МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 1

УТВЕРЖДАЮ

Руководитель образовательной программы

проф.,д.т.н.,доц.

(должность, уч. степень, звание)

Н.А. Жильникова

(инициалы, фамилия)

(подпись) «24» июня 2024 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Механика» (Наименование дисциплины)

Код направления подготовки/ специальности	20.03.01	
Наименование направления подготовки/ специальности	Техносферная безопасность	
Наименование направленности	Инжиниринг и цифровизация систем обеспечения безопасности техносферы	
Форма обучения	очная	
Год приема	2024	

Лист согласования рабочей программы дисциплины

Программу составил (а)

- Jung					
доц., к.т.н.	24.06.24	Е.Э. Аман			
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)			
Программа одобрена на заседа «24» июня 2024 г, протокол М					
Заведующий кафедрой № 1	e N				
д.фм.н.,доц.	24.06.24	А.О. Смирнов			
(уч. степень, звание) Заместитель директора инстит доц.,к.фм.н.	(подпись, дата) ута ФПТИ по методической ра уборино ————————————————————————————————————	(инициалы, фамилия) аботе Ю.А. Новикова			
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)			
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			

Аннотация

Дисциплина «Механика» входит в образовательную программу высшего образования — программу бакалавриата по направлению подготовки/ специальности 20.03.01 «Техносферная безопасность» направленности «Инжиниринг и цифровизация систем обеспечения безопасности техносферы». Дисциплина реализуется кафедрой «№1».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

УК-2 «Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений»

Содержание дисциплины охватывает круг вопросов, связанных с анализом и синтезом механизмов и машин, направленных на обеспечение безопасности в техносфере. Это включает в себя изучение основ теории механизмов и машин, кинематики и динамики механизмов, а также методов анализа и синтеза механизмов. Особое внимание уделяется вопросам безопасности, связанным с проектированием и эксплуатацией технических систем, что является ключевым аспектом инжиниринга и цифровизации систем обеспечения безопасности техносферы.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: *лекции*, *лабораторные работы*, *самостоятельная работа обучающегося*.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 5 зачетных единиц, 180 часов.

Язык обучения по дисциплине «русский»

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Получение обучающимися необходимых знаний, умений и навыков в области механики: Студенты должны освоить основы теории механизмов и машин, кинематики и динамики механизмов, а также методы анализа и синтеза механизмов. Это позволит им понимать принципы работы технических систем и разрабатывать эффективные решения для обеспечения безопасности в техносфере.

- 1.2. Дисциплина входит в состав обязательной части образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория	Код и	Код и наименование индикатора достижения
(группа)	наименование	код и наименование индикатора достижения компетенции
компетенции	компетенции	компетенции
Универсальные компетенции	УК-2 Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений	УК-2.3.1 знать виды ресурсов и ограничения для решения поставленных задач УК-2.У.1 уметь проводить анализ поставленной цели и формулировать задачи, которые необходимо решить для ее достижения УК-2.У.3 уметь выдвигать альтернативные варианты действий с целью выбора оптимальных способов решения задач, в том числе с помощью цифровых средств УК-2.В.2 владеть навыками выбора оптимального способа решения задач с учетом имеющихся условий, ресурсов и ограничений

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- «Математика. Математический анализ»,
- «Математика. Аналитическая геометрия и линейная алгебра»,
- «Физика»

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и используются при изучении других дисциплин:

- «Основы технического анализа промышленной продукции»,
- «Основы проектирования продукции»

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

1 00011112401 =	оодон и грудобинеота диоди		
			Трудоемкость по
	Вид учебной работы	Всего	семестрам
			№ 4

1	2	3
Общая трудоемкость дисциплины, 3E/ (час)	5/ 180	5/ 180
Из них часов практической подготовки		
Аудиторные занятия, всего час.	51	51
в том числе:		
лекции (Л), (час)	34	34
практические/семинарские занятия (ПЗ),		
(час)		
лабораторные работы (ЛР), (час)	17	17
курсовой проект (работа) (КП, КР), (час)		
экзамен, (час)	36	36
Самостоятельная работа, всего (час)	93	93
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Экз.	Экз.

Примечание: **кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Разделы, темы дисциплины	Лекции	П3 (С3)	ЛР	КП	CPC
·	(час)	(час)	(час)	(час)	(час)
	естр 4	1			
Раздел 1. Кинематика	7				20
Тема 1.1. Способы задания движения точки и					
твердого тела	1		2		4
Тема 1.2. Плоское движение	1				4
Тема 1.3. Сложное движение	1		2		4
Тема 1.4. Основы структурного анализа и синтеза механизмов	2				4
Тема 1.5. Кинематический анализ механизма	2				4
тема 1.3. Кинематический анализ меланизма	4				6
Раздел 2. Динамика	4		2		O
Тема 2.1. Основные понятия и теоремы динамики	1		2		2
Тема 2.2. Силы и моменты	1		2		2
Тема 2.3. Динамический анализ механизма.	1		2		2 2
	2				
Раздел 3. Сопротивление материалов	8		8		40
Тема 3.1. Основные понятия и гипотезы					
Тема 3.2. Прочность и жесткость элементов	2		2		10
конструкции	2		2		10
Тема 3.3. Теории прочности	2 2 2		2 2		10
Тема 3.4. Переменные (циклические) напряжения	2		2		10
Раздел 4. Детали машин	15		5		27
Тема 4.1. Основные критерии работоспособности					
машин и механизмов	5		2		9
Тема 4.2. Виды передач	5		2		9
Тема 4.3. Пример расчета механических передач	5		1		9
Итого в семестре:	34		17		93
Итого	34	0	17	0	93

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий.

Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Таблица 4 – Содержание разделов и тем лекционного цикла				
Номер раздела	Название и содержание разделов и тем лекционных занятий			
1	Раздел 1. Кинематика			
	Тема 1.1. Способы задания движения точки и твердого тела			
	Введение в кинематику.			
	Описание движения точки и твёрдого тела.			
	Системы отсчёта и траектории движения.			
	Кинематические уравнения движения.			
	Тема 1.2. Плоское движение			
	Понятие плоского движения.			
	Анализ плоского движения точки и твёрдого тела.			
	Тема 1.3. Сложное движение			
	Определение сложного движения.			
	Разложение сложного движения на составляющие.			
	Тема 1.4. Основы структурного анализа и синтеза механизмов			
	Основные понятия и определения.			
	Классификация механизмов.			
	Методы структурного анализа и синтеза механизмов.			
	Тема 1.5. Кинематический анализ механизма			
	Цели и задачи кинематического анализа.			
	Методы кинематического анализа механизмов.			
	Примеры кинематического анализа конкретных			
	механизмов.			
2	Раздел 2. Динамика			
	Тема 2.1. Основные понятия и теоремы динамики			
	Введение в динамику.			
	Основные понятия динамики: масса, сила, импульс,			
	энергия.			
	Работа и мощность.			
	Тема 2.2. Силы и моменты			
	Виды сил: гравитационные, упругие, трения.			
	Моменты сил.			
	Равновесие сил и моментов.			
	Тема 2.3. Динамический анализ механизма.			
	Понятие динамического анализа механизма.			
	Методы динамического анализа.			
	Расчёт сил и моментов, действующих на звенья механизма.			
	Уравновешивание механизмов.			
	Примеры динамического анализа реальных механизмов.			
3	Раздел 3. Сопротивление материалов			
	Тема 3.1. Основные понятия и гипотезы			
	Введение в сопротивление материалов.			
	Основные понятия: прочность, жёсткость, устойчивость.			
	Гипотезы сопротивления материалов: сплошности,			
	однородности, изотропности, идеальной упругости, малости			
	деформаций, независимости действия сил.			
	Тема 3.2. Прочность и жесткость элементов конструкции			
	Понятие прочности и жёсткости.			
	Методы расчёта прочности и жёсткости.			

	Примеры расчётов прочности и жёсткости различных
	элементов конструкций.
	Тема 3.3. Теории прочности
	Основные теории прочности.
	Критерии разрушения материалов.
	Применение теорий прочности к расчёту элементов
	конструкций.
	Тема 3.4. Переменные (циклические) напряжения
	Понятие переменных напряжений.
	Циклические напряжения и их влияние на прочность
	материалов.
	Методы расчёта элементов конструкций при переменных
	нагрузках.
4	Раздел 4. Детали машин
	Тема 4.1. Основные критерии работоспособности машин и
	механизмов
	Введение в детали машин.
	Основные критерии работоспособности: прочность,
	жёсткость, износостойкость, коррозионная стойкость,
	теплостойкость, виброустойчивость.
	Влияние критериев на выбор материалов и конструкцию
	деталей.
	Тема 4.2. Виды передач
	Обзор основных видов механических передач: зубчатые,
	червячные, ремённые, цепные, фрикционные.
	Преимущества и недостатки каждого вида передач.
	Тема 4.3. Пример расчета механических передач
	Выбор типа передачи для конкретной задачи.
	Расчёт основных параметров передачи: передаточное число,
	крутящий момент, мощность.
	Расчёт на прочность и долговечность.
	Примеры расчёта различных видов механических передач.

4.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

				Из них	$N_{\underline{0}}$
$N_{\underline{0}}$	Темы практических	Формы практических	Трудоемкость,	практической	раздела
п/п	занятий	занятий	(час)	подготовки,	дисцип
				(час)	лины
		Учебным планом не про	едусмотрено		
Всего					

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

№ п/п	Наименование лабораторных работ		Из них практической подготовки,	№ раздела дисцип	
,		()	(час)	лины	
Семестр 4					

1	Структурный анализ механизма		1
2	Динамический расчет механизма		2
3	Определение механических характеристик		3
	материала при растяжении		
4	Определение модуля сдвига при кручении		3
5	Исследование прогиба консольного		3
	стержня прямоугольного поперечного		
	сечения		
6	Исследование трения в подшипниках		3
	качения		
7	Исследование КПД зубчатых передач в		4
	замкнутом контуре		
8	Исследование КПД винтового механизма		4
9	Исследование рабочих процессов		4
	ременных передач		
	Всего	17	

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

	Всего,	Семестр 4,
Вид самостоятельной работы	час	час
1	2	3
Изучение теоретического материала	70	70
дисциплины (ТО)	70	70
Курсовое проектирование (КП, КР)		
Расчетно-графические задания (РГЗ)		
Выполнение реферата (Р)		
Подготовка к текущему контролю	10	10
успеваемости (ТКУ)	10	10
Домашнее задание (ДЗ)		
Контрольные работы заочников (КРЗ)		
Подготовка к промежуточной	13	13
аттестации (ПА)	13	13
Всего:	93	93

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8.

Таблица 8- Перечень печатных и электронных учебных изданий

таолица	а 8– Перечень печатных и электронных учебных издани	И
Шифр/ URL адрес	Библиографическая ссылка	Количество экземпляров в библиотеке (кроме электронных экземпляров)
	Готт М. И. Тоорожиноское мохоника в приморох и	экэсмииров)
	Бать, М. И. Теоретическая механика в примерах и	
	задачах: учебное пособие. Т.1: Статика и	
	кинематика /М. И. Бать, Г.Ю. Джанелидзе, А.С.	
	Кельзон 12-е изд., стер.[Электронный ресурс] -	
	Электрон. дан СПб.: Лань, 2013 672 с Режим	
	доступа: <u>https://e.lanbook.com/book/4551</u> Загл. с	
	экрана.	
	Бать, М. И. Теоретическая механика в примерах и	
	задачах: учебное пособие. Т.2: Динамика/М. И. Бать,	
	Г.Ю. Джанелидзе, А.С. Кельзон 10-е изд., стер.	
	[Электронный ресурс] - Электрон. дан СПб.:	
	Лань, 2013 640 с Режим доступа:	
	https://e.lanbook.com/book/4552 Загл. с экрана.	
	Березина, Н. А. Теоретическая механика: учебное	
	пособие/	
	Н. А. Березина. [Электронный ресурс] - Электрон.	
	данМ.:ФЛИНТА,2015256 с Режим доступа:	
	https://e.lanbook.com/book/70322 Загл. с экрана.	
	Бусыгин, А. М. Прикладная механика: учебник / А.	
	М. Бусыгин. — Москва : МИСИС, 2019. — 156 с. —	
	ISBN 978-5-907226-17-3. — Текст : электронный //	
	Лань : электронно-библиотечная система. — URL:	
	Режим доступа: https://e.lanbook.com/book/128996	
	Теория механизмов и машин (проектирование и	
	моделирование механизмов и их элементов):	
	учебник. /Соболев А.Н., Некрасов А.Я., Схиртладзе	
	<u>А.Г.</u> - М.:КУРС, НИЦ ИНФРА-М, 2016 256 с	
	Режим доступа:	
	http://znanium.com/catalog.php?item=booksearch&code Загл. с экрана	
	Прикладная механика (основы структурного,	
	кинематического и динамического анализа	
	механизмов):учебник/Соболев А.Н., Некрасов А.Я.,	
	Схиртладзе А.Г., Бровкина Ю.И М.:КУРС,	
	ИНФРА-М, 2017 160 с	
	Режим доступа:	
	https://znanium.com/read?id=18015	
	Загл. с экрана	
	Жуков, В.А. Детали машин и основы	
	конструирования: Основы расчета и проектирования	
	соединений и передач: учебное пособие. — 2-е изд. [Электронный ресурс] - Электрон. дан	
	М.:ИНФРА-М,2015 416 с Режим доступа:	
	http://znanium.com/bookread2.php?book=501585 Загл.	
	с экрана	
		· · · · · · · · · · · · · · · · · · ·

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

образовательных Перечень электронных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 - Перечень электронных образовательных ресурсов информационно-

телекоммуникационной сети «Интернет»

URL адрес	Наименование
https://e.lanbook.com/	ЭБС «Лань»

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10– Перечень программного обеспечения

№ п/п	Наименование
	Не предусмотрено

8.2. Перечень информационно-справочных систем,используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п	Наименование
	Не предусмотрено

9. Материально-техническая база

Состав материально-технической базы, необходимой осуществления ДЛЯ образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально- технической базы	Номер аудитории (при необходимости)
1	Лекционная аудитория – укомплектована	Фонд
	специализированной (учебной) мебелью, набором	лекционных
	демонстрационного оборудования и учебно-наглядными	аудиторий ГУАП
	пособиями, обеспечивающими тематические	
	иллюстрации, соответствующие рабочим учебным	
	программам дисциплин (модулей).	
2	Аудитории для проведения лабораторных занятий –	Фонд аудиторий
	укомплектованы специализированной (учебной)	ГУАП для
	мебелью, техническими средствами обучения,	проведения
	служащими для представления учебной информации. В	лабораторных
	лаборатории исследования механических элементов	занятий (ул.
	приборов (ауд. 11-05) имеются следующие	Гастелло 15, ауд.
	лабораторные установки: разрывная машина ИМ-4Р;	11-05, 12-06)
	лабораторная установка для измерения прогиба	

	консольного стержня; лабораторная установка для определения момента трения в подшипниках качения;	
	установка для определения модуля сдвига, главных	
	напряжений при кручении и совместном действии изгиба и кручения ТМт11М-14М.	
	В лаборатории исследования кинематических и точностных характеристик приборов (ауд. 12-06)	
	имеются следующие лабораторные установки:	
	автоматизированный лабораторный комплекс «Детали машин. Передачи редукторные»; лабораторная	
	установка для экспериментального исследования	
	винтового механизма; лабораторная установка для	
	исследования точности зубчатого механизма;	
	лабораторная установка для исследования ременных	
2	передач.	ж v
3	Помещение для самостоятельной работы –	Фонд аудиторий
	укомплектовано специализированной (учебной)	ГУАП
	мебелью, оснащено компьютерной техникой с	
	возможностью подключения к сети "Интернет" и обеспечено доступом в электронную информационно-	
	образовательную среду организации.	
4	Учебная аудитория для текущего контроля и	Фонд аудиторий
	промежуточной аттестации – укомплектована	ГУАП
	специализированной (учебной) мебелью, техническими	(ул. Гастелло 15,
	средствами обучения, служащими для представления	ауд. 11-05, 12-06)
	учебной информации.	

10. Оценочные средства для проведения промежуточной аттестации

10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Экзамен	Список вопросов к экзамену;
	Тесты.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции	Характеристика сформированных компетенций	
5-балльная шкала		
	- обучающийся глубоко и всесторонне усвоил программный материал;	
	– уверенно, логично, последовательно и грамотно его излагает;	
«ОТЛИЧНО»	- опираясь на знания основной и дополнительной литературы,	
«зачтено»	тесно привязывает усвоенные научные положения с практической	
	деятельностью направления;	
	– умело обосновывает и аргументирует выдвигаемые им идеи;	
	– делает выводы и обобщения;	

Оценка компетенции	Vanagranyaryura adam grananuu vy yaa grarayuu y
5-балльная шкала	Характеристика сформированных компетенций
	 свободно владеет системой специализированных понятий.
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий.
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий.
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений.

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	Код индикатора
1	Какова разница между кинематической цепью и кинематической парой?	УК-2.3.1
2	В чем состоит проблема надежности?	
3	Что понимать под безотказностью изделия?	
4	Запишите определения скорости и ускорения материальной точки.	
5	Как вычислить проекции скорости материальной точки на орт еі криволинейной системы координат?	
6	В каких случаях мы можем при определении движения исследуемого объекта ограничиться моделью материальной точки? Приведите примеры таких задач.	
7	Запишите теорему Эйлера о распределении скоростей точек твердого тела.	
8	Что называют угловой скоростью тела?	
9	Как осуществляется замена высших кинематических пар низшими?	УК-2.У.1
10	Каковы пути обеспечения надежности при	

	проектировании машин?		
11	Для чего необходимо прижатие звеньев фрикционной	7	
	передачи и какими способами его осуществляют?		
12	Как использовать методы статистического анализа для		
	оценки надежности и долговечности деталей машин в		
	условиях эксплуатации?		
13	Как провести анализ устойчивости конструкции с		
	использованием методов математического моделирования		
	и какие параметры влияют на устойчивость?		
14	Найти величину усилия, сжимающего предмет М в прессе,		
	при следующих условиях: усилие Р = 0,2 кН и направлено		
	перпендикулярно рычагу ОА, имеющему неподвижную		
	ось О; в рассматриваемом положении пресса тяж ВС		
	перпендикулярен ОВ и делит угол ЕСО пополам, причем		
	угол CED = $arctg0,2 = 11020$ '; длина OA = 1 м, OB = 10 см.		
15	Лебедка снабжена храповым колесом диаметра d1 с		
	собачкой А. На барабан диаметра d2, неподвижно		
	скрепленный с колесом, намотан трос, поддерживающий		
	груз Q. Определить давление на ось В собачки. Весом		
	собачки пренебречь.		
16	Как происходит замыкание кинематических пар в	УК-2.У.3	
	кинематические цепи?		
17	С какой целью в расчет передач вводят запас сцепления?		
18	Какие методы оптимизации используются при		
	проектировании деталей машин и как они помогают		
	снизить материалоемкость и повысить эффективность		
	работы?		
19	Как провести анализ технического задания на		
	проектирование прибора, чтобы выявить основные		
	требования к конструкции и функционалу?		
20	Как можно уменьшить трение в механизмах и какие		
	методы для этого применяются?		
21	Кривошипно-кулисный механизм приводного молота		
	состоит из прямолинейной кулисы, совершающей		
	возвратно-поступательное движение. Кулиса приводится в		
	движение камнем А ,соединенным с концом кривошипа		
	ОА= г, который вращается равномерно с угловой		
	скоростью ю. При t = 0 кулиса занимает нижнее		
22	положение. Найти ускорение кулисы.		
22	Во избежание несчастных случаев, происходивших от		
	разрыва маховиков, устраивается следующее		
	приспособление. В ободе маховика помещается тело 1		
	массы т, удерживаемое внутри его пружиной; когда		
	скорость маховика достигает предельной величины, тело		
	1 задевает выступ 2 задвижки 3, которая и закрывает		
	доступ пара в машину. Определить необходимый		
	коэффициент жесткости пружины k, предполагая, что		
	масса тела 1 сосредоточена в точке М, расстояние которой		
	от оси вращения маховика в предельном положении равно		
	ho. При условии, что F упр = $k x $		
23	Перечислите причины выхода из строя фрикционных	УК-2.В.2	
43	ттере-иелите причины выхода из строх фрикционных	J N-2.D.2	

	передач.	
24	На чем основаны методы подбора ремней передачи?	
25	Предложите способ увеличения тяговой способности	
	ремня, скажем, в 2 раза.	
26	Определить максимальный вращающий момент, который	
	может передать червячное колесо (рисунок по билету),	
	венец из бронзы марки Бр01Ф1, от = 280 МПа, центр – из	
	стали 45, если они собраны по посадке 280 H7/s6, для	
	которой диаметр отверстия 280+0,052 и диаметр вала	
	280+0,190. Посадочные поверхности центра и венца	
	имеют шероховатости Rz1 = Rz2 = 10 мкм, коэффициент	
	трения $f = 0.05$. Размеры даны на рисунке. Осевое усилие	
	$A \approx 0.364 T/d\kappa$.	
27	Рассчитать клиноременную передачу привода ленточного	
	транспортера (рисунок по билету). Передаваемая	
	мощность 7,5 кВт, частота вращения ведущего шкива n1 =	
	950 мин-1, частота вращения ведомого шкива n2 = 330	
	мин-1. Желательное межосевое расстояние а = 800 мм.	
	Пусковая нагрузка до 150% от нормальной.	
28	Как себя ведет угловая скорость тела в случае	
	плоскопараллельного движения? Угловое ускорение? Скорость и ускорение произвольной точки твердого тела?	
29	Стержень вращается с постоянной угловой скоростью ω	
2)	вокруг оси, перпендикулярной стержню. Ползун движется	
	вдоль стержня от оси вращения со скоростью у. Найдите	
	величину скорости и абсолютного ускорения ползуна в	
	тот момент, когда его расстояние от оси вращения	
20	составляет І.	
30	На кривошипе расположено 3 шестеренки одинакового радиуса, кривошип вращается с угловой скоростью ω.	
	Первая шестеренка, центр которой совпадает с началом	
	стержня, закреплена и не вращается. Найдите величину	
	угловой скорости третьей шестеренки.	

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16. Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код индикатора
	Учебным планом не предусмотрено	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

	№ п/п	Пример	ный пере	нень вопросов для тестов	Код инликатора
L					ппдпкатора

1	Прочитайте текст, выберите правильный ответ и запишите	УК-2.3.1
	аргументы, обосновывающие выбор ответа	
	Что является основной задачей динамики?	
	а) Определение сил, действующих на тело.	
	б) Изучение движения тел без учёта причин, вызывающих это	
	движение.	
	в) Определение реакций опор.	
	г) Изучение взаимодействия тел.	
	Обоснование: Правильный ответ - г), так как динамика изучает	
	взаимодействие тел и причины, вызывающие их движение.	
2	Прочитайте текст, выберите правильные варианты ответа и	
	запишите аргументы, обосновывающие выбор ответов	
	Какие из перечисленных сил являются потенциальными?	
	а) Сила тяжести.	
	б) Сила упругости.	
	в) Сила трения.	
	г) Сила Архимеда.	
	Обоснование: Правильный ответ - а) и б), так как сила тяжести и	
	сила упругости являются потенциальными силами, поскольку их	
	работа зависит только от начального и конечного положений тела и	
	не зависит от траектории движения.	
3	Прочитайте текст и установите соответствие. К каждой позиции,	
	данной в левом столбце, подберите соответствующую позицию в	
	правом столбце	
	Соответствие между законами Ньютона и их формулировками:	
	Первый закон Ньютона: а) Существуют такие системы отсчёта,	
	называемые инерциальными, в которых материальная точка	
	сохраняет состояние покоя или равномерного прямолинейного	
	движения до тех пор, пока внешние воздействия не изменят этого	
	состояния.	
	Второй закон Ньютона: б) Сила, действующая на тело, равна	
	произведению массы тела на сообщаемое этой силой ускорение:	
	F=ma.	
	Третий закон Ньютона: в) Силы, с которыми два тела действуют	
	друг на друга, равны по модулю и направлены вдоль одной прямой	
	в противоположные стороны.	
4	Прочитайте текст и установите последовательность. Запишите	
	соответствующую последовательность букв слева направо	
	Расположите этапы решения задачи на определение центра тяжести	
	тела в правильной последовательности:	
	а) Разбиение тела на простые фигуры.	
	б) Определение координат центров тяжести простых фигур.	
	в) Вычисление координат центра тяжести всего тела.	
	г) Построение чертежа тела.	
	Otbet: Γ \rightarrow a) \rightarrow 6) \rightarrow B).	ĺ
5	Прочитайте текст и запишите развернутый обоснованный ответ	
	Какую точку принимают за центр моментов при определении	
	реакций опор?	
	Точку, в которой приложены максимальное количество	
	неизвестных величин	
6	Прочитайте текст, выберите правильный ответ и запишите	УК-2.У.1
	аргументы, обосновывающие выбор ответа	
	•	

	Какие силы действуют на тело, находящееся в состоянии покоя?	
	а) Только сила тяжести.	
	б) Только сила упругости.	
	в) Только сила трения.	
	г) Ни одна из перечисленных сил.	
	Обоснование: Правильный ответ - г), так как в состоянии покоя на	
	тело не действуют никакие силы или их действие скомпенсировано	
7	Прочитайте текст, выберите правильные варианты ответа и	
	запишите аргументы, обосновывающие выбор ответов	
	Какие из перечисленных величин характеризуют вращательное	
	движение тела?	
	а) Угловая скорость.	
	б) Угловое ускорение.	
	в) Момент силы.	
	г) Момент инерции.	
	Обоснование: Правильный ответ - а) и б), так как угловая скорость	
	и угловое ускорение характеризуют вращательное движение тела,	
	поскольку зависят от изменения его ориентации в пространстве.	
8	Прочитайте текст и установите соответствие. К каждой позиции,	
	данной в левом столбце, подберите соответствующую позицию в	
	правом столбце	
	Соотнесите термины с их определениями:	
	а) Кинематика.	
	б) Динамика.	
	Раздел механики, изучающий законы движения материальных тел	
	под действием сил.	
	Раздел механики, изучающий геометрические свойства движения	
	материальных тел без учёта масс и действующих сил.	
	Ответ: а) 2, б) 1.	
9	Прочитайте текст и установите последовательность. Запишите	
	соответствующую последовательность букв слева направо	
	Установите последовательность построения эпюр для решения	
	задач на растяжение-сжатие:	
	1- Определить нормальные напряжения σ,	
	2- Найти продольную силу N,	
	3- Разбить брус на участки,	
	4- Построить эпюру продольных сил,	
	5- Построить эпюру нормальных напряжений	
	Правильный ответ 3-2-4-1-5	
10	Прочитайте текст и запишите развернутый обоснованный ответ	
	Когда расстояние между двумя точками тела остается неизменным	
	его называют?	
	Абсолютно твердым телом.	
11	Прочитайте текст, выберите правильный ответ и запишите	УК-2.У.3
	аргументы, обосновывающие выбор ответа	
	Что такое центр масс механической системы?	
	а) Точка, в которой сосредоточена вся масса системы.	
	б) Точка, в которой сосредоточены все внешние силы, действующие	
	на систему.	
	в) Точка, в которой сосредоточена вся кинетическая энергия	
	системы.	
	г) Точка, в которой сосредоточены все внутренние силы,	
l	1 /	

	действующие на систему.	
	Обоснование: Правильный ответ - а), так как центр масс	
	механической системы - это точка, в которой сосредоточена вся	
10	масса системы.	
12	Прочитайте текст, выберите правильные варианты ответа и	
	запишите аргументы, обосновывающие выбор ответов	
	Какие из перечисленных законов сохранения выполняются в	
	механических системах?	
	а) Закон сохранения энергии.	
	б) Закон сохранения импульса.	
	в) Закон сохранения момента импульса.	
	г) Закон сохранения массы.	
	Обоснование: Правильный ответ - а) и б), так как закон сохранения	
	энергии и закон сохранения импульса выполняются в механических	
	системах.	
13	Прочитайте текст и установите соответствие. К каждой позиции,	
10	данной в левом столбце, подберите соответствующую позицию в	
	правом столбце	
	Соотнесите величины с их единицами измерения в системе СИ:	
	а) Перемещение.	
	б) Скорость.	
	в) Ускорение.	
	/ *	
	Метр в секунду (м/с).	
	Метр (м).	
	Метр в секунду в квадрате (M/c^2). Ответ: a) 2, б) 1, в) 3.	
14	Прочитайте текст и установите последовательность. Запишите	
	соответствующую последовательность букв слева направо	
	Расположите в порядке увеличения сложности следующие задачи	
	статики:	
	а) Определение центра тяжести тела.	
	б) Определение момента силы относительно точки.	
	в) Определение условия равновесия тела под действием системы	
	сил.	
	г) Определение устойчивости равновесия тела.	
	Other: $a \rightarrow b \rightarrow b \rightarrow r$.	
15	Прочитайте текст и запишите развернутый обоснованный ответ	
-	Материальной точкой называется?	
	Механический объект, размерами которого можно пренебречь	
16	Прочитайте текст, выберите правильный ответ и запишите	УК-2.В.2
10	аргументы, обосновывающие выбор ответа	J IX 2.1J.2
	Что такое момент силы относительно точки?	
	а) Произведение силы на плечо.	
	б) Произведение массы тела на его угловую скорость.	
	в) Произведение массы тела на его ускорение.	
	г) Произведение силы на расстояние, пройденное телом под	
	действием этой силы.	
	Обоснование: Правильный ответ - а), так как момент силы	
	относительно точки равен произведению силы на плечо.	
17	Прочитайте текст, выберите правильные варианты ответа и	
	запишите аргументы, обосновывающие выбор ответов Какие из перечисленных величин характеризуют вращательное	

	0	
	движение тела?	
	а) Перемещение.	
	б) Угловая скорость.	
	в) Скорость.	
	г) Ускорение.	
	Обоснование: Правильный ответ - б) и г), так как угловая скорость	
	и ускорение характеризуют вращательное движение тела,	
	поскольку зависят от изменения его ориентации в пространстве.	
18	Прочитайте текст и установите соответствие. К каждой позиции,	
	данной в левом столбце, подберите соответствующую позицию в	
	правом столбце	
	Соотнесите виды сил с их примерами:	
	а) Гравитационные силы.	
	б) Электромагнитные силы.	
	в) Ядерные силы.	
	Сила тяжести.	
	Сила упругости.	
	Сила трения.	
	Ответ: а) 1, б) 2, 3, в) 0.	
19	Прочитайте текст и установите последовательность. Запишите	
19	соответствующую последовательность букв слева направо	
	1	
	Расположите в порядке увеличения сложности следующие задачи	
	динамики:	
	а) Определение силы тяжести, действующей на тело.	
	б) Определение работы силы тяжести при перемещении тела.	
	в) Определение кинетической энергии тела.	
	г) Определение момента инерции тела.	
•	Other: $a) \rightarrow b$ $\rightarrow b$ $\rightarrow c$	
20	Прочитайте текст и запишите развернутый обоснованный ответ	
	Что называется равномерным движением?	
	Движение с постоянной скоростью	
21	Прочитайте текст, выберите правильный ответ и запишите	ОПК-1.В.1
	аргументы, обосновывающие выбор ответа	
	Что такое момент силы относительно точки?	
	а) Произведение модуля силы на её плечо.	
	б) Произведение модуля силы на её радиус-вектор.	
	в) Произведение модуля силы на её плечо относительно выбранной	
	точки.	
	г) Произведение модуля силы на её скорость.	
	Обоснование: Правильный ответ - в), так как момент силы	
	относительно точки - это произведение модуля силы на её плечо	
	относительно выбранной точки.	
22	Прочитайте текст, выберите правильные варианты ответа и	
	запишите аргументы, обосновывающие выбор ответов	
	Какие из перечисленных величин характеризуют поступательное	
	движение тела?	
	а) Перемещение.	
	б) Угловая скорость.	
	в) Скорость.	
	г) Ускорение.	
	Обоснование: Правильный ответ - а) и в), так как перемещение и	
	скорость характеризуют поступательное движение тела, поскольку	· ·

	зависят от изменения его положения в пространстве.	
23	Прочитайте текст и установите соответствие. К каждой позиции,	_
23	данной в левом столбце, подберите соответствующую позицию в	
	правом столбце	
	Соотнесите законы сохранения с их формулировками:	
	а) Закон сохранения импульса.	
	б) Закон сохранения импульса.	
	В замкнутой системе сумма импульсов всех тел остаётся постоянной.	
	В замкнутой консервативной системе полная механическая энергия	
	сохраняется.	
24	Ответ: а) 1, б) 2.	_
24	Прочитайте текст и установите последовательность. Запишите	
	соответствующую последовательность букв слева направо	
	Перечислите последовательность разделов, изучаемых в	
	теоретической механике:	
25	1- Статика 2- Кинематика, 3- Динамика	4
25	Прочитайте текст и запишите развернутый обоснованный ответ	
	Основной закон динамики?	
	Устанавливает связь между ускорением и массой материальной	
	точки и силой.	
26	Прочитайте текст, выберите правильный ответ и запишите	ОПК-9.3.1
	аргументы, обосновывающие выбор ответа	
	Что такое работа силы?	
	а) Произведение силы на перемещение.	
	б) Произведение массы тела на его угловую скорость.	
	в) Произведение массы тела на его ускорение.	
	г) Произведение силы на расстояние, пройденное телом под	
	действием этой силы.	
	Обоснование: Правильный ответ - а), так как работа силы равна	
	произведению силы на перемещение.	
27	Прочитайте текст, выберите правильные варианты ответа и	
	запишите аргументы, обосновывающие выбор ответов	
	Какие из перечисленных сил относятся к внешним силам,	
	действующим на тело?	
	а) Сила тяжести.	
	б) Сила реакции опоры.	
	в) Сила упругости.	
	г) Сила трения.	
	Обоснование: Правильный ответ - а) и б), так как сила тяжести и	
	сила реакции опоры являются внешними силами, поскольку	
	действуют на тело со стороны других тел.	
28	Прочитайте текст и установите соответствие. К каждой позиции,	
	данной в левом столбце, подберите соответствующую позицию в	
	правом столбце	
	Соотнесите виды сил с их направлениями:	
	а) Центростремительная сила.	
	б) Центробежная сила.	
	Направлена к центру окружности.	
	Направлена от центра окружности.	
	Ответ: а) 1, б) 2	
29	Прочитайте текст и установите последовательность. Запишите	

	T.
	соответствующую последовательность букв слева направо
	Расположите в порядке увеличения сложности следующие задачи
	кинематики:
	а) Определение скорости тела при равномерном движении.
	б) Определение ускорения тела при равноускоренном движении.
	в) Определение перемещения тела при равноускоренном движении.
	г) Определение траектории движения тела.
	Other: $a) \rightarrow b \rightarrow b \rightarrow r$.
30	Прочитайте текст и запишите развернутый обоснованный ответ
	Опишите основные принципы и законы динамики, применяемые в
	теоретической механике, и приведите примеры их использования.
	Ответ: Основные принципы и законы динамики, применяемые в
	теоретической механике, включают закон инерции, закон
	пропорциональности силы и ускорения, закон равенства действия и
	противодействия, а также принцип относительности движения. Эти
	принципы лежат в основе анализа движения тел и систем тел под
	действием различных сил.
	Примеры использования этих принципов включают анализ
	движения тел под действием гравитации (закон инерции), расчет
	сил, необходимых для изменения движения тел (закон
	пропорциональности силы и ускорения), анализ взаимодействия тел
	(закон равенства действия и противодействия), а также
	исследование движения тел в различных системах отсчета (принцип
	относительности движения).

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п	Перечень контрольных работ	
	Не предусмотрено	

10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

11. Методические указания для обучающихся по освоению дисциплины

11.1. Методические указания для обучающихся по освоению лекционного материала

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- Соответствует темам лекций п.4.2
- 11.2. Методические указания для обучающихся по выполнению лабораторных работ

В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задание и требования к проведению лабораторных работ

Лабораторные работы по дисциплине «Механика» проводятся в лабораториях кафедры № 1 (ауд. 11-05, 12-06). Для проведения лабораторных работ используются лабораторные установки, позволяющие выполнять экспериментальные исследования по всем основным разделам дисциплины «Механика».

Цель лабораторных работ — исследование кинематических и силовых параметров механизмов, механических характеристик материалов, изучение стандартов и нормалей, регламентирующих механические испытания элементов конструкций, кинематическую точность, а также получение навыков обработки экспериментальных данных с использованием современных информационных технологий.

Порядок проведения лабораторной работы:

- 1. Вводная часть
- получение обучающимся допуска к работе (устный опрос)
- получение обучающимся задания

- сообщение преподавателем указаний к работе (описание лабораторной установки, напоминание о порядке выполнения работы и исследуемых параметрах, показ способов выполнения отдельных операций, предупреждение о возможных ошибках)
 - 2. Основная часть
 - выполнение обучающимся поставленной в ходе эксперимента задачи
- сообщение преподавателем (в случае необходимости) дополнительных указаний (повторный показ или разъяснение исполнительских действий)
 - 3. Заключительная часть
- В заключительной части студент должен продемонстрировать полученные результаты преподавателю.

Структура и форма отчета о лабораторной работе

Отчет о лабораторной работе должен содержать следующие разделы:

- цель лабораторной работы
- формулировка задания
- основная часть (должна содержать описание лабораторной установки, необходимые таблицы, графики, экспериментальные данные и результаты расчетов)
 - вывод (описываются итоги работы, проводится анализ полученных результатов)

Требования к оформлению отчета о лабораторной работе

Требования к оформлению отчета о лабораторной работе изложены в действующем стандарте ГОСТ 7.32-2001 «Отчет о научно-исследовательской работе. Структура и правила оформления», который можно найти в Интернете на сайте ГУАП http://guap.ru/guap/standart/titl_main.shtml

Учебно-методическая литература:

- 1. М55 Механические испытания элементов приборов: лабораторный практикум/С.-Петерб. гос. ун-т аэрокосм. приборостроения; сост. Д. Ю. Ершов, О.В. Опалихина. СПб.:Изд-во ГУАП, 2010. 71 с. Имеются экземпляры в отделах: фонд учебного корпуса Гастелло (59), студ. отдел (БМ) (21), чит. зал ГС (1).
- 2. 531 И 88 Исследование качества механизмов приборов: лабораторный практикум /А.И. Скалон, И.Н. Лукьяненко, О.В. Опалихина и др.; С.-Петерб. гос. ун-т аэрокосм. приборостроения. СПб.: Изд-во ГУАП, 2015. 75 с. Имеются экземпляры в отделах: фонд учебного корпуса Гастелло (70), студ. отдел (БМ) (10).

На лабораторных занятиях осуществляется текущий контроль результатов изучения дисциплины «Механика»

11.3. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихсяявляются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ (для обучающихся по заочной форме обучения).

- В ходе выполнения самостоятельной работы обучающийся изучает теоретический материал дисциплины, выполняет отчеты по лабораторным работам, размещенные в личном кабинете: http://pro.guap.ru/exters/
- 11.4. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания процесса освоения дисциплины.

Текущий контроль успеваемости проводится в форме суммарного оценивания для определения фиксированного уровня усвоения содержания лекционного материала по итогам изучения разделов дисциплины.

Вариантом текущего контроля успеваемости по дисциплине «Механика» может быть письменное тестирование, а так же тестирование с системе LMS.

11.5. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

— экзамен — форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Вариантом промежуточной аттестации наряду с устными экзаменом и зачетом по прикладной механике может быть письменное тестирование.

Система оценок при проведении промежуточной аттестации осуществляется в соответствии с требованиями Положений «О текущем контроле успеваемости и промежуточной аттестации студентов ГУАП, обучающихся по программам высшего образования» и «О модульно-рейтинговой системе оценки качества учебной работы студентов в ГУАП».

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой