности описания, методы анализа и синтеза.

11.2. Методические указания для обучающихся по прохождению практических занятий

Практическое занятие является одной из основных форм организации учебного процесса, заключающаяся в выполнении обучающимися под руководством преподавателя комплекса учебных заданий с целью усвоения научно-теоретических основ учебной дисциплины, приобретения умений и навыков, опыта творческой деятельности.

Целью практического занятия для обучающегося является привитие обучающимся умений и навыков практической деятельности по изучаемой дисциплине.

Планируемые результаты при освоении обучающимся практических занятий:

- закрепление, углубление, расширение и детализация знаний при решении конкретных задач;
- развитие познавательных способностей, самостоятельности мышления, творческой активности;
- овладение новыми методами и методиками изучения конкретной учебной дисциплины;
- выработка способности логического осмысления полученных знаний для выполнения заданий;
- обеспечение рационального сочетания коллективной и индивидуальной форм обучения.

Требования к проведению практических занятий

Методические указания и требования к проведению практических занятий приведены в следующих источниках:

1. Теория автоматического управления : практикум. ч. 1 / М. В. Бураков ; С.-Петерб. гос. ун-т аэрокосм. приборостроения. - Электрон. текстовые дан. - СПб. : Изд-во ГУАП, 2016. - 76 с.

Теория автоматического управления : практикум. ч. 2 / М. В. Бураков ; С.-Петерб. гос. ун-т аэрокосм. приборостроения. - Электрон. текстовые дан. - СПб. : Изд-во ГУАП, 2017. - 67 с.

11.3. Методические указания для обучающихся по выполнению лабораторных работ

В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задания и требования к проведению лабораторных работ приведены в следующих источниках:

- 1. Теория автоматического управления: методические указания к выполнению лабораторных работ № 1-9 / С.-Петерб. гос. ун-т аэрокосм. приборостроения; сост.: М. В. Бураков, Т. Г. Полякова, А. В. Подзорова. СПб.: Изд-во ГУАП, 2006. 62 с.
- 2. Теория автоматического управления : методические указания по выполнению лабораторных работ № 1 4 / С.-Петерб. гос. ун-т аэрокосм. приборостроения ; сост. М. В. Бураков. Электрон. текстовые дан. СПб. : Изд-во ГУАП, 2016. 26 с.
- 3. Теория автоматического управления. Нелинейные системы : методические указания к выполнению лабораторных работ / С.-Петерб. гос. ун-т аэрокосм. приборостроения ; сост. М. В. Бураков. Электрон. текстовые дан. СПб. : Изд-во ГУАП, 2018. 48 с.

Структура и форма отчета о лабораторной работе

Отчет о лабораторной работе имеет форму гипертекстового документа, содержащего задание на лабораторную работу, краткие теоретические сведения по теме работы, описание схем и алгоритмов, использованных при выполнении работы, результаты вычислительных экспериментов в виде графиков (диаграмм), а также выводы по итогам проделанной работы.

Требования к оформлению отчета о лабораторной работе

Отчет должен содержать титульный лист, а его содержание должно быть оформлено согласно Γ OCT 7.32-2017.

Нормативная документация, необходимая для оформления, приведена на электронном ресурсе ГУАП: https://guap.ru/standart/doc

11.4. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихся являются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ (для обучающихся по заочной форме обучения).
- 11.5. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости студентов проводится путем мониторинга результатов выполнения лабораторных работ, контрольным вопросами на защите практических и лабораторных работ, путем получения обратной связи во время проведения лекций.

Своевременная сдача отчетов по лабораторным и практическим заданиям и положительный результат на защите этих работ может учитываться при проведении промежуточной аттестации.

11.6. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

– экзамен – форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Промежуточная аттестация проводится по ФОС, приведенному в п.10.3 данной рабочей программы дисциплины.

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой