МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 11

УТВЕРЖДАЮ Ответственный за образовательную

доц.,к.т.н.,доц.

программу

(должность, уч. степень, звание)

В.В. Перлюк (инициалы, фамилия) (подпись) « 18 » 02___ 2025 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Методы искусственного интеллекта» (Наименование дисциплины)

Код направления подготовки/ специальности	12.04.01	
Наименование направления подготовки/ специальности	Приборостроение	
Наименование направленности	Измерительные информационные технологии	
Форма обучения	очная	
Год приема	2025	

Лист согласования рабочей программы дисциплины

Программу составил (а)	٨. <		
доц.,к.т.н.,доц.	'Ally	18.02.2025	К.Н. Тимофеев
(должность, уч. степень, звание)	(подпи	сь, дата)	(инициалы, фамилия)
Программа одобрена на заседа «_18_»02 2025 г., пр	нии кафедры . оотокол № _6_		
Заведующий кафедрой № 11			
д.т.н.,доц.	Au	18.02.2025	Н.Н. Майоров
(уч. степень, звание)	(подпис	сь, дата)	(инициалы, фамилия)
Заместитель директора институ	ута №1 по мет	одической рабо	те
доц.,к.т.н.	In Duf	18.02.2025	В.Е. Таратун
(должность, уч. степень, звание)	/ (подпис	сь, дата)	(инициалы, фамилия)

Аннотация

Дисциплина «Методы искусственного интеллекта» входит в образовательную программу высшего образования – программу магистратуры по направлению подготовки/ специальности 12.04.01 «Приборостроение» направленности «Измерительные информационные технологии». Дисциплина реализуется кафедрой «№11».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

- УК-1 «Способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий»
- ПК-1 «Способность формулировать цели, определять задачи, составлять программы исследований в области приборостроения, бортового приборного оборудования на основе подбора и изучения литературных, патентных и других источников информации»
- ПК-3 «Способность разрабатывать планы и программы проведения исследований и разработок в области приборостроения, бортового приборного оборудования и аппаратуры, проводить анализ и теоретическое обобщение научных данных в соответствии с задачами исследования»
- ПК-4 «Готовность использовать знание основных методов искусственного интеллекта в последующей профессиональной деятельности»
- ПК-5 «Способность разрабатывать техническое задание, выполнять конструкторское сопровождение проектно-конструкторской документации систем бортового оборудования, авиационных и космических приборов и комплексов»

Содержаниедисциплиныохватываеткругвопросов, связанных сархитектурой классиче ских моделей искусственного интеллекта, методов машинного обучения, алгоритмы обучения нейронных сетей и способы применения для решения различных задач.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции и самостоятельная работа обучающегося.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 3 зачетных единицы, 108 часов.

Язык обучения по дисциплине «русский».

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Цель преподавания дисциплины—изучения основных понятий и терминов методов искусственного интеллекта, ознакомление с областями применения нейронных сетей, изучение методологии синтеза структуры нейронной сети для решения прикладных задач,приобретениенавыковиспользованияалгоритмовобучениянейронных сетей.

- 1.2. Дисциплина входит в состав части, формируемой участниками образовательных отношений, образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа) компетенции	Код и наименование компетенции	Код и наименование индикатора достижения компетенции
Универсальные компетенции	УК-1 Способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий	УК-1.3.1 знать методы критического анализа и системного подхода; методики разработки стратегии действий для выявления и решения проблемных ситуаций УК-1.3.2 знать цифровые ресурсы, инструменты и сервисы, включая интеллектуальные, для решения задач/проблем профессиональной деятельности
Профессиональные компетенции	ПК-1 Способность формулировать цели, определять задачи, составлять программы исследований в области приборостроения, бортового приборного оборудования на основе подбора и изучения литературных, патентных и других источников информации	ПК-1.3.1 знать последовательность действий при формулировании целей и определении задач исследования в области приборостроения, бортового приборного оборудования на основе использования доступных источников информации
Профессиональные компетенции	ПК-3 Способность разрабатывать планы и программы проведения исследований и разработок в области приборостроения,	ПК-3.3.1 знать методы и средства проведения научных исследований и разработок, включая построение математических моделей объектов исследования в области приборостроения, бортового приборного оборудования и аппаратуры ПК-3.У.1 уметь выбирать средства проведения научных исследований и разработок, включая

	бортового приборного оборудования и аппаратуры, проводить анализ и теоретическое обобщение научных данных в соответствии с задачами исследования	использование компьютерного моделирования ПК-3.В.1 владеть навыками проведения анализа и теоретического обобщения научных данных
Профессиональные компетенции	ПК-4 Готовность использовать знание основных методов искусственного интеллекта в последующей профессиональной деятельности	ПК-4.3.1 знать теоретические основы анализа данных и машинного обучения ПК-4.3.2 знать принципы обучения и применения нейронных сетей ПК-4.3.3 знать теоретические основы и алгоритмы обучения с подкреплением ПК-4.У.1 уметь применять методы машинного обучения, подготавливать данные и интерпретировать результаты ПК-4.У.2 уметь настраивать необходимое окружение для работы с нейронными сетями ПК-4.У.3 уметь выбирать и реализовывать алгоритмы обучения с подкреплением с учетом специфики задачи ПК-4.В.1 владеть навыками оценки применимости алгоритмов, возможных рисков и последствий ошибок, поиска оптимальных решений для рабочих задач ПК-4.В.2 владеть навыками использования существующих программных библиотек и моделей, создания программных реализаций глубоких нейронных сетей ПК-4.В.3 владеть навыками использования существующих программных библиотек и моделей, создания программных реализаций глубоких нейронных сетей ПК-4.В.3 владеть навыками использования существующих программных реализаций на основе алгоритмов обучения с подкреплением
Профессиональные компетенции	ПК-5 Способность разрабатывать техническое задание, выполнять конструкторское сопровождение проектно-конструкторской документации систем бортового оборудования, авиационных и космических приборов и	ПК-5.3.2 знать постановку проблем математического и информационного моделирования сложных систем с использованием методов искусственного интеллекта ПК-5.У.2 уметь применять методы анализа и синтеза систем на основе искусственного интеллекта

TACLATTICITACOD	
КОМПЛЕКСОВ	
101111111111111111111111111111111111111	

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- «Информационные технологии в приборостроении»,
- «Интеллектуальные микромеханические датчики».

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и могут использоваться при изучении других дисциплин:

- «Научно-технический семинар»
- «Научно-исследовательская работа».

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

		Трудоемкость по	
Вид учебной работы	Всего	семестрам	
		№3	
1	2	3	
Общая трудоемкость дисциплины,	3/ 108	3/ 108	
ЗЕ/ (час)	3/ 108	3/ 108	
Из них часов практической подготовки	13	13	
Аудиторные занятия, всего час.	34	34	
в том числе:			
лекции (Л), (час)	17	17	
практические/семинарские занятия (ПЗ),	17	17	
(час)	1 /	1 /	
лабораторные работы (ЛР), (час)			
курсовой проект (работа) (КП, КР), (час)			
экзамен, (час)	36	36	
Самостоятельная работа, всего (час)	38	38	
Вид промежуточной аттестации: зачет,			
дифф. зачет, экзамен (Зачет, Дифф. зач,	Экз.	Экз.	
Экз.**)			

Примечание: ** кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

тионици з тиздены, темы днецинины, их трудосикость					
Разделы, темы дисциплины	Лекции (час)	ПЗ (C3)	ЛР (час)	КП (час)	CPC (час)
Семестр 3					
Раздел 1. Общие понятия нейронной сетиТема 1.1. Биологические аспекты нервнойдеятельности. Нейрон. Аксон. Синапс. Рефлекторная дуга. Центральная нервная система Тема 1.2. Моделииску сственного нейрона.	4	4			9

		T		1	T
Функции активации. Нейрон с векторным					
входом. Тема1.3. Мягкие вычисления. Генетические					
алгоритмы. Методы применяемые при реализации					
генетических алгоритмов. Нечеткая логика,					
теоретические основы. Виды функций					
принадлежности. Применение FISсистемы					
инструментального программного пакета Toolbox					
системы MATLAB					
Раздел 2. Архитектура и виды нейронных					
сетей Тема 2.1. Искусственные нейронные сети.					
Архитектура искусственных нейронных					
сетей. Набор средств для создания, инициализации,					
обучения, моделирования и визуализации сети.					
Тема 2.2. Методы и алгоритмы					
обученияискусственных нейронных сетей.					
Градиентныеалгоритмы обучения. Алгоритмы,					
основанные наиспользовании метода сопряженных	4	4			8
градиентов. Тема 2.3. Персептронные сети.	•				
Архитектураперсептрона и специальные функции					
для					
созданияперсептрона, настройкиего весовисмещений.					
Тема 2.4. Линейные нейронные сети. Построениеи					
обучение линейных сетей для					
классификациивекторов, линейной аппроксимации,					
предсказания, слежения и фильтрации сигналов,					
идентификацииимоделированиялинейных систем					
Раздел3.Применениенейронныхсетей					
Тема 3.1. Применение сетей для					
классификациивекторови аппроксимациифункций.					
Тема 3.2. Радиальные базисные сети типа					
GRNN.Применение GRNN сетей для решения					
задачобобщенной регрессии, анализа временных	4	4			9
рядов иаппроксимациифункций.					
Тема 3.3. Радиальные базисные сети типа					
PNN.Решение задач классификации на основе					
подсчётавероятностипринадлежности векторовк					
рассматриваемымклассам					
Раздел 4. Построения сетей управлениядля					
распознования образов.					
Тема 4.1. Рекуррентные нейронные сети.	,				
Тема 4.2. Сверточные нейронные сети	4	4			9
Тема 4.3. Генеративные искусственный					
интеллект					
Тема 4.4. Нейронные сети Кохонена					
Итого в семестре:	17	17			38
Итого	17	17	0	0	38
		1			1

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Номерраздела	Названиеисодержаниеразделовитемлекционных занятий
1	Биологическиеаспектынервнойдеятельности. Нейрон. Аксон. Синапс. Рефлекторная дуга. Центральная нервная система
1	Моделиискусственногонейрона. Функцииактивации. Нейронс векторнымвходом.
1	Искусственныенейронныесети. Архитектураискусственных нейронн ыхсетей. Наборсредств для создания, инициализации, обучения, моделирования и визуализациисети.
1	Мягкие вычисления. Генетические алгоритмы. Методыприменяемые при реализации генетических алгоритмов. Нечеткая логика, теоретические основы. Виды функций принадлежности. Применение FIS системы инструментального программного пакета Toolbox системы MATLAB
2	Методы и алгоритмы обучения искусственных нейронных сетей. Градиентные алгоритмы обучения. Алгоритмы, основанные а использованииметода сопряженных градиентов.
2	Персептронныесети. Архитектураперсептронаиспециальные функциидлясозданияперсептрона, настройкиеговесовисме щений.
2	Методы и алгоритмы обучения искусственных нейронных сетей. Градиентные алгоритмы обучения. Алгоритмы, основанные на использовании метода сопряженных градиентов.
2	Радиальные базисные сети общего вида. Архитектуры радиальныхбазисных нейронных сетей общеговидаиспециальные функции дляих создания и автоматической настройки весовисмещений
2	Линейные нейронные сети.
2	Построение и обучение линейных сетей для классификации векторов, линейной аппроксимации, предсказания, слежения и фильтрации сигналов, идентификации и моделирования линейных систем
3	РадиальныебазисныесетитипаРNN.Решениезадач классификации на основе подсчёта вероятности принадлежностивекторовк рассматриваемымклассам.
3	Применение сетей для классификации векторов и аппроксимациифункций.
3	Радиальные базисные сети типа GRNN. Применение GRNN сетейдля решениязадач обобщенной регрессии, анализавременных рядовиаппроксимациифункций.
4	Построения сетей управления для распознования образов. Рекуррентные нейронные сети.
4	Сверточные нейронные сети.Построения системраспознавания техническогозрения.
4	Генеративные искусственный интеллект Нейронные сети Кохонена.

4.3. Практические (семинарские) занятия Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

№ п/ п	Темы практических занятий	Формы практическ их занятий	Трудоемкос ть, (час)	Из них практическ ой подготовки , (час)	№ разде ла дисци п лины
	Семе	естр 3			
1	Применение нечеткой логики с использованием FIS системы инструментального программногопакета Toolbox системы MATLAB	4	4	3	1
2	Персептронные сети. Архитектураперсептрона и специальные функции длясозданияперсептрона, настройкиег овесови смещений.	4	4	3	2
3	Применение различных способов увеличения количества данных для повышения качества моделей глубокого обучения	4	4	3	3
4	Применение нейронных сетей дляпроектированиясистемуп равления	5	5	4	4
	Всего		17	13	

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

			Из них	$N_{\underline{0}}$
$N_{\underline{0}}$	Наименование лабораторных работ	Трудоемкость,	практической	раздела
Π/Π	паименование лаоораторных раоот	(час)	подготовки,	дисцип
			(час)	ЛИНЫ
	Учебным планом не п	редусмотрено		
	Всего			

4.5. Курсовое проектирование/ выполнение курсовой работы

Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся

Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего,	Семестр 3,
Вид самостоятельной работы	час	час
1	2	3
Изучение теоретического материала дисциплины (TO)	22	22
Курсовое проектирование (КП, КР)		

Расчетно-графические задания (РГЗ)		
Выполнение реферата (Р)		
Подготовка к текущему контролю	1	4
успеваемости (ТКУ)	4	4
Домашнее задание (ДЗ)		
Контрольные работы заочников (КРЗ)		
Подготовка к промежуточной	12	12
аттестации (ПА)	12	12
Всего:	38	38

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8.

Таблица 8- Перечень печатных и электронных учебных изданий

Шифр/ URL адрес	Библиографическая ссылка	Количество экземпляров в библиотеке (кроме электронных экземпляров)
	Не предусмотрено	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 — Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет»

URL адрес	Наименование
http://www.mathnet.ru/conf1243	Р. Шамин «Машинное обучение и искусственный интеллект в математике и приложениях». НОЦ Математического института им. В. А. Стеклова РАН
https://docs.yandex.ru/docs/view?tm=1720343875&tld=ru⟨=ru&name=978-5-7996-3015-7_2020.pdf&text=	Основы машинного обучения: учеб. пос. / О.В. Лимановская, Т.И. Алферьева; Мин-во науки и высш. образования РФ.Екатеринбург: Изд-во Урал. ун-та, 2020.
https://znanium.com/catalog/document?pid=410391	Червяков Н.И., Евдокимов А.А., Галушкин А.И. Применениеискусственных нейронных сетей исистемыостаточных классоввкриптографии М.: Физматлит, 2012280 с.

https://znanium.com/catalog/document?pid=450375	Максимов Н. В. Компьютерные	
	сети:Учебноепособиедлястуд.учр	
	ежденийСПО/Н.В.	
	Максимов, И.И.Попов. перераб и	
	доп М.: Форум: НИЦИНФРА-	
	M,2024464c.	

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

№ п/п	Наименование
	Не предусмотрено

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п	Наименование
	Не предусмотрено

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Мультимедийная лекционная аудитория	

10. Оценочные средства для проведения промежуточной аттестации

10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Экзамен	Список вопросов к экзамену;
	Экзаменационные билеты.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила

использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

	оценки уровня сформированности компетенции	
Оценка компетенции	Характеристика сформированных компетенций	
5-балльная шкала		
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий. 	
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 	
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий. 	
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 	

10.3. Типовые контрольные задания или иные материалы. Вопросы для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

No	Перечень вопросов (задач) для экзамена	Код
Π/Π	перечень вопросов (задач) для экзамена	индикатора
1	Моделиискусственногонейрона. Функцииактивации.	УК-1.3.1
	Нейронсвекторнымвходом.	УК-1.3.2
2	Искусственные нейронные сети. Архитектураискусственных	ПК-1.3.1
	нейронных сетей. Набор средств	ПК-3.3.1
	длясоздания,инициализации,обучения,моделированияи	ПК-3.У.1
	визуализациисети.	ПК-3.В.1
3	Нечеткая логика, теоретические основы. Виды функций	ПК-4.3.1
	принадлежности. Применение FIS системы инструментального	ПК-4.3.2
	программного пакета Toolbox системы MATLAB	ПК-4.3.3
4	Методыиалгоритмыобученияискусственныхнейронных	

	сетей.Градиентныеалгоритмыобучения	ПК-4.У.1
5	Построение и обучение линейных сетей для классификации	ПК-4.У.2
	векторов, линейной аппроксимации, предсказания, слежения и	ПК-4.У.3
	фильтрации сигналов, идентификации и моделирования линейных	ПК-4.В.1
	систем	ПК-4.В.2
6	Архитектураперсептронаиспециальныефункциидлясозданияперсе	ПК-4.В.3
	птрона,настройки	ПК-5.3.2
	еговесовисмещений.	ПК-5.У.2
7	Линейныенейронныесети. Настройкипараметровпо	
	методуВудроу-Хоффа	
8	Построение и обучение линейных сетей	
	дляклассификациивекторов,линейнойаппроксимации,	
	предсказания, слежения и фильтрации	
	сигналов,идентификацииимоделированиялинейныхсистем	
9	Радиальныебазисныесетиобщеговида	
10	Архитектурырадиальныхбазисныхнейронныхсетейобщеговидаисп	
	ециальныефункции	
	дляихсозданияиавтоматическойнастройкивесовисмещений	
11	Применениетакихсетейдляклассификациивекторови	
	аппроксимациифункций	
12	Сверточные нейронные сети	
13	ПрименениеGRNNсетейдлярешениязадачобобщенной	
	регрессии, анализавременных рядовиа ппроксимации функций	
14	Рекуррентныенейронныесети	
15	Построениясетейуправлениядвижущимисяобъектами	
16	Построениясистемтехническогозренияирешения	
	другихдинамическихзадача	
17	АрхитектурырекуррентныхнейронныхсетейХопфилдаиспециальн	
	ыефункциидля	
	ихсоздания, взвешивания входов, накопления и активизации.	

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16.

Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код индикатора
	Учебным планом не предусмотрено	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

<u> </u>	
№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

1 0000111124	" 10 11pinitopiisiii itopo tons sonpoods Aust 10010s	
№ п/п	Примерный перечень вопросов для тестов	Код индикатора
	Не предусмотрено	

Не предусмотрено

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п		Пе	еречень контрольных работ
	Не предусмотрено		

- 10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.
 - 11. Методические указания для обучающихся по освоению дисциплины
- 11.1. Методические указания для обучающихся по освоению лекционного материала.
- 11.2. Основное назначение лекционного материала логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- -изложение теоретических вопросов, связанных с рассматриваемой темой;
- -описание процессов, методов и алгоритмов, применяемых в искусственном интеллекте, машинном обучении, нейросетях и нечетких нейросетях;
- -демонстрация примеров применения методов искусственного интеллекта, машинного обучении, нейросетей и нечетких нейросетей;
 - -обобщение изложенного материала;
 - -ответы на возникающие вопросы по теме лекции.
- 11.3. Методические указания для обучающихся по прохождению практических занятий (если предусмотрено учебным планом по данной дисциплине)

Практическое занятие является одной из основных форм организации учебного процесса, заключающаяся в выполнении обучающимися под руководством преподавателя комплекса учебных заданий с целью усвоения научно-теоретических основ учебной дисциплины, приобретения умений и навыков, опыта творческой деятельности.

Целью практического занятия для обучающегося является привитие обучающимся умений и навыков практической деятельности по изучаемой дисциплине.

Планируемые результаты при освоении обучающимся практических занятий:

- закрепление, углубление, расширение и детализация знаний при решении конкретных задач;
- развитие познавательных способностей, самостоятельности мышления, творческой активности;
- овладение новыми методами и методиками изучения конкретной учебной дисциплины;
- выработка способности логического осмысления полученных знаний для выполнения заданий;
- обеспечение рационального сочетания коллективной и индивидуальной форм обучения.

Требования к проведению практических занятий

- 11.4. Практические занятия направлены формирование у на профессиональных и практических умений, необходимых для изучения последующих учебных дисциплин: выполнять определенные действия, операции, необходимые в последующей профессиональной деятельности (в процессе учебной и производственной практики, написания выпускной квалификационной работы). Наряду с формированием умений и навыков в процессе практических занятий обобщаются, систематизируются, углубляются и конкретизируются теоретические знания, вырабатывается способность и практике, готовность использовать теоретические знания на развиваются интеллектуальные умения. При выборе содержания и объема практических занятий следует исходить из сложности учебного материала для усвоения, из внутрипредметных и межпредметных связей, из значимости изучаемых теоретических положений для предстоящей профессиональной деятельности, из того, какое место занимает конкретная работа в процессе формирования целостного представления о содержании учебной лисциплины.
- 11.5. Методические указания для обучающихся по выполнению лабораторных работ (не предусмотрено учебным планом по данной дисциплине)
- 11.6. Методические указания для обучающихся по прохождению курсового проектирования/выполнения курсовой работы (не предусмотрено учебным планом по данной дисциплине)
- 11.7. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по дополнительному изучению теоретического материала и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя изучение практических примеров применения искусственного интеллекта в приборостроении.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий

уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихсяявляются:

- учебно-методический материал по дисциплине;
- слайды лекций по дисциплине от преподавателя.
- 11.8. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

Текущий контроль успеваемости обучающихся — одна из составляющих оценки качества освоения образовательных программ, направленный на проверку знаний, умений и навыков обучающихся. Основными задачами текущего контроля успеваемости в межсессионный период является повышение качества и прочности знаний студентов, приобретение и развитие навыков самостоятельной работы, повышение академической активности студентов, а также обеспечение оперативного управления учебной деятельностью в течение семестра.

Данный вид контроля стимулирует у студентов стремление к систематической самостоятельной работе по изучению дисциплины. Текущий контроль проводится в течение семестра по итогам лекционных занятий по разделам приведенным в таблице 3.

Текущий контроль выполняет целый ряд функций: диагностическую, учебную, мотивационную, корригирующую, стимулирующую познавательную деятельность, формирующую умения, оценочную, воспитывающую. Главной функцией контроля является определение качества усвоения знаний, формирования умений и навыков.

На текущем контроле студент должен продемонстрировать:

- -знание изученных теоретических вопросов по дисциплине;
- -знание основных задач курса и его взаимосвязь с другими изучаемыми дисциплинами.
- 11.9. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

— экзамен — форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Система оценок при проведении промежуточной аттестации осуществляется в соответствии с требованиями Положений «О текущем контроле успеваемости и промежуточной аттестации студентов ГУАП, обучающихся по программе высшего образования» и «О модульно-рейтинговой системе оценки качества учебной работы студентов в ГУАП».

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой