МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 11

УТВЕРЖДАЮ						
Ответственный	за	образовательную				
программу						
доц.,к.т.н.,доц.						
(должнос	гь, уч. сте	пень, звание)				
В.В. Перлюк						
(ини	циалы, фа	(килимы)				
- Az						
•	(полпис	·)				

«_18_» ____02___ 2025 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Методы обработки информации в условиях априорной неопределенности» (Наименование дисциплины)

Код направления подготовки/ специальности	12.04.01	
Наименование направления подготовки/ специальности	Приборостроение	
Наименование направленности	Измерительные информационные технологии	
Форма обучения	очная	
Год приема	2025	

Лист согласования рабочей программы дисциплины

программу составил (а)	111 1		
доц., к.т.н., доц.	ML6	18.02.2025	Ю. П. Иванов
(должность, уч. степень, звание)	(подпис	ъ, дата)	(инициалы, фамилия)
Программа одобрена на заседа	нии кафедры Ј	№ 11	
«_18_»02 2025 г., пр	отокол № _6_		
Заведующий кафедрой № 11	A.		
д.т.н.,доц.	AV	18.02.2025	Н.Н. Майоров
(уч. степень, звание)	(подпис	ъ, дата)	(инициалы, фамилия)
Заместитель директора институ	ута №1 по мет	одической рабо	оте
доц.,к.т.н.	Tu Buy	18.02.2025	В.Е. Таратун
(должность, уч. степень, звание)	/ (подпис	ъ, дата)	(инициалы, фамилия)

(подпись, дата)

Аннотация

Дисциплина «Методы обработки информации в условиях априорной неопределенности» входит в образовательную программу высшего образования — программу магистратуры по направлению подготовки/ специальности 12.04.01 «Приборостроение» направленности «Измерительные информационные технологии». Дисциплина реализуется кафедрой «№11».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ПК-1 «Способность формулировать цели, определять задачи, составлять программы исследований в области приборостроения, бортового приборного оборудования на основе подбора и изучения литературных, патентных и других источников информации»

ПК-2 «Готовность выбирать оптимальные методики экспериментальных исследований и наблюдений в области приборостроения, бортового приборного оборудования и аппаратуры, организовывать проведение необходимых экспериментальных работ, проводить анализ результатов экспериментов и наблюдений»

ПК-3 «Способность разрабатывать планы и программы проведения исследований и разработок в области приборостроения, бортового приборного оборудования и аппаратуры, проводить анализ и теоретическое обобщение научных данных в соответствии с задачами исследования»

ПК-6 «Способность организовывать проведение работ по оценке техникоэксплуатационных характеристик и отработке бортового оборудования, его составных частей и комплектующих изделий, технической поддержки по обучению специалистов в части, касающейся комплектующих изделий и бортового радиоэлектронного оборудования»

Содержание дисциплины охватывает круг вопросов, связанных с изучение методов статистического анализа и оптимального синтеза информационно-измерительных систем летательных аппаратов в условиях априорной неопределённости характеристик наблюдаемых сигналов и способов оценки качества алгоритмов обработки сигналов, алгоритмических средств обеспечения и повышения точности систем на основе адаптивного байесова подхода, максимального правдоподобия, минимакса.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практические занятия, самостоятельная работа обучающегося, консультации.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме зачета.

Общая трудоемкость освоения дисциплины составляет 3 зачетные единицы, 108 часов.

Язык обучения по дисциплине «русский».

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Основными задачами изучения дисциплины являются приобретение бакалаврами теоретических знаний и практических навыков по использованию методов обработки информации измерительных систем в условия априорной неопределённости характеристик сигналов и помех, позволяющих выбрать наиболее рациональный алгоритм оценки и классификации сигналов на фоне различного вида помех, в заранее неизвестных и изменяющихся условиях использования летательного аппарата. Создание образовательной среды на основе преподавания данной дисциплины даёт возможность студентам развить и продемонстрировать навыки в области проектирования приборных комплексов, адаптированных к реальным условиям эксплуатации.

- 1.2. Дисциплина входит в состав части, формируемой участниками образовательных отношений, образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа)	Код и наименование	Код и наименование индикатора достижения
компетенции	компетенции	компетенции
Профессиональные компетенции	ПК-1 Способность формулировать цели, определять задачи, составлять программы исследований в области приборостроения, бортового приборного оборудования на основе подбора и изучения литературных, патентных и других источников информации	ПК-1.3.1 знать последовательность действий при формулировании целей и определении задач исследования в области приборостроения, бортового приборного оборудования на основе использования доступных источников информации ПК-1.У.1 уметь выбирать и организовывать выбор направления исследования в области приборостроения, бортового приборного оборудования на основе подбора и изучения литературных, патентных и других источников информации ПК-1.В.1 владеть навыками составления методических программ проведения исследований и разработок с использованием имеющихся источников информации
Профессиональные компетенции	ПК-2 Готовность выбирать оптимальные методики экспериментальных исследований и наблюдений в области приборостроения, бортового приборного	ПК-2.3.1 знать методики экспериментальных исследований и наблюдений в области приборостроения, бортового приборного оборудования и аппаратуры ПК-2.У.1 уметь выбирать и управлять выбором оптимальных методик экспериментальных исследований и наблюдений ПК-2.В.1 владеть навыками проведения измерений с выбором современных технических средств и обработкой

	оборупования и	пезупьтатов изменеций
	оборудования и аппаратуры, организовывать проведение необходимых экспериментальных работ, проводить анализ результатов экспериментов и наблюдений ПК-3 Способность	результатов измерений
Профессиональные компетенции	разрабатывать планы и программы проведения исследований и разработок в области приборостроения, бортового приборного оборудования и аппаратуры, проводить анализ и теоретическое обобщение научных данных в соответствии с задачами исследования	ПК-3.3.1 знать методы и средства проведения научных исследований и разработок, включая построение математических моделей объектов исследования в области приборостроения, бортового приборного оборудования и аппаратуры ПК-3.У.1 уметь выбирать средства проведения научных исследований и разработок, включая использование компьютерного моделирования ПК-3.В.1 владеть навыками проведения анализа и теоретического обобщения научных данных
Профессиональные компетенции	ПК-6 Способность организовывать проведение работ по оценке технико-эксплуатационных характеристик и отработке бортового оборудования, его составных частей и комплектующих изделий, технической поддержки по обучению специалистов в части, касающейся комплектующих изделий и бортового радиоэлектронного оборудования	ПК-6.В.1 владеть навыками анализа и систематизации данных при экспериментальной проверке и отработке систем бортового оборудования, разработки обучающих материалов по системам бортового оборудования в соответствии с программой обучения

2. Место дисциплины в структуре ОП

Дисциплина базируется на знаниях, ранее приобретенных студентами при изучении следующих дисциплин:

- Системный анализ в приборостроении;
- История и современные проблемы приборостроения;
- Научно-исследовательская работа.

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и используются при изучении других дисциплин:

- Проектирование систем контроля и диагностики;
- Научно-технический семинар;
- для подготовки квалификационной работы.

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

	_	Трудоемкость по
Вид учебной работы	Всего	семестрам
		№3
1	2	3
Общая трудоемкость дисциплины,	3/ 108	3/ 108
ЗЕ/ (час)		
Из них часов практической подготовки	17	17
Аудиторные занятия, всего час.	34	34
в том числе:		
лекции (Л), (час)	17	17
практические/семинарские занятия (ПЗ),	17	17
(час)		
лабораторные работы (ЛР), (час)		
курсовой проект (работа) (КП, КР), (час)		
экзамен, (час)		
Самостоятельная работа, всего (час)	74	74
Вид промежуточной аттестации: зачет,		
дифф. зачет, экзамен (Зачет, Дифф. зач,	Зачет	Зачет
Экз.**)		

Примечание: ** кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы лисшиплины, их трудоемкость

таолица.	таолица 3 – газделы, темы дисциплины, их трудосикость							
	Разделы, темы дисциплины	Лекции	П3 (С3)	ЛР	КП	CPC		
	т изделы, темы днециплины	(час)	(час)	(час)	(час)	(час)		
	Сем	естр 3						
Раздел 1.		6	6			6		
Раздел 2.		3	3			16		
Раздел 3.		3	3			20		
Раздел 4.		5	5			26		

Раздел 5.	3	3			6
Итого в семестре:	17	17			74
Итого	17	17	0	0	74

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Номер раздела	Название и содержание разделов и тем лекционных занятий			
1	Раздел 1. Априорная неопределённость и возможные			
	способы неполного статистического описания сигналов.			
	Тема 1.1. Отсутствие или ограниченные сведения об			
	априорном распределении измеряемого сигнала. Неполное			
	статистическое описание данных наблюдения.			
	Тема 1.2. Параметрическое описание априорной			
	неопределённости сигналов. Эмпирический подход в задачах			
	с априорной неопределённостью.			
	Тема 1.3 Адаптация и обучение информационно-			
	измерительных систем в условиях априорной			
	неопределённости.			
2	Раздел 2. Понятие оптимальности, достаточные статистики,			
_	инвариантность.			
	Тема 2.1 Существенная и несущественная априорная			
	неопределённость исходной информации.			
	Тема 2.2. Понятие оптимальности в условиях			
	априорной неопределённости. Соотношения между			
	правилами. решения, полученными на основе различных			
	принципов предпочтения.			
	Тема 2.3 Использование достаточных статистик.			
3	Раздел 3. Минимаксный подход.			
	Тема 3.1. Минимаксное правило решения при наличии			
	априорной неопределённости относительно полезного			
	сигнала.			
	Тема 3.2. Полное незнание априорного распределения			
	полезного сигнала.			
	Тема 3.3 Ограниченные сведения о множестве			
	допустимых значений сигнала. Ограниченные сведения о			
A	статистических характеристиках сигнала.			
4	Раздел 4. Адаптивный байесов подход.			
	Тема 4.1. Адаптивный байесов подход при параметрической			
	неопределённости.			
	Тема 4.2. Соответствие адаптивного байесова правила			
	решения принципам оптимальности в условиях априорной неопределённости информации.			
	Тема 4.3. Принцип минимума усреднённого риска.			
	тема 4.3. принцип минимума усредненного риска.			

5	Раздел 5. Оценки максимального правдоподобия.				
	Тема 5.1. Регулярные оценки максимального				
	правдоподобия. Неравенство Крамера-Рао для регулярных				
	оценок. Эффективные оценки.				
	Тема 5.2. Методы нахождения оценок максимального				
	правдоподобия.				
	Тема 5.3. Непараметрические критерии согласия.				
	5.4 Контроль знаний				

4.3. Практические (семинарские) занятия Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

	Темы			Из них	No
No	практических	Формы практических	Трудоемкость,	практической	раздела
п/п	занятий	занятий	(час)	подготовки,	дисцип
		C 2		(час)	ЛИНЫ
		Семестр 3	T _	T -	
1	Априорная	Исследование	3	3	1
	неопределённость	методов описания и			
	и возможные	моделирования			
	способы неполного	сигналов, помех и			
	статистического	информационно-			
	описания сигналов.	измерительных			
		систем в условиях			
		априорной			
		неопределённости с			
		использования			
		программ ЦВМ.			
2	Понятие	Исследование	4	4	2
	оптимальности,	методов оптимизации			
	достаточные	алгоритмов оценки			
	статистики,	сигналов в условиях			
	инвариантность.	априорной			
		неопределённости с			
		использования			
		программ ЦВМ			
3	Минимаксный	Решение задач по	4	4	3
	подход.	обработке сигналов на			
		основе минимаксного			
		подхода.			
4	Адаптивный	Исследование	3	3	4
	байесов подход.	методов алгоритмов			
		оптимальной оценки			
		сигналов в условиях			
		параметрической			
		неопределённости.			
5	Оценки	Исследование	3	3	5
	максимального	методов алгоритмов			
	правдоподобия.	оценки и			
		классификации на			
		основе метода			

	максимального правдоподобия.		
Bcer	o	17	

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

			Из них	$N_{\underline{0}}$
№ п/п	Наименование лабораторных работ	Трудоемкость, (час)	практической	раздела
			подготовки,	дисцип
			(час)	лины
	Учебным планом не предусмотрено			
	Всего			

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего,	Семестр 3,
Вид самостоятельной расоты	час	час
1	2	3
Изучение теоретического материала	50	50
дисциплины (ТО)	30	30
Курсовое проектирование (КП, КР)		
Расчетно-графические задания (РГЗ)		
Выполнение реферата (Р)		
Подготовка к текущему контролю	8	8
успеваемости (ТКУ)	0	8
Домашнее задание (ДЗ)		
Контрольные работы заочников (КРЗ)		
Подготовка к промежуточной	16	16
аттестации (ПА)	10	10
Всего:	74	74

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8. Таблица 8— Перечень печатных и электронных учебных изданий

Шифр/ Библиографическая ссылка	Количество экземпляров в
--------------------------------	--------------------------

URL адрес		библиотеке
		(кроме электронных экземпляров)
6ф2.01.391.1	Репин В.Г., Тартаковский Г.П.	17
P41	Статистический синтез при априорной	
	неопределённости и адаптация	
	информационных системМ.: Сов.	
	Радио.1997.	
519.24	Огарков М.А. Методы статистического	3
O36	оценивания параметров случайных	
	процессов. –М.: Энергоатомиздат. 1990.	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационно-

телекоммуникационной сети «Интернет»

URL адрес	Наименование
http://window.edu.ru/	Единое окно доступа к образовательным ресурсам

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

№ п/п	Наименование
	Не предусмотрено

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п	Наименование
	Не предусмотрено

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Лекционная аудитория	

2	Мультимедийная лекционная аудитория	
3	Специализированная лаборатория	

10. Оценочные средства для проведения промежуточной аттестации

10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Зачет	Список вопросов;
	Задачи.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции	оценки уровня сформированности компетенции	
5-балльная шкала	Характеристика сформированных компетенций	
устлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий. 	
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 	
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий. 	
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; 	

Оценка компетенции	Характеристика сформированных компетенций
5-балльная шкала	ларактеристика сформированных компетенции
	не может аргументировать научные положения;не формулирует выводов и обобщений.

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	Код индикатора
	Учебным планом не предусмотрено	

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16. Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

$N_{\underline{0}}$	Hanayayy nama aan (aanay) mu aayama / mydd nayama	Код
Π/Π	Перечень вопросов (задач) для зачета / дифф. зачета	индикатора
1	Постановка задачи синтеза ИИС в условиях априорной	ПК-1.3.1
	неопределённости.	ПК-1.У.1
2	Априорная неопределённость и способы её описания.	ПК-1.В.1
3	Существенная и несущественная априорной неопределённость.	ПК-2.3.1
4	Равномерно наилучшее решение.	ПК-2.У.1
5	Принцип асимптотической оптимальности.	ПК-2.В.1
6	Минимаксный принцип.	ПК-3.3.1
7	Принцип минимума усреднённого риск.	ПК-3.У.1
8	Минимаксный принцип.	ПК-3.В.1
9	Соотношения между правилами решения полученные на основе	ПК-6.В.1
	различных принципах предпочтения.	
10	Использование достаточных статистик в условиях априорной	
	неопределённости.	
11	Минимаксный подход. Случай полного незнания априорного	
	распределения.	
12	Минимаксный подход. Ограниченные сведения о множестве	
	допустимых значений.	
13	Минимаксный подход. Ограниченные сведения о статистических	
	характеристиках.	
14	Адаптивный байесов подход. Постановка задачи. Пример	
	двуальтернативной задачи.	
15	Адаптивный байесов подход. Общие положения.	
16	Адаптивный байесов подход в случае, когда множества решений и	
	оцениваемых параметров непрерывны.	
17	Адаптивный байесов подход при параметрической априорной	
	неопределённости.	
18	Адаптивный байесовый подход. Принцип усреднённого риска.	
19	Адаптивный байесов подход. Принцип усреднённого риска при	
	одинаковой совокупности параметров для различных значений	
	оцениваемых параметров.	
20	Конечные методы нахождения оценок максимального	
	правдоподобия.	
21	Дифференциальные уравнения для оценок максимального	

	правдоподобия.			
22	Оценки максимального правдоподобия. Свойства регулярности			
	несмещённости, достаточности.			
23	Состоятельность оценок максимального правдоподобия.			
24	Рекуррентные методы решения уравнения правдоподобия.			
25	Принцип минимума усреднённого риска.			
26	Непараметрические критерии согласия.			
27	Соответствие адаптивного байесового правила решения различных			
28	принципам оптимальности в условиях априорной неопределённости			
	(принцип предпочтения с равномерно наилучшим правилом решения,			
29	принцип асимптотической оптимальности, минимаксиминный			
	принцип).			
30	Адаптивный байсов подход. Принцип усреднённого риска, случай			
	разных совокупностей неизвестных параметров при разны значениях			
31	оцениваемого сигнала.			
32	Оценки максимального правдоподобия. Свойства регулярности,			
	несмещённости, достаточности.			
	Рекуррентные методы решения уравнения правдоподобия.			
	Дифференциальные уравнения для оценок максимального			
	правдоподобия.			

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

№ п/п	Примерный перечень вопросов для тестов	Код индикатора
	Не предусмотрено	

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п		Пе	еречень контрольных работ
	Не предусмотрено		

10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

11. Методические указания для обучающихся по освоению дисциплины

11.1. Методические указания для обучающихся по освоению лекционного материала

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- вводная часть показывает перечень рассматриваемых в лекции вопросов, их актуальность для практики приборостроения, связь лекционного материала с предыдущим и последующим материалами; дается перечень основной и дополнительной литературы по теме, включая руководящие документы;
- основная часть последовательно показываются выносимые вопросы, раскрываются теоретические положения; показываются основные расчетные формулы;
- итоговая часть подводятся итоги занятия, актуализируются наиболее важные вопросы; определяется тематика будущих практических занятий по теме; даётся задание на самостоятельную подготовку; производятся ответы на вопросы.
- 11.2. Методические указания для обучающихся по участию в семинарах (если предусмотрено учебным планом по данной дисциплине)
- 11.3. Методические указания для обучающихся по прохождению практических занятий (если предусмотрено учебным планом по данной дисциплине)

Практическое занятие является одной из основных форм организации учебного процесса, заключающаяся в выполнении обучающимися под руководством преподавателя комплекса учебных заданий с целью усвоения научно-теоретических основ учебной дисциплины, приобретения умений и навыков, опыта творческой деятельности.

Целью практического занятия для обучающегося является привитие обучающимся умений и навыков практической деятельности по изучаемой дисциплине.

Планируемые результаты при освоении обучающимся практических занятий:

 закрепление, углубление, расширение и детализация знаний при решении конкретных задач;

- развитие познавательных способностей, самостоятельности мышления, творческой активности;
- овладение новыми методами и методиками изучения конкретной учебной дисциплины;
- выработка способности логического осмысления полученных знаний для выполнения заданий;
- обеспечение рационального сочетания коллективной и индивидуальной форм обучения.

Требования к проведению практических занятий

Практические занятия направлены на формирование у студентов профессиональных и практических умений, необходимых для изучения последующих учебных дисциплин: определенные действия, операции, необходимые в последующей профессиональной деятельности (в процессе учебной и производственной практики, написания выпускной квалификационной работы). Наряду с формированием умений и навыков в процессе практических занятий обобщаются, систематизируются, углубляются и конкретизируются теоретические знания, вырабатывается способность и готовность использовать теоретические знания на практике, развиваются интеллектуальные умения. При выборе содержания и объема практических занятий следует исходить из сложности учебного материала для усвоения, из внутрипредметных и межпредметных связей, из значимости изучаемых теоретических положений для предстоящей профессиональной деятельности, из того, какое место занимает конкретная работа в процессе формирования целостного представления о содержании учебной дисциплины.

- 11.4. Методические указания для обучающихся по выполнению лабораторных работ (если предусмотрено учебным планом по данной дисциплине)
- 11.5. Методические указания для обучающихся по прохождению курсового проектирования/выполнения курсовой работы (если предусмотрено учебным планом по данной дисциплине)
- 11.6. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихсяявляются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ (для обучающихся по заочной форме обучения).
- 11.7. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

Методы текущего контроля выбираются преподавателем самостоятельно исходя из специфики дисциплины.

Возможные методы текущего контроля обучающихся:

- -устный опрос на занятиях;
- -систематическая проверка выполнения индивидуальных заданий;
- -защита отчётов по лабораторным работам;
- –проведение контрольных работ;
- -тестирование;
- -контроль самостоятельных работ (в письменной или устной формах);
- -контроль выполнения индивидуального задания на практику;
- -контроль курсового проектирования и выполнения курсовых работ; иные виды, определяемые преподавателем.

В течение семестра обучающийся оформляет отчётные материалы в соответствии с установленными требованиями и методами проведения текущего контроля, и преподаватель оценивает представленные материалы.

При подведении итогов текущего контроля успеваемости в ведомость обучающимся выставляются аттестационные оценки: «аттестован», «не аттестован». Система и возможные критерии оценки учитывает знания, умения, навыки и (или) опыт деятельности, характеризующие этапы формирования компетенций дисциплины. Результаты текущего контроля должны учитываться при промежуточной аттестации.

11.8. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

— зачет — это форма оценки знаний, полученных обучающимся в ходе изучения учебной дисциплины в целом или промежуточная (по окончании семестра) оценка знаний обучающимся по отдельным разделам дисциплины с аттестационной оценкой «зачтено» или «не зачтено».

Результаты промежуточной аттестации заносятся деканатами в журнал учёта промежуточной аттестации, учебную карточку и автоматизированную информационную систему ГУАП.

Аттестационные оценки по факультативным дисциплинам вносятся в зачётную книжку, ведомость, учебную карточку, АИС ГУАП и, по согласованию с обучающимся, в приложение к документу о высшем образовании и о квалификации.

После прохождения промежуточной аттестации обучающийся обязан предоставить в деканат зачётную книжку, полностью заполненную преподавателем.

По результатам успешного прохождения промежуточной аттестации обучающимися и выполнения учебного плана на соответствующем курсе, деканаты готовят проект приказа о переводе обучающихся с курса на курс.

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой