МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 31

УТВЕРЖДАЮ
Руководитель программы
проф.,д.т.н.,доц.
(должность, уч. степень, звание)

С.В. Беззатеев
(инициалы, фамилия)
(подпись)
«27» июня 2024 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Применение методов искусственного интеллекта в системах управления» (Наименование дисциплины)

Код научной специальности	2.3.6.
Наименование научной специальности	Методы и системы защиты информации, информационная безопасность
Наименование направленности (профиля) (при наличии)	
Год начала реализации программы	2024

Лист согласования рабочей программы дисциплины

д.т.н.,проф.	27.06.24	В.Ф. Шишлаков
(должность, уч. степень, звание)	(подпись дата)	(инициалы, фамилия)
Программа одобрена на засед	ании кафедры № 31	
«27» июня 2024 г, протокол	№ 8	
Заведующий кафедрой № 31		
д.т.н.,проф.	27.06.24	В.Ф. Шишлаков
(уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Ответственный за программу	2.3.6.	
проф.,д.т.н.,доц.	27.06.24	С.В. Беззатеев
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Заместитель директора инсти	тута №3 по методи ческ ой р	работе
Ст. преп.	27.06.24	Н.В. Решетникова
(должность, уч. степень, звание)	(подпусь, дата)	(инициалы, фамилия)

Аннотация

Дисциплина «Применение методов искусственного интеллекта в системах управления» входит в состав программы подготовки научных и научно-педагогических кадров в аспирантуре по научной специальности 2.3.6. «Методы и системы защиты информации, информационная безопасность». Дисциплина реализуется кафедрой «№31».

Содержание дисциплины охватывает круг вопросов, связанных с разработкой новых методов управления и поиском новых алгоритмических и конструктивных решений в создании систем управления техническими объектами на базе методов искусственного интеллекта.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практическая работа, самостоятельная работа обучающегося, консультации.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 5 зачетных единиц, 180 часов.

Язык обучения по дисциплине «русский»

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Цель дисциплины - подготовка студентов к профессиональной деятельности в области разработки математического, алгоритмического и программного обеспечения систем управления техническими объектами на базе методов искусственного интеллекта, которые позволяют дополнить классические методы анализа и синтеза систем управления средствами учета субъективных факторов, качественных характеристик и отношений. В результате изучения дисциплины студенты должны приобрести навыки применения интеллектуальных алгоритмов при разработке систем управления и освоить современные программные комплексы, позволяющие реализовывать методы искусственного интеллекта.

Дисциплина является одной из основных при подготовке студентов к научноисследовательской деятельности в области теории автоматического управления, разработки новых методов их исследования и проектирования.

- 1.2. Дисциплина входит в состав программы подготовки научных и научно-педагогических кадров в аспирантуре.
 - 1.3. В результате изучения дисциплины аспирант должен:

знать:

- основные положения теории нечетких множеств и нечеткой логики, а также основные алгоритмы нейросетевой обработки информации;
- основные метаэвристические алгоритмы глобальной оптимизации;
- методы проектирования интеллектуальных адаптивных систем управления технологическими процессами.

уметь:

- выбирать методы искусственного интеллекта для решения прикладных задач;
- строить системы нечеткого логического вывода на знаниях и использовать нейросети при решении прикладных задач;
- формализовать прикладные задачи для использования метаэвристических алгоритмов;
- алгоритмизировать работу адаптивных систем управления.

владеть:

- навыками разработки систем управления с элементами искусственного интеллекта;
- навыками конструирования нечетких и нейросетевых регуляторов;
- навыками программирования метаэвристических алгоритмов;
- навыками исследования интеллектуальных адаптивных систем управления.

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- «Математические методы оптимизации научных исследований»,
- «Научные исследования».

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и могут использоваться при проведении ГИА.

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

Вид учебной работы	Всего	Трудоемкость по семестрам
		№5
1	2	3

Общая трудоемкость дисциплины, 3E/ (час)	5/ 180	5/ 180
Из них часов практической подготовки, (час)		
Аудиторные занятия, всего час.	30	30
в том числе:		
лекции (Л), (час)	20	20
практические/семинарские занятия (ПЗ), (час)	10	10
экзамен, (час)	36	36
Самостоятельная работа, всего (час)	114	114
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Экз.**	Экз.**

Примечание: ** кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Разделы, темы дисциплины		ПЗ (СЗ) (час)	CPC (час)
Семестр 5			
Раздел 1. Методы искусственного интеллекта в	1		22
системах автоматического управления Раздел 2. Нечеткие логические системы	6	4	22
управления			23
Тема 2.1. Нечеткие множества и нечеткая логика	3	1	
Тема 2.2. Нечеткие регуляторы и системы	3	3	
управления			
Раздел 3. Искусственные нейронные сети	7	4	23
Тема 3.1. Статические нейронные сети	3	2	
Тема 3.2. Динамические нейронные сети	3	2	
Тема 3.3. Нейронечеткие системы	1		
Раздел 4. Метаэвристические алгоритмы глобальной оптимизации	4	2	23
Тема 4.1. Генетический алгоритм	2	1	
Тема 4.1. Алгоритм роя частиц и другие популяционные методы.	2	1	
Раздел 5. Интеллектуальные адаптивные	2		
системы управления технологическими			23
процессами и производствами			
Итого в семестре:	20	10	114
Итого	20	10	114

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий.

Таблица 4 – Содержание разделов и тем лекционного цикла

	 Содержание разделов и тем лекционного цикла
Номер раздела	Название и содержание разделов и тем лекционных занятий
Раздел 1.	Методы искусственного интеллекта в системах автоматического управления. Понятие искусственного интеллекта (ИИ). История развития и классификация систем ИИ. Связь методов ИИ с классической теорией управления.
Раздел 2.	Нечеткие логические системы управления.
Тема 2.1.	Нечеткие множества и нечеткая логика.
	Нечеткие множества и операции над ними. Фаззификация. Нечеткие числа и принцип расширения. Нечеткие отношения и нечеткая композиция. Лингвистические переменные. Нечеткая импликация и нечеткие правила. Нечеткий вывод в базе правил. Методы дефаззификации. Требования к базе правил.
Тема 2.2.	Нечеткие регуляторы и системы управления.
	Структуры и методы синтеза нечетких регуляторов. Нечеткий регулятор Птипа. Нечеткий регулятор ПИД-типа. Нечеткие регуляторы Такаги-Сугено. Нечеткие супервизоры.
Раздел 3.	Искусственные нейронные сети.
Тема 3.1.	Статические нейронные сети.
	Искусственный нейрон и нейронная сеть (HC). Классификация и парадигмы обучения НС. Персептрон. Линейная НС. Многослойный персептрон. Алгоритм обратного распространения ошибки. Решение задач аппроксимации и распознавания. Нейросетевые регуляторы.
Тема 3.2.	Динамические нейронные сети.
	Модели ассоциативной памяти. Сеть Элмана. Нейронная сеть Хопфилда. Зоны притяжение и аттракторы. Расчет параметров и информационная емкость сети Хопфилда. Двунаправленная ассоциативная память. Нейронная сеть Хэмминга. Использование сетей Кохонена для векторной классификации. Карты Кохонена.
Тема 3.3.	Нейронечеткие системы. Реализация нечетких регуляторов на базе нейронных сетей. Нечеткие нейронные сети ANFIS.
Раздел 4.	Метаэвристические алгоритмы глобальной оптимизации
Тема 4.1.	Генетический алгоритм.
15	Локальная и глобальная оптимизации. Траекторные и популяционные методы глобальной оптимизации. Генетический алгоритм (ГА). Хромосома и популяция. Генетические операции: отбор, скрещивание и мутация. Строительные блоки в ГА. Теорема схем. Кодирование параметров в ГА. Варианты оценки пригодности хромосом. Решение комбинаторных задач. Генетический синтез регуляторов.
Тема 4.2.	Алгоритм роя частиц и другие популяционные методы.
	Классический алгоритм роя частиц и его модификации. Метод колонии муравьев. Алгоритм кукушки. Алгоритм летучей мыши. Алгоритмы, основанные на социально-политических аналогиях.
Раздел 5.	Интеллектуальные адаптивные системы управления технологическими
	процессами и производствами

4.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

				$N_{\underline{c}}$
$N_{\underline{0}}$	Темы практических	Формы	Трудоемк	раздела
Π/Π	занятий	практических занятий	ость, (час)	дисцип-
				лины
		Семестр 7		
1	Исследование системы	Решение задач в системе	1	2.1
	нечеткого логического	MatLab		
	вывода			
2	Исследование системы	Решение задач в системе	3	2.2
	нечеткого логического	MatLab		
	управления			
3	Аппроксимация функций	Решение задач в системе	2	3.1
	с помощью нейросети	MatLab		
	прямого распространения			
4	Исследование	Решение задач в системе	2	3.2
	динамической нейросети	MatLab		
5	Исследование	Решение задач в системе	1	4.1
	генетического алгоритма	MatLab		
6	Исследование алгоритма	Решение задач в системе	1	4.2
	роя частиц	MatLab		
_		Bcero:	10	

4.4. Самостоятельная работа обучающихся

Виды самостоятельной работы и ее трудоемкость приведены в таблице 6.

Таблица 6 – Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего,	Семестр 5,
Вид самостоятсявной расоты	час	час
1	2	3
Изучение теоретического материала дисциплины (TO)	80	80
Подготовка к текущему контролю успеваемости (ТКУ)	14	14
Подготовка к промежуточной аттестации (ПА)	20	20
Всего:	114	114

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 6-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 7.

Таблица 7- Перечень печатных и электронных учебных изданий

Шифр	Библиографическая ссылка / URL адрес	Кол-во экз. в
		библиотеке
		(кроме
		электронных
		экземпляров)
	Нечеткие регуляторы : [Электронный ресурс] : учебное пособие	

	/ М. В. Бураков ; СПетерб. гос. ун-т аэрокосм.	
	приборостроения Документ включает в себя 1 файл СПб. :	
	Изд-во ГУАП, 2010 236 с.	
	Нейронные сети и нейроконтроллеры : [Электронный ресурс] :	
	учебное пособие / М. В. Бураков ; СПетерб. гос. ун-т аэрокосм.	
	приборостроения Электрон. текстовые дан СПб. : Изд-во	
	ГУАП, 2013 282 с.	
007	Искусственный интеллект [Текст]: стратегии и методы решения	10
Л93	сложных проблем = Artificial intelligence : Structures and strategies	
	for complex problem solving / Д. Ф. Люгер; Пер. с англ. Н. Н.	
	Куссуль (ред.) и др 4-е изд М. и др. : Вильямс, 2003 864 с.	
004.4	Генетический алгоритм: теория и практика: учебное пособие/ М.	120
Б 91	В. Бураков; СПетерб. гос. ун-т аэрокосм. приборостроения	
	СПб.: ГОУ ВПО "СПбГУАП", 2008 163 с.	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 8.

Таблица 8 – Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет»

URL адрес	Наименование
	Не предусмотрено

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 9.

Таблица 9 – Перечень программного обеспечения

№ п/п	Наименование
1	Matlab

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 10.

Таблица 10- Перечень информационно-справочных систем

№ п/п	Наименование
	Не предусмотрено

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице 11.

Таблица 11 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
-------	---	---

1	Лекционная аудитория	
2	Компьютерный класс	

- 10. Оценочные средства для проведения промежуточной аттестации
- 10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 12.

Таблица 12 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Экзамен**	Список вопросов к экзамену

Примечание: ** кандидатский экзамен

10.2. В качестве критериев оценки уровня освоения запланированных результатов обучения по дисциплине обучающимися применяется 5-балльная шкала оценивания, которая приведена таблице 13. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 13 – Критерии оценки уровня освоения запланированных результатов обучения по дисциплине

Оценка компетенции	Характеристика уровня освоения запланированных результатов		
5-балльная шкала	обучения по дисциплины		
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий. 		
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 		
- обучающийся усвоил только основной программнь по существу излагает его, опираясь на знания толь литературы; - допускает несущественные ошибки и неточности; - испытывает затруднения в практическом примене направления; - слабо аргументирует научные положения; - затрудняется в формулировании выводов и обобщен — частично владеет системой специализированных пон			
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 		

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 14.

Таблица 14 – Вопросы (задачи) для экзамена

	Попомому подпосод (остом) или омномом
№ п/п	Перечень вопросов (задач) для экзамена
1.	Искусственный интеллект, основные понятия.
2.	Нечеткие множества и их связь с объектами реального мира.
3.	Способы описания и построения функций принадлежности.
4.	Соотношение понятий вероятности и нечеткости.
5.	Операции над нечеткими множествами.
6.	T – норма и S – норма.
7.	Лингвистические переменные.
8.	Нечеткие отношения и их композиция.
9.	Нечеткая импликация и нечеткие продукционные правила.
10.	Нечеткий вывод композиционного типа.
11.	Варианты нечеткого вывода в базе правил.
12.	Требования к нечеткой базе правил.
13.	Структура нечеткого логического регулятора.
14.	Фаззификация и дефаззификация.
15.	Эмпирический синтез нечеткого регулятора.
16.	Лингвистический синтез нечеткого регулятора.
17.	Нечеткий регулятор ПИД-типа.
18.	Нечеткое ситуационное управление.
19.	Классификация искусственных нейронных сетей.
20.	Способы обучения нейронных сетей.
21.	Нейрокомпьютер.
22.	Задача распознавания и линейная машина.
23.	Реализация логических функций на базе персептрона.
24.	Линейная нейронная сеть с линией задержки.
25.	Многослойный персептрон.
26.	Алгоритм обратного распространения ошибки.
27.	Нейросетевая аппроксимация функций.
28.	Нейросетевое распознавание образов.
29.	Нейроэмуляторы и нейроконтроллеры.
30.	Нейронечеткие системы.
31.	Классификация методов глобальной оптимизации, матаэвристические алгоритмы.
32.	Генетический алгоритм.
33.	Кодирование параметров в генетическом алгоритме.
34.	Варианты описания генетических операций.
35.	Генетический синтез регуляторов.
36.	Алгоритм роя частиц.
37.	Алгоритм колонии муравьев.
38.	Метод поиска кукушки.
39.	Алгоритм летучей мыши
40.	Дифференциальная эволюция.
41.	Методы разработки интеллектуальных адаптивных систем
42.	Тенденции развития интеллектуальных адаптивных систем.
	* **

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для зачета / дифф. зачета

NC /	T / 11
№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета

Учебным	планом н	е пред	усмотрено
---------	----------	--------	-----------

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 16.

Таблица 16 – Примерный перечень вопросов для тестов

№ п/п		Примерный перечень вопросов для тестов
	Не предусмотрено	

- 10.4. Методические материалы, определяющие процедуры оценивания уровня освоения запланированных результатов обучения по дисциплине, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.
 - 11. Методические указания для обучающихся по освоению дисциплины
- 11.1. Методические указания для обучающихся по освоению лекционного материала.

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- Цели искусственного интеллекта как технической дисциплины;
- Направления искусственного интеллекта, их особенности и принципы взаимодействия при решении инженерных задач;
- Связь методов искусственного интеллекта и классических методов теории автоматического управления;
 - Теория и практика разработки нечетких систем;
 - Теория и практика использования искусственных нейронных сетей;
 - Метаэвристические алгоритмы глобальной оптимизации

11.2. Методические указания для обучающихся по прохождению практических занятий

Практическое занятие является одной из основных форм организации учебного процесса, заключающаяся в выполнении обучающимися под руководством преподавателя комплекса учебных заданий с целью усвоения научно-теоретических основ учебной дисциплины, приобретения умений и навыков, опыта творческой деятельности.

Целью практического занятия для обучающегося является привитие обучающимся умений и навыков практической деятельности по изучаемой дисциплине.

Планируемые результаты при освоении обучающимся практических занятий:

- закрепление, углубление, расширение и детализация знаний при решении конкретных задач;
- развитие познавательных способностей, самостоятельности мышления, творческой активности;
- овладение новыми методами и методиками изучения конкретной учебной дисциплины;
- выработка способности логического осмысления полученных знаний для выполнения заданий;
- обеспечение рационального сочетания коллективной и индивидуальной форм обучения.

Требования к проведению практических занятий приведены в:

Нейросети в MaytLab: [Электронный ресурс] : методические указания к выполнению лабораторных работ / С.-Петерб. гос. ун-т аэрокосм. приборостроения ; сост. М. В. Бураков. - Электрон. текстовые дан. - СПб. : Изд-во ГУАП, 2017. - 37 с. - Систем. требования: ACROBAT READER 5.X. - Загл. с титул. экрана. - Б. ц.

11.3. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихсяявляются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ (для обучающихся по заочной форме обучения).
- 11.4. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

Возможные методы текущего контроля успеваемости обучающихся:

- устный опрос на занятиях;
- систематическая проверка выполнения индивидуальных заданий;

- защита отчётов по лабораторным работам;
- проведение контрольных работ;
- тестирование;
- контроль самостоятельных работ (в письменной или устной формах);
- контроль выполнения индивидуального задания на практику;
- контроль курсового проектирования и выполнения курсовых работ;
- иные виды, определяемые преподавателем.

Текущий контроль успеваемости осуществляется путем получения обратной связи на лекционных занятиях, контролем выполнения практических работ в семестре.

11.5. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

— экзамен — форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Система оценок при проведении промежуточной аттестации осуществляется в соответствии с требованиями Положений «О текущем контроле успеваемости и промежуточной аттестации студентов ГУАП, обучающихся по программам высшего образования» и «О модульно-рейтинговой системе оценки качества учебной работы студентов в ГУАП».

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой