МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 3

УТВЕРЖДАЮ Руководитель образовательной программы

проф., д.т.н. ,проф. (должность, уч. степень, звание)

А.В. Копыльцов

(инициалы, фамилия)

(подпись)

«<u>26</u>» <u>июня</u> 20<u>24</u> г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Квантовая оптика микро- и наноструктур» (Наименование дисциплины)

Код направления подготовки/ специальности	03.03.01	
Наименование направления подготовки/ специальности	Прикладные математика и физика	
Наименование направленности	Прикладная физика и информационные технологии в наноиндустрии	
Форма обучения	ранио	
Год приема	2024	

Лист согласования рабочей программы дисциплины

Программу составил (а)	
доц., к.фм.н. 17.06.2024 (подпись, дата)	Г.В. Терещенко (инициалы, фамилия)
Программа одобрена на заседании кафедры № 3	
« 18 » июня 2024 г, протокол № 15	
Заведующий кафедрой № 3 д.т.н., проф. (уч. степень, звание) (подпись, дата)	А.В. Копыльцов (инициалы, фамилия)
Заместитель директора института ФПТИ по методической ра	аботе
доц., к.фм.н., доц. (должность, уч. степень, звание)	Ю.А. Новикова (инициалы, фамилия)

Аннотация

Дисциплина «Квантовая оптика микро- и наноструктур» входит в образовательную программу высшего образования — программу бакалавриата по направлению подготовки / специальности 03.03.01 «Прикладные математика и физика» направленности «Прикладная физика и информационные технологии в наноиндустрии». Дисциплина реализуется кафедрой «№3».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ПК-8 «Способен осуществлять поиск новых научно- технических решений для модернизации существующих и внедрения новых процессов и оборудования для модификации свойств наноматериалов и наноструктур»

Содержание дисциплины охватывает круг вопросов, связанных с современными теоретическими и экспериментальными методами в области физики и оптики систем с пониженной размерностью, в том числе единичных наноструктур, и прикладными задачами в области нанотехнологий и оптоэлектроники.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, самостоятельная работа обучающегося.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме дифференцированного зачета.

Общая трудоемкость освоения дисциплины составляет 3 зачетных единицы, 108 часов.

Язык обучения по дисциплине «русский».

- 1. Перечень планируемых результатов обучения по дисциплине
- 1.1. Цели преподавания дисциплины
- получение обучающимися необходимых навыков в области современных теоретических и экспериментальных методов оптики микро- и наноструктур;
- ознакомление обучающихся с основными методами описания квантоворазмерных эффектов, особенностями оптических свойств микро- и наноструктур;
- освоение студентами физических принципов и методов фотоники и оптики микро- наноструктур.
- 1.2. Дисциплина входит в состав части, формируемой участниками образовательных отношений, образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа) компетенции	Код и наименование компетенции	Каторов их достижения Код и наименование индикатора достижения компетенции
Профессиональные компетенции	ПК-3 Способен проводить эксперименты по заданным методикам с обработкой и анализом их результатов, составлять описания выполненных исследований и подготавливать данные для разработки научных обзоров и публикаций	ПК-3.3.1 знать методы планирования эксперимента; методы сбора и обработки данных при проведении исследований ПК-3.У.1 уметь проводить эксперимент по заданным методикам; использовать компьютерные методы обработки результатов эксперимента ПК-3.В.1 владеть навыками составления научных обзоров
Профессиональные компетенции	ПК-5 Способен разработать технические требования к модернизации технологических линий с целью реализации концепции производства и оптимизации технологических процессов с учетом требований систем менеджмента	ПК-5.3.1 знать особенности разработки технических требований к модернизации технологических линий с целью реализации концепции производства и оптимизации технологических процессов с учетом требований систем менеджмента ПК-5.У.1 уметь разрабатывать технические требования к модернизации технологических линий с учетом требований систем менеджмента ПК-5.В.1 владеть навыками разработки технических требований к модернизации технологических линий

	ПК-6 Способен	
	подготовить и	
	согласовать	ПК-6.3.1 знать особенности подготовки и
	комплекты	согласования комплектов документации по
	документации по	предлагаемым к внедрению технологическим
	предлагаемым к	процессам с ответственными исполнителями
	внедрению	смежных подразделений согласно бизнес-
Профессиональные	технологическим	процессу систем менеджмента
компетенции	процессам с	ПК-6.У.1 уметь подготавливать и
	ответственными	согласовывать комплекты документации с
	исполнителями	ответственными исполнителями смежных
	смежных	подразделений
	подразделений	ПК-6.В.1 владеть навыками подготовки
	согласно бизнес-	комплектов документации
	процессу систем	
	менеджмента	
		ПК-7.3.1 знать принципы разработки методик
	ПК-7 Способен	и технических руководств для
	разработать	экспериментальной проверки
	методики и	технологических процессов и исследования
	технические	параметров наноструктурных материалов
	руководства для	ПК-7.У.1 уметь планировать разработку
Профессиональные	экспериментальной	методик и технических руководств для
компетенции	проверки	экспериментальной проверки
компетенции	технологических	технологических процессов и исследования
	процессов и	параметров наноструктурных материалов
	исследования	ПК-7.В.1 владеть навыками разработки
	параметров	методик и технических руководств для
	наноструктурных	экспериментальной проверки
	материалов	технологических процессов и исследования
		параметров наноструктурных материалов

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- Физика;
- Физика твердого тела;
- Прикладная оптика;
- Квантовая электроника.

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и могут использоваться при изучении других дисциплин: производственная преддипломная практика.

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

		Трудоемкость по
Вид учебной работы	Всего	семестрам
		№8

1	2	3
Общая трудоемкость дисциплины, 3E/ (час)	3/ 108	3/ 108
Из них часов практической подготовки	20	20
Аудиторные занятия, всего час.	30	30
в том числе:		
лекции (Л), (час)	10	10
практические/семинарские занятия (ПЗ), (час)		
лабораторные работы (ЛР), (час)	20	20
курсовой проект (работа) (КП, КР), (час)		
экзамен, (час)	36	36
Самостоятельная работа, всего (час)	42	42
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Экз.	Экз.

Примечание: **кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Разделы, темы дисциплины	Лекции	П3 (С3)	ЛР	КП	CPC
	(час)	(час)	(час)	(час)	(час)
Семестр 8					
Раздел 1. Квантово-размерные структуры	8		16		38
Тема 1.1. Размерное квантование энергетического спектра носителей заряда Тема 1.2. Структуры с множественными квантовыми ямами и сверхрешетки Тема 1.3. Оптика квантовых ям Тема 1.4. Оптика сверхрешеток					
Раздел 2. Применение квантоворазмерных структур Тема 2.1. Полупроводниковые лазеры на квантово-размерных структурах Тема 2.2. Фотоприемники на квантоворазмерных структурах	2		4		4
Итого в семестре:	10		20		42
Итого:	10	0	20	0	42

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Номер раздела	Название и содержание разделов и тем лекционных занятий		
1	Квантово-размерные структуры		
	Лекция 1. Размерное квантование энергетического спектра		
	носителей заряда. Квантовые ямы. Квантовая яма с линейно		
	изменяющимся потенциалом.		
	Лекция 2. Сферическая квантовая точка. Структуры с		
	множественными квантовыми ямами. Туннельно-связанные		
	квантовые ямы. Композиционные сверхрешетки. Легированные		
	сверхрешетки. Легированные композиционные сверхрешетки.		
	Лекция 3. Оптика квантовых ям. Оптическое поглощение в		
	квантовых ямах. Квазидвумерный экситон в квантовой яме.		
	Лекция 4. Оптика сверхрешеток. Оптические внутризонные		
	переходы в сверхрешетках. Оптические межзонные переходы в		
	сверхрешетках.		
2	Лекция 5. Полупроводниковые лазеры на квантово-размерных		
	структурах. Фотоприемники на квантово-размерных структурах.		
	Фотодетекторы на квантовых ямах. Фотодетекторы на структурах		
	с квантовыми точками.		

4.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

	<u> </u>	1777			
				Из них	$N_{\underline{0}}$
No	Темы практических	Формы практических	Трудоемкость,	практической	раздела
п/п	занятий	занятий	(час)	подготовки,	дисцип
				(час)	лины
		Учебным планом не про	едусмотрено		
	Всег	0			

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

№ п/п	Наименование лабораторных работ	Трудоемкост ь, (час)	Из них практическ ой подготовки , (час)	№ раздела дисципли ны
	Семестр 8			
1.	Моделирование волновых функций электрона в квантовой точке сферической формы	4	4	1
2.	Моделирование энергетического спектра носителей заряда в структурах с квантовыми ямами	4	4	1
3.	Моделирование спектров люминесценции структур с квантовыми точками	4	4	1
4.	Моделирование сечения поглощения и	4	4	1

	рассеяния сферической наночастицы в			
	дипольном приближении			
5.	Моделирование энергетического	4	4	2
	спектра носителей заряда в структурах с			
	квантовыми ямами			
Всего:		20		

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего, час	Семестр 8, час
1	2	3
Изучение теоретического материала дисциплины (TO)	22	22
Курсовое проектирование (КП, КР)		
Расчетно-графические задания (РГЗ)		
Выполнение реферата (Р)		
Подготовка к текущему контролю успеваемости (ТКУ)		
Домашнее задание (ДЗ)		
Контрольные работы заочников (КРЗ)		
Подготовка к промежуточной аттестации (ПА)	20	20
Всего:	42	42

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8. Таблица 8— Перечень печатных и электронных учебных изданий

Шифр/ URL адрес	Библиографическая ссылка	Количество экземпляров в библиотеке (кроме электронных экземпляров)
https://e.lanbook.com/book/56612	Тимофеев, В.Б. Оптическая спектроскопия объемных полупроводников и наноструктур. [Электронный ресурс] — Электрон. дан. — М.: Издательство "Лань", 2015. — 512 с.	ЭБС Лань
https://e.lanbook.com/book/44963	Войцеховский, А.В. Физические основы полупроводниковой	ЭБС Лань

	фотоэлектроники: Учебное пособие // А.В. Войцеховский, И.И. Ижнин, В.П. Савчин, Н.М. Вакив. [Электронный ресурс] — Электрон. дан. — Томск: Издательство "Национальный исследовательский Томский государственный университет", 2013. — 560 с.	
https://e.lanbook.com/book/91443	Дёмичев, И.А. Численное моделирование оптических свойств металлических наночастиц // И.А. Дёмичев, А.И. Сидоров. [Электронный ресурс] — Электрон. дан. — СПб. : Издательство "Санкт-Петербургский национальный исследовательский	ЭБС Лань
	университет информационных технологий, механики и оптики", 2016. — 52 с.	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационно-

телекоммуникационной сети «Интернет»

URL адрес	Наименование

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

№ п/п	Наименование
	Не предусмотрено

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11– Перечень информационно-справочных систем

Таолице	a 11 Trepe tend impopination in pado main energia
№ п/п	Наименование
	Не предусмотрено

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Учебная аудитория для занятий лекционного типа, занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Оснащение: Специализированная мебель; технические средства обучения, служащие для представления учебной информации большой аудитории; набор	196135, г. Санкт- Петербург, ул. Гастелло, д. 15, аудитория №31-02
2	Учебная аудитория для лабораторных занятий. Оснащение: Специализированная мебель; технические средства обучения, служащие для представления учебной информации большой аудитории; лабораторное оборудование (1.1. Фурье – спектрометр инфракрасный. ФСМ 22111; 1.2. Система обработки данных на базе ПЭВМ, включая монитор LCD 18,5" и лазерный принтер.; 2. Спектрофотометр СФ – 56; 3.1. Фурье – спектрометр инфракрасный ФСМ 1201, включая базовое программное обеспечение FSpec; 3.2. Система обработки данных спектрометра на базе ПЭВМ, включая монитор LCD 18,5" и лазерный принтер; 4. Комплекс лабораторный ЛКО - 2Р; 5. Комплекс лабораторный ЛКО – 6Р №28; 6. Приставка зеркального отображения ПЗО – 10; 7. Приставка зеркального отображения ПЗО – 9; 8. Приставка зеркального отображения ПЗО – 9; 8. Приставка зеркального отображения ПЗО – 45)	196135, г. Санкт- Петербург, ул. Гастелло, д. 15, аудитория №31-04а

10. Оценочные средства для проведения промежуточной аттестации

10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Экзамен	Список вопросов к экзамену;
	Экзаменационные билеты;
	Задачи;
	Тесты.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

, , ,	<u> </u>
Оценка компетенции	Vonoverous of on an anapolitic via aronavis
5-балльная шкала	Характеристика сформированных компетенций

Оценка компетенции	V	
5-балльная шкала	Характеристика сформированных компетенций	
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий. 	
«хорошо» «зачтено»	 – обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; – не допускает существенных неточностей; – увязывает усвоенные знания с практической деятельностью направления; – аргументирует научные положения; – делает выводы и обобщения; – владеет системой специализированных понятий. 	
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий. 	
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 	

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	Код
3 12 11/11	Tiepe tens bonfocos (saga 1) gim skisamena	индикатора
	Размерное квантование энергетического спектра	ПК-3.У.1
1.	носителей заряда.	1110-3.3.1
2.	Квантовая яма с линейно изменяющимся потенциалом.	ПК-3.У.1
3.	Сферическая квантовая точка.	ПК-3.В.1
4.	Структуры с множественными квантовыми ямами.	ПК-5.3.1
5.	Туннельно-связанные квантовые ямы.	ПК-5.У.1
6.	Композиционные сверхрешетки.	ПК-5.В.1
7.	Легированные сверхрешетки.	ПК-6.3.1
8.	Легированные композиционные сверхрешетки.	ПК-6.У.1
9.	Оптическое поглощение в квантовых ямах.	ПК-6.В.1
10.	Квазидвумерный экситон в квантовой яме.	ПК-7.3.1
11.	Оптические внутризонные переходы в сверхрешетках.	ПК-7.У.1
12.	Оптические межзонные переходы в сверхрешетках.	ПК-7.В.1

	Полупроводниковые лазеры на квантово-размерных	ПК-3.У.1
13.	структурах.	11K-3. y . 1
14.	Фотоприемники на квантово-размерных структурах.	ПК-3.В.1
15.	Фотодетекторы на квантовых ямах.	ПК-5.3.1
16.	Фотодетекторы на структурах с квантовыми точками.	ПК-5.У.1

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16.

Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код индикатора
	Учебным планом не предусмотрено	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

№ п/п	Примерный перечень вопросов для тестов	Код индикатора
	Учебным планом не предусмотрено	

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п	Перечень контрольных работ
	Не предусмотрено

- 10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.
 - 11. Методические указания для обучающихся по освоению дисциплины
- 11.1. Методические указания для обучающихся по освоению лекционного материала.

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

- 11.2. Методические указания для обучающихся по участию в семинарах. Учебным планом не предусмотрено.
- 11.3. Методические указания для обучающихся по прохождению практических занятий. Учебным планом не предусмотрено.
- 11.4. Методические указания для обучающихся по выполнению лабораторных работ.

В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задание и требования к проведению лабораторных работ

Лабораторные работы, предусмотренные в данном курсе, выполняются в компьютерном классе на персональном компьютере с использованием пакета прикладных программ MatLab.

В процессе подготовки к лабораторной работе необходимо изучить соответствующие методические указания и повторить лекционный материал, который относится к теме работы. Перед началом выполнения работы необходимо создать отдельную папку для создаваемых в работе файлов и установить ее в системе в качестве текущей директории. Путь к данной папке не должен содержать имен, написанных кириллицей.

В процессе выполнения работы полученные результаты расчетов, листинги разрабатываемых программ, схемы и другие рабочие материалы должны сохраняться на диске для их дальнейшего использования при оформлении отчета.

По окончании работы необходимо составить отчет и подготовиться к его защите на следующем занятии.

Структура и форма отчета о лабораторной работе

Отчет о лабораторной работе должен содержать:

- фамилию, имя и отчество студента, выполнившего работу;
- номер учебной группы;
- дату выполнения работы;
- название работы;
- цель работы;
- краткую формулировку задания на лабораторную работу;
- основные теоретические сведения и формулы, использовавшиеся в процессе выполнения работы;
- листинги программ, разработанные и отлаженные в процессе выполнения работы;
- схемы, разработанные в процессе выполнения работы;
- при использовании дополнительной литературы указать ссылки и привести список литературы;
- выводы по работе.

Требования к оформлению отчета о лабораторной работе

Пример оформления титульного листа отчета по лабораторной работе приведен на сайте университета www.guap.ru.

При оформлении отчета о лабораторной работе необходимо придерживаться требований ГОСТ 7.32-2017 «Отчет о научно-исследовательской работе. Структура и правила оформления».

По каждой лабораторной работе должен быть подготовлен отчет в бумажном и в электронном виде. После защиты лабораторных работ отчеты в бумажном виде с проставленными оценками хранятся на кафедре, а отчеты в электронной форме должны быть выложены в личном кабинете обучающегося на сайте университета.

- 11.5. Методические указания для обучающихся по прохождению курсового проектирования/выполнения курсовой работы. Учебным планом не предусмотрено.
- 11.6. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихсяявляются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ (для обучающихся по заочной форме обучения).

Если методические указания по прохождению самостоятельной работы имеются в изданном виде, в виде электронных ресурсов библиотеки ГУАП, системы LMS, кафедры и т.д., необходимо дать на них ссылку или привести URL адрес.

11.7. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

11.8. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

— экзамен — форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой