МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 12

УТВЕРЖДАЮ

Руководитель образовательной программы

доц.,к.т.н.

(должность, уч. степень, звание)

В.Е. Таратун

(инициалы, фамилия)

(подпись) 23 мая 2024

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Моделирование транспортных процессов» (Наименование дисциплины)

Код направления подготовки/ специальности	23.03.01
Наименование направления подготовки/ специальности	Технология транспортных процессов
Наименование направленности	Организация перевозок и управление в единой транспортной системе
Форма обучения	заочная
Год приема	2024

Лист согласования рабочей программы дисциплины

Программу составил (а)	1/ 5	
проф., д.т.н., доц.	23.05.2024	Н.Н. Майоров
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамил ия)
Программа одобрена на заседа	нии кафедры № 12	
«23» мая 2024 г, протокол № 1		
Заведующий кафедрой № 12	7	
д.т.н.,проф.	23.05.2024	В.А. Фетисов
(уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Заместитель директора институ		re
доц.,к.т.н.	23.05.2024	В.Е. Таратун

Аннотация

Дисциплина «Моделирование транспортных процессов» входит в образовательную программу высшего образования — программу бакалавриата по направлению подготовки/ специальности 23.03.01 «Технология транспортных процессов» направленности «Организация перевозок и управление в единой транспортной системе». Дисциплина реализуется кафедрой «№12».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ПК-1 «Готовность к организации логистической деятельности по перевозке грузов в цепи поставок»

ПК-3 «Готовность к анализу пропускных способностей и показателей транспортного процесса, для принятия решений об эффективности, на основе использования моделей и методов моделирования систем»

Содержание дисциплины охватывает круг вопросов, связанных с математическими моделями транспортных процессов, с методами и средствами моделирования транспортных процессов, с методиками исследования транспортных процессов и систем, с изучением программных средств, позволяющих моделировать транспортные процессы. Особое внимание в данном курсе уделяется рассмотрению транспортных процессов в мегаполисе. На основе результатов моделирования делается прогноз по функционированию транспортной системы.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, практические работы, семинары, самостоятельная работа студента.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 4 зачетных единицы, 144 часа.

Язык обучения по дисциплине «русский »

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Целью преподавания дисциплины является формирование у студентов профессиональных теоретических и практических знаний в сфере моделирования транспортных процессов и систем различной сложности. Дисциплина предназначена для подготовки бакалавра и преследует следующие цели:

- 1. представить студенту основные виды математических моделей транспортных систем;
- 2. представить студенты правила моделирования транспортных процессов и систем;
- 3. в соответствии с государственными требованиями в результате изучения дисциплины студент должен иметь представление: о методиках моделирования транспортных процессов;
- 4. выработать у студента практические навыки на использование компонентов математического обеспечения при реализации имитационных моделей транспортных процессов.
- 5. выработать навык самостоятельной работы по моделированию и прогнозированию участков транспортных систем.
- 1.2. Дисциплина входит в состав части, формируемой участниками образовательных отношений, образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа)	Код и	Код и наименование индикатора достижения
компетенции	наименование	компетенции
компстенции	компетенции	компетенции
	ПК-1 Готовность к	
	организации	
Профессиональные	логистической	ПК-1.3.5 знает основы системного анализа
компетенции	деятельности по	ТТК-1.3.3 знает основы системного анализа
	перевозке грузов в	
	цепи поставок	
	ПК-3 Готовность к	ПК-3.3.1 знает модели и методы исследования
	анализу	транспортных процессов и систем
	пропускных	ПК-3.3.2 знает методы оценки пропускных
	способностей и	способностей и загруженностей транспортных
	показателей	процессов и систем
	транспортного	ПК-3.У.1 умеет определять эффективность
Профессиональные	процесса, для	работы транспортной системы, процесса или
компетенции	принятия решений	узла на основе моделей и методов
	об эффективности,	моделирования систем
	на основе	ПК-3.В.1 владеет навыками оценки
	использования	пропускных способностей и показателей
	моделей и методов	транспортного процесса на основе моделей и
	моделирования	методов моделирования и использования
	систем	прикладных программных систем, в том числе

отечественного производства, в сфере
профессиональной деятельности

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- Теория транспортных процессов и систем;

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и могут использоваться при изучении других дисциплин:

- Интеллектуальные транспортные системы;
- Информационные транспортные системы;
- Системное моделирование.

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

		Трудоемкость по
Вид учебной работы	Всего	семестрам
		№8
1	2	3
Общая трудоемкость дисциплины, 3E/ (час)	4/ 144	4/ 144
Из них часов практической подготовки	12	12
Аудиторные занятия, всего час.	20	20
в том числе:		
лекции (Л), (час)	8	8
практические/семинарские занятия (ПЗ), (час)	4	4
лабораторные работы (ЛР), (час)	8	8
курсовой проект (работа) (КП, КР), (час)	*	*
экзамен, (час)	9	9
Самостоятельная работа, всего (час)	115	115
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Экз.	Экз.

^{* -} часы , не входящие в аудиторную нагрузку

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

тионици з тиздены, темы днецинины, их трудосикоеть						
	Разделы, темы дисциплины	Лекции (час)	ПЗ (СЗ) (час)	ЛР (час)	КП (час)	СРС (час)
	Сем	естр 8				
Раздел 1.		1	2	1		23
Раздел 2.		1	2	1		23
Раздел 3.		1		1		23
Раздел 4.		1		1		23

Раздел 5.	2		2		23
Раздел 6.	2		2		23
Выполнение курсовой работы				0	
Итого в семестре:	8	4	8		115
Итого	8	4	8	0	115

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий.

Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Номер раздела	Название и содержание разделов и тем лекционных занятий				
1	Общий подход к транспортным процессам.				
	Особенноститранспортных систем как объектов моделирования.				
2	Опыт решения транспортных проблем и место моделирования дляих				
	решения				
3	Моделирование транспортных процессов в аэропорту				
4	Моделирование транспортных процессов в морском порту				
5	Моделирование транспортных процессов в мегаполисе				
6	Моделирование работы объектов транспортной инфраструктуры				

4.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

	•			Из них	$N_{\underline{0}}$
$N_{\underline{0}}$	Темы практических	Формы практических	Трудоемкость,	практической	раздела
п/п	занятий	занятий	(час)	подготовки,	дисцип
				(час)	лины
		Семестр 8			
1	Моделирование	Практическое	2	1	1-3
	работы перекрестка	занятие			
2	Имитационное	Практическое	2	1	1-3
	моделирование	занятие			
	работы светофора				
	Beer	0	4		

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

			Из них	$N_{\underline{0}}$
№ Наименование лабораторных работ	Трудоемкость,	практической	раздела	
п/п	п/п	(час)	подготовки,	дисцип
			(час)	лины
	Семестр (5		
1.	Построение графиков функции	2	1	1,2
	загруженности транспортной системы			
2.	Моделирование размещения центров	3	2	1,2
	притяжения грузовых потоков			
3.	Моделирование работы морской	3	2	4
	контейнерной линии			
	Всего	8		

4.5. Курсовое проектирование/ выполнение курсовой работы

Цель курсовой работы:

Часов практической подготовки:

Примерные темы заданий на курсовую работу приведены в разделе 10 РПД.

4.6. Самостоятельная работа обучающихся

Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

таблица / Виды самостоятельной работы и се трудосикость					
Вид самостоятельной работы	Всего,	Семестр 8,			
Вид самостоятсявной расоты	час	час			
1	2	3			
Изучение теоретического материала	90	90			
дисциплины (ТО)	90	90			
Курсовое проектирование (КП, КР)	10	10			
Расчетно-графические задания (РГЗ)					
Выполнение реферата (Р)					
Подготовка к текущему контролю	14	15			
успеваемости (ТКУ)	1+	13			
Домашнее задание (ДЗ)					
Контрольные работы заочников (КРЗ)					
Подготовка к промежуточной					
аттестации (ПА)					
Всего:	115	115			

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8. Таблица 8— Перечень печатных и электронных учебных изданий

Шифр/ URL адрес	Библиографическая ссылка	Количество экземпляров в библиотеке (кроме электронных экземпляров)
658 M 14	Моделирование транспортных процессов [Текст]: учебное пособие / Н. Н. Майоров, В. А. Фетисов; СПетерб. гос. ун-т	38
	аэрокосм. приборостроения СПб. : Изд-во ГУАП, 2011. – 163 с.	
658 M 74	Моделирование транспортных процессов [Текст]: методические указания к выполнению лабораторных работ / В. А. Фетисов, Н. Н. Майоров, В. Е. Таратун; С Петерб. гос. ун-т аэрокосм. приборостроения СПб.: ИздвоГУАП, 2013 31 с.	75
656 M 14	Практические задачи моделирования транспортных систем [Текст] : учебное пособие / Н. Н. Майоров, В. А. Фетисов ; СПетерб. гос. ун-т аэрокосм. приборостроения СПб. : Издво ГУАП, 2012 185 с.	56
658 M 14	Майоров, Н.Н. Имитационное моделирование сложных транспортных систем: учебно-методическое пособие / Н. Н. Майоров, В. Е. Таратун; СПетерб. гос. ун-т аэрокосм. приборостроения Санкт-Петербург: Изд-во ГУАП, 2019. – 75 с.	20
658 Д 56	Добровольская, А.А. Моделирование цепей поставок: учебно-методическое пособие / А. А. Добровольская, Н. Н. Майоров, В. Е. Таратун; СПетерб. гос. ун-т аэрокосм. приборостроения Санкт-Петербург: Изд-во ГУАП, 2020 67 с.	20

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет»

URL адрес	Наименование
	Не предусмотрено

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

№ п/п	Наименование
1	Программа LiteSmo
2	Программная система AnyLogic
3	Программная система PTV VISSIM, VISUM

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п	Наименование
	Не предусмотрено

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Лекционная аудитория	
2	Мультимедийная лекционная аудитория	

- 10. Оценочные средства для проведения промежуточной аттестации
- 10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств		
Экзамен	Список вопросов к экзамену;		
	Задачи;		
	Тесты.		
Выполнение курсовой работы	Экспертная оценка на основе требований к		
	содержанию курсовой работы по		
	дисциплине.		

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

	71 11 1
Оценка компетенции	Vanaretanueriuea ahamamanauuu waxaateetauuuu
5-балльная шкала	Характеристика сформированных компетенций

Оценка компетенции	Vancourance of an area area area.
5-балльная шкала	Характеристика сформированных компетенций
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий.
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий.
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий.
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений.

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	Код индикатора
	1. Транспортный процесс и его моделирование.	ПК-1.3.5
	2. Особенности транспортных систем как объектов	
	моделирования. Примеры	
	3. Оценка эффективности транспортной системы	
	4. Транспортные сети. Примеры. критерии и параметры	
	моделирования	
	5. Опыт решения транспортных проблем с помощью	
	моделирования. Примеры	
	6. Имитационное моделирование систем массового	
	обслуживания	
	7. Методы обработки результатов моделирования	
	8. Математические модели систем массового	
	обслуживания	

Г		Т
	 Формирование значений случайных величин. Примеры Математическая модель представления 	ПК-3.3.1
	-	
	движения воздушных судов спомощью	
	системы массового обслуживания	
	3. Аэропорт, как система массового	
	обслуживания	
	4. Моделирование технологических операции в	
	аэропорту	
	5. Задачи моделирования транспортных потоков	
	6. Уровни транспортного планирования	
	7. Основные понятия транспортного потока	
	8. Математическое моделирование транспортных	
	ПОТОКОВ	
	1. Гидродинамические модели транспортного потока	ПК-3.3.2
	2. Закон сохранения транспортного потока	
	3. Модели Гриншилдса и Гринберга	
	4. Ударные волны в транспортном потоке	
	5. Модель Лайтхилла-Уизема	
	6. Стохастические модели	
	7. Модель следования за лидером	
	8. Клеточные автоматы	THC 2 X/ 1
	1. Задача о светофоре. При каких условиях	ПК-3.У.1
	перед светофором не будетскапливаться	
	очередь из автомобилей	
	2. Модели расчета корреспонденций	
	3. Моделирование самоорганизующихся потоков	
	4. Программный комплекс VISUM/VISSIM	
	5. Пакет имитационного моделирования Aimsun	
	6. Прикладной пакет программ TransNet	
	7. Прикладной пакет программ LiteSMO	
	8. IndorIntensity: Система учёта интенсивности	
	транспортных потоков	
	1. Использование современных	ПК-3.В.1
	интеллектуальных транспортных систем в	
	организации дорожного движения	
	2. Дискретно-событийное моделирование	
	•	
	транспортных процессов	
	3. Агентное моделирование транспортных процессов	
	4. Моделирование систем "Системная динамика"	
	5. Прикладной пакет программ AnyLogic	
	6. Автоматизированные системы управления	
	транспортом с использованием технологий	
	интеллектуальных транспортных систем	
	7. Имитационное моделирование маршрутизации	
	грузопотоков в среде AnyLogic	
	8. Методы расчета пропускной способности	
i	транспортной системы	
		i

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16.

Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код индикатора
	Учебным планом не предусмотрено	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

Таолица 17 – Пер	речень тем для курсового проектирования/выполнения курсовои расоты		
№ п/п	Примерный перечень тем для курсового проектирования/выполнения		
0 (= 11/11	курсовой работы		
	Вариант № 1		
	Рассмотрим морской порт, в который на разгрузку приходят корабли.		
	Время прихода кораблей в порт распределено нормально m=1, s=0,3.		
	Каждый причал может принимать суда 3 категорий. Время разгрузки		
	распределено равномерно.		
	Судно, приходящее в порт, становится под разгрузку к		
	освободившемуся причалу, а если все причалы заняты, то оно		
	становится в очередь на рейде. Преимущество при разгрузке		
	имеют суда высшей категории.		
	Вариант № 2		
	На основе расписания прилетов аэропорта определить интенсивность		
	движения воздушных судов в аэропорту		
	Вариант № 3		
	Определить потребное количество автобусов на линии при заданных		
	значениях максимальное количество пассажиров перевезенных в час		
	пик 15 000 чел; номинальная вместимость автобуса – 120 чел. время		
	оборотного рейса – 0,4 часа		
	1 F		

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

№ п/п	Примерный перечень вопросов для тестов	Код
		индикатора
	Вопрос 1	
	Входной поток требований многофазной системы массового	
	обслуживания может быть	
	Ответ:	
	(1) случайным непрерывным процессом	
	(2) случайным дискретным процессом	
	(3) Пуассоновским	
	(4) зависимым от числа фаз	
	•	
	Ворпрос 2	

Обслуживание в многофазной системе осуществляется

Ответ:

- (1) по биномиальному закону
- (2) по Пуассоновскому закону
- (3) по закону Эрланга k-го порядка
- (4) по отрицательному биномиальному закону

Вопрос 3

Динамический процесс изменения вероятностей состояния многофазной системы обслуживания описывается

Ответ:

- (1) неоднородными обыкновенными дифференциальными уравнениями
- (2) однородными обыкновенными дифференциальными уравнениями
- (3) однородными дифференциальными уравнениями в частных производных
- (4) алгебраическими уравнениями с постоянными коэффициентами
- (5) однородными обыкновенными дифференциальными уравнениями в матричном виде

Вопрос 4

Вероятности состояний многофазной системы массового обслуживания являются

Ответ:

- (1) в каждый момент времени являются независимыми
- (2) строго зависимыми между собой
- (3) детерминированными
- (4) распределенными по нормальному закону
- (5) несовместными

Вопрос 5

Основными элементами, связанными с массовым обслуживанием, являются

Ответ:

- (1) большое количество данных входного потока
- (2) генератор псевдослучайных чисел
- (3) заявка на обслуживание
- (4) механизм обслуживания
- (5) очередь из заявок на обслуживание

Вопрос 6

В многофазной системе массового обслуживания перед каждой фазой может допускаться

Ответ:

- (1) очередь заявок, ожидающих обслуживание
- (2) изменение очередности обслуживания заявок
- (3) утечка заявок
- (4) обслуживание заявок по пуассоновскому закону

Вопрос 7

В теории многофазных систем массового обслуживания, как правило, оперируют

Ответ:

- (1) неоднородными обыкновенными дифференциальными уравнениями
- (2) распределением моментов поступления требований
- (3) количеством требований, получивших отказ в обслуживании
- (4) распределением времени обслуживания требований
- (5) распределением числа требований, имеющих наивысший приоритет

Вопрос 8

Требования, поступающие в многофазную систему массового обслуживания, называются однородными, если

Ответ:

- (1) в каждый момент времени они являются независимыми
- (2) они различаются только моментами времени поступления в систему
- (3) они поступают из одного источника
- (4) они являются случайными

Вопрос 9

Требования, поступающие в многофазную систему массового обслуживания, называются неоднородными, если

Ответ:

- (1) время их обслуживания является случайным
- (2) они поступают из различных источников
- (3) требования имеют дополнительные признаки, по которым формируются приоритетные свойства
- (4) в каждый момент времени они являются зависимыми

Вопрос 10

Для неоднородных требований, поступающих в многофазную систему массового обслуживания, могут быть следующие дисциплины обслуживания:

Ответ:

(1) относительный приоритет	
(2) обслуживание по экспоненциальному закону	
(3) абсолютный приоритет	
(4) чередующийся приоритет	
(5) обслуживание по принципу FIFO (первым пришел, первым	
вышел - обслужился)	

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п	Перечень контроли	ьных работ
	Не предусмотрено	

10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

11. Методические указания для обучающихся по освоению дисциплины

Целью дисциплины является — получение студентами необходимых знаний, умений и навыков в области моделирования транспортных процессов, исследования транспортных систем, практической реализации транспортных процессов в специальных информационных системах и формирования системы принятия решений по модернизации инфраструктуры на основе результатов моделирования. Необходимо систематически готовиться к практическим и лабораторным занятиям. Методический материал, обеспечивает рациональную организацию самостоятельной работы студентов на основе систематизированной информации по темам практических и лабораторных занятий курса. Практическое занятие и лабораторная работа — один из наиболее сложных и в то же время плодотворных форм вузовского обучения и воспитания. В условиях высшей школы это один из видов практических занятий, проводимых под руководством преподавателя, ведущего научные исследования по тематике семинара и являющегося знатоком данной проблемы или отрасли научного знания. Практические и лабораторные занятия предназначаются для углубленного изучения и овладения методологией применительно к особенностям изучаемой отрасли «Моделирования транспортных систем».

11.1. Методические указания для обучающихся по освоению лекционного материала

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

 получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;

- получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

В рамках данной дисциплины проводятся лекции и лабораторные работы.

Содержание разделов лекционного материала приведено в таблице

3. Студент выполняет лабораторные работы поэтапно по мере предоставления лекционного материала.

Моделирование транспортных процессов [Текст] : учебное пособие / Н. Н. Майоров, В. А. Фетисов ; С.-Петерб. гос. ун-т аэрокосм. приборостроения. - СПб. : Изд-во ГУАП, 2011.-163 с.

Методические указания для обучающихся по прохождению лабораторных работ

В ходе выполнения лабораторных работа обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом и относится к средствам, обеспечивающим решение следующих основных задач у обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задание и требования к проведению лабораторных работ

Лабораторное занятие — одна из основных форм организации учебного процесса, направленная на творческое усвоение теоретических основ учебной дисциплины и получение практических навыков исследования путем постановки, проведения, обработки и представления результатов эксперимента на основе практического использования различных средств (наблюдения, измерения, контроля, вычислительной техники), приобретения навыков опыта творческой деятельности.

Цель лабораторного занятия — практическое освоение студентами содержания и методологии изучаемой дисциплины при использовании специальных средств.

Основными задачами лабораторных занятий являются: - приобретение опыта решения учебно-исследовательских и реальных практических задач на основе изученного теоретического материала; - приобретение опыта проведения эксперимента; - овладение

новыми методиками экспериментирования в соответствующей отрасли науки, техники и технологии; - приобретение умений и навыков эксплуатации технических средств и оборудования; - формирование умений обработки результатов проведенных исследований; - анализ и обсуждение полученных результатов и формулирование выводов; - выработка способности логического осмысления самостоятельно полученных знаний; - обеспечение рационального сочетания коллективной и индивидуальной форм обучения.

Основными функциями лабораторных занятий являются: - познавательная; - развивающая; воспитательная.

По характеру выполняемых студентами заданий лабораторные занятия подразделяются: - на ознакомительные, проводимые с целью закрепления и конкретизации изученного теоретического материала; - аналитические, ставящие своей целью получение новой информации на основе формализованных методов; - творческие, связанные с получением новой информации путем самостоятельно выбранных подходов к решению задач.

Формы организации лабораторных занятий определяются в соответствии со специфическими особенностями учебной дисциплины, целями обучения и могут представлять собой: - решение типовых и ситуационных задач; - проведение эксперимента; - занятия по моделированию реальных задач; - игровое проектирование; - выездные занятия (на производство, в организации сферы услуг, учреждения и др.); - занятия-конкурсы. Методика занятия может быть различной, важно, чтобы достигалась общая дидактическая цель.

Лабораторные занятия проводятся после чтения лекций, дающих теоретические основы для их выполнения. Допускается выполнение лабораторных занятий до прочтения лекций с целью облегчения изучения теоретического материала при наличии описаний работ, включающих необходимые теоретические сведения или ссылки на конкретные учебные издания, содержащие эти сведения.

Основанием для проведения лабораторных занятий по дисциплине являются: - программа учебной дисциплины; - расписание учебных занятий.

Лабораторные занятия должны проводиться в специализированных лабораториях, соответствующих санитарно-гигиеническим нормам, требованиям безопасности и технической эстетике.

Количество оборудованных лабораторных мест должно быть необходимым для достижения поставленных целей обучения и достаточным для обеспечения обучаемым условий комфортности.

Во время лабораторных занятий должны соблюдаться порядок и дисциплина в соответствии с правилами пользования данной лаборатории.

Материальное обеспечение должно соответствовать современному уровню проведения эксперимента в данной отрасли науки и техники.

Лабораторные занятия должны быть обеспечены в достаточном объеме необходимыми методическими материалами, включающими в себя комплект методических указаний к циклу лабораторных работ по данной дисциплине. Методические указания к лабораторной работе служат руководством для преподавателей и студентов.

Полномочия и ответственность профессорско-преподавательского состава кафедры университета, по дисциплинам которой организуется лабораторное занятие:

Заведующий кафедрой несет ответственность за надлежащее функционирование лаборатории и кадровое обеспечение лабораторных занятий.

Преподаватель, которому поручено проведение цикла лабораторных занятий, несет ответственность за своевременную подачу заявок на материальное и кадровое обеспечение занятий, а также за организацию указанных занятий в соответствии с

требованиями действующих нормативных документов, относящихся к содержанию занятий и методике их проведения.

Преподаватель имеет право определять содержание лабораторных работ, выбирать методы и средства проведения лабораторных исследований, наиболее полно отвечающие их особенностям и обеспечивающие высокое качество учебного процесса.

Преподаватель формирует рубежные и итоговые результаты (рейтинги) студента по результатам выполнения лабораторных работ.

Права, ответственность и обязанности студента.

На лабораторном занятии студент имеет право задавать преподавателю и (или) заведующему лабораторией вопросы по содержанию и методике выполнения работы и требовать ответа по существу обращения. Ответ преподавателя должен обеспечивать выполнение студентом работы в течение занятия в полном объеме и с надлежащим качеством, оговоренным в методических указаниях по проведению лабораторных работ.

Студент имеет право на выполнение лабораторной работы по оригинальной методике с согласия преподавателя и под его надзором - при безусловном соблюдении требований безопасности.

Студент имеет право выполнить лабораторную работу, пропущенную по уважительной причине, в часы, согласованные с преподавателем.

Студент обязан прибыть на лабораторное занятие во время, установленное расписанием, и с необходимой предварительной подготовкой. К выполнению лабораторной работы допускаются студенты, подтвердившие готовность в объеме требований, содержащихся в методических указаниях к лабораторной работе и (или) в устных предварительных указаниях преподавателя.

Лабораторное занятие состоит из следующих элементов: вводная часть, основная и заключительная.

Вводная часть обеспечивает подготовку студентов к выполнению заданий работы. В ее состав входят: - формулировка темы, цели и задач занятия, обоснование его значимости в профессиональной подготовке студентов; - изложение теоретических основ работы; - характеристика состава и особенностей заданий работы и объяснение методов (способов, приемов) их выполнения; - характеристика требований к результату работы; - инструктаж по технике безопасности при эксплуатации технических средств; - проверка готовности студентов выполнять задания работы; - указания по самоконтролю результатов выполнения заданий студентами.

Основная часть включает процесс выполнения лабораторной работы, оформление отчета и его защиту. Она может сопровождаться дополнительными разъяснениями по ходу работы, устранением трудностей при ее выполнении, текущим контролем и оценкой результатов отдельных студентов, ответами на вопросы студентов. Возможно пробное выполнение задания(ий) под руководством преподавателя.

Заключительная часть содержит: - подведение общих итогов занятия; - оценку результатов работы отдельных студентов; - ответы на вопросы студентов; - выдачу рекомендаций по устранению пробелов в системе знаний и умений студентов, по улучшению результатов работы; - сбор отчетов студентов для проверки, изложение сведений, касающихся подготовки к выполнению следующей работы.

3.2. Вводная и заключительная части лабораторного занятия проводятся фронтально. Основная часть может выполняться индивидуально или коллективно (в зависимости от формы организации занятия).

Структура лабораторного занятия

Лабораторное занятие состоит из следующих элементов: вводная часть, основная и заключительная. Вводная часть обеспечивает подготовку студентов к выполнению заданий работы. В ее состав входят: - формулировка темы, цели и задач занятия, обоснование его значимости в профессиональной подготовке студентов;

- изложение теоретических основ работы;
- характеристика состава и особенностей заданий работы и объяснение методов (способов, приемов) их выполнения;
 - характеристика требований к результату работы;
 - инструктаж по технике безопасности при эксплуатации технических средств;
 - проверка готовности студентов выполнять задания работы.

Основная часть включает процесс выполнения лабораторной работы, оформление отчета и его защиту. Она может сопровождаться дополнительными разъяснениями по ходу работы, устранением трудностей при ее выполнении, текущим контролем и оценкой результатов отдельных студентов, ответами на вопросы студентов. Заключительная часть содержит:

- подведение общих итогов занятия;
- оценку результатов работы отдельных студентов;
- ответы на вопросы студентов;
- выдачу рекомендаций по устранению пробелов в системе знаний и умений студентов, по улучшению результатов работы;

Структура и форма отчета о лабораторной работе

Отчет оформляется по форме, принятой в ГУАП. Структура отчета следующая:

- 1. Титульный лист;
- 2. Цель работы;
- 3. Исходные данные;
- 4. Теоретические положения, математические модели
- 5. Обработка результатов
- 6. Выводы по результатам выполнения работы
- 7. Список использованной литературы. Приложения

Требования к оформлению отчета о лабораторной работе

Отчёт по лабораторной работе выполняется на листах белой бумаги формата А4 в печатном виде. При оформлении отчёта используется сквозная нумерация страниц, считая титульный лист первой страницей. Номер страницы на титульном листе не ставится. Номера страницы ставятся по центру вверху.

При оформлении отчёта в печатном виде желательно соблюдать следующие требования. Для заголовков: полужирный шрифт, 14 пт, центрированный. Для основного текста: нежирный шрифт, 14 пт, выравнивание по ширине. Во всех случаях тип шрифта – Times New Roman, отступ абзаца 1.25 см, полуторный междустрочный интервал. Поля: левое -3 см, остальные -2 см.

Отчёт формируется в следующем порядке:

1. Титульный лист.

Титульный лист оформляется в соответствии с образиом.

2. Цель работы.

Цель работы показывает, для чего выполняется работа, например, для получения или закрепления каких навыков, изучения каких явлений, законов и m.n.

3. Исходные данные.

Представление исходных данных.

4. Теоретические положения

Краткое содержание работы включает теоретическое тематики лабораторной работы, описание моделей, методов и алгоритмов, необходимых для обработки полученных данных, описание лабораторного, оборудования, используемого в работе.

5. Обработка результатов.

Обработка результатов включает описание хода выполнения работы, перечень полученных результатов, сопровождающихся необходимыми комментариями, расчетами и промежуточными выводами, блок-схемы, чертежи, графики, диаграммы и т. д.

1. Выводы по результатам выполнения работы.

Выводы по работе делаются на основании обобщения полученных результатов. В выводах также отмечаются все недоработки, по какой-либо причине имеющие место, предложения и рекомендации по дальнейшему исследованию поставленной в работе проблемы и т. п.

2. Список использованной литературы. Приложения.

В приложения выносятся библиографический список, содержащий ссылки на книги, периодические издания, интернет ресурсы, использованные при выполнении работы и оформлении отчёта. В основном тексте отчёта ссылки на пункты библиографического списка приводятся в следующем виде: [1,

cmp.2], где 1 — номер пункта, cmp. 2 — дополнительное уточнение местоположения в тексте.

В приложение выносятся также справочная и прочая информация, не включённая в основные разделы отчёта.

Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихся являются:

— учебно-методический материал по дисциплине; Моделирование транспортных процессов [Текст]: учебное пособие / Н. Н. Майоров, В. А. Фетисов; С.-Петерб. гос. ун-т аэрокосм. приборостроения. - СПб.: Изд-во ГУАП, 2011. — 163 с.

11.2. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

Текущий контроль проводится в течение семестра по итогам выполнения контрольных работ, участия в семинарских и практических занятиях, коллоквиумах, участия в бланковом и (или) компьютерном тестировании, подготовке докладов, рефератов, эссе и т.д. Текущий контроль успеваемости студентов является постоянным, осуществляется в течение семестра, в ходе повседневной учебной работы преимущественно посредством реализации балльной системы или проведения

внутрисеместровых аттестаций (формы и виды текущего контроля успеваемости студентов определяются учебными планами, рабочими программами с учётом мнений преподавателей и утверждаются методической комиссией факультета/института).

Текущий контроль успеваемости проводится в одной или нескольких из следующих форм:

- в устной форме (собеседование, дискуссия, доклад, обсуждение подготовленных статей или тезисов);
- в письменной форме (тестирование, подготовка реферата, подготовка эссе и др.).
- 11.3. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

— экзамен — форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Экзамен проводится на основе представленные в таблице 15 вопросов.

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой