МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего

образования "САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 13

УТ	ВЕРЖ	ДАЮ
Ответственный	за	образовательную
программу		
доц.,к.т.н.,доц.		
(должнос	ть, уч. сте	пень, звание)
В.В. Перлюк		/
(ини)	циалы, фа	(кисиме
	N	
	(подпис	ь)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Системы стабилизации, ориентации и навигации» (Наименование дисциплины)

Код направления подготовки/ специальности	12.03.01	
Наименование направления подготовки/ специальности	Приборостроение	
Наименование направленности	Авиационные приборы и измерительно-вычислите: комплексы	
Форма обучения	очная	
Год приема	2025	

Санкт-Петербург- 2025

лист согласования рабочей программы	дисциплины
Программу составил (а) Доцент, к.т.н., доцент (должность, уч. степень, звание)	Скорина С.Ф. (инициалы, фамилия)
Программа одобрена на заседании кафедры № 13 «21» апреля 2025 г. протокол № 9	
Заведующий кафедрой № 13 К.Т.Н. ДОУ (подмуж. дата)	Н.А. Овчинникова (инициалы, фамилия)
Заместитель лиректора института №1 по метолической раб	юте

доц.,к.т.н.

(должность, уч. степень, звание)

В.Е. Таратун

Аннотация

Дисциплина «Системы стабилизации, ориентации и навигации» входит в образовательную программу высшего образования — программу бакалавриата по направлению подготовки/ специальности 12.03.01 «Приборостроение» направленности «Авиационные приборы и измерительно-вычислительные комплексы». Дисциплина реализуется кафедрой «№13».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

- УК-1 «Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач»
- УК-2 «Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений»
- ПК-1 «Способность применять методы анализа и синтеза измерительных и управляющих систем, систем контроля параметров при проектировании и конструировании, приборов и комплексов»
- ПК-3 «Способность применять методики и средства проведения испытаний и отработки систем и комплексов бортового оборудования авиационных и космических летательных аппаратов»
- ПК-4 «Способность разрабатывать и согласовывать исходные данные при проектировании (разработке) комплекса бортового оборудования и его подсистем авиационных и космических летательных аппаратов, определять режимы функционирования бортового оборудования»

Содержание дисциплины охватывает круг вопросов, связанных с инерциальными сенсорами параметров движения основания.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, самостоятельная работа обучающегося.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 5 зачетных единиц, 180 часов.

Язык обучения по дисциплине «русский»

- 1. Перечень планируемых результатов обучения по дисциплине
- 1.1. Цели преподавания дисциплины
- 1.2. Целями преподавания дисциплины "Системы стабилизации, ориентации и навигации" является получение студентами необходимых теоретических знаний основ построения гироскопических систем стабилизации, ориентации и навигации (ССОН) подвижных объектов, а также практических навыков и умений по решению задач стабилизации, ориентации и навигации подвижных объектов различного класса и назначения с помощью систем на базе инерциальных сенсоров параметров движения.
- 1.3. Дисциплина входит в состав части, формируемой участниками образовательных отношений, образовательной программы высшего образования (далее ОП ВО).
- 1.4. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа) компетенции	Код и наименование компетенции	Код и наименование индикатора достижения компетенции
Универсальные компетенции	УК-1 Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач	УК-1.У.1 уметь применять методики поиска, сбора и обработки информации, в том числе с использованием искусственного интеллекта
УК-2 Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и		УК-2.У.1 уметь проводить анализ поставленной цели и формулировать задачи, которые необходимо решить для ее достижения УК-2.В.2 владеть навыками выбора оптимального способа решения задач с учетом имеющихся условий, ресурсов и ограничений
Профессиональные компетенции	ограничений ПК-1 Способность применять методы анализа и синтеза измерительных и управляющих систем, систем контроля параметров при проектировании и конструировании,	ПК-1.В.1 владеть навыками определения показателей качества функционирования измерительных и управляющих систем, систем контроля параметров

	T ~	T
	приборов и	
	комплексов	
	ПК-3 Способность	
	применять	
	методики и	
	средства	
	проведения	ПК-3.3.1 знать состав комплекса бортового
	испытаний и	оборудования и основные технические
Профессиональные	отработки систем и	характеристики информационно-
компетенции	комплексов	измерительных систем и устройств
	бортового	авиационных и космических летательных
	оборудования	аппаратов
	авиационных и	
	космических	
	летательных	
	аппаратов	
	ПК-4 Способность	
	разрабатывать и	
	согласовывать	TIV 4.2.1 ayany mayyyyyaayya yanaymanyanyyyyy
	исходные данные	ПК-4.3.1 знать технические характеристики и принципы работы систем бортового
	при	оборудования, основные характеристики
	проектировании	
	(разработке)	авиационных и космических летательных
	комплекса	аппаратов, основы эргономики, включая
П., . 1	бортового	формы и виды индикации, основы
Профессиональные	оборудования и его	проектирования конструкций бортового
компетенции	подсистем	оборудования
	авиационных и	ПК-4.В.1 владеть навыками
	космических	комплексирования информационных
	летательных	приборов, применения методов теории
	аппаратов,	автоматического управления, определения
	определять режимы	характеристик надежности бортового
	функционирования	оборудования
	бортового	
	оборудования	

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- «Компьютерные технологии в приборостроении»,
- «Основы автоматического управления»,
- «Основы проектирования измерительно-вычислительных комплексов»

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и используются при изучении других дисциплин:

- «Информационно-статистическая теория измерений»,
- «Проектирование цифровых измерительно-вычислительных комплексов»,
- «Комплексирование информационно-измерительных устройств»

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

Вид учебной работы	Всего	Трудоемкость по семестрам		
		№7		
1	2	3		
Общая трудоемкость дисциплины, ЗЕ/ (час)	5/ 180	5/ 180		
Из них часов практической подготовки	10	10		
Аудиторные занятия, всего час.	51	51		
в том числе:				
лекции (Л), (час)	34	34		
практические/семинарские занятия (ПЗ), (час)				
лабораторные работы (ЛР), (час)	17	17		
курсовой проект (работа) (КП, КР), (час)				
экзамен, (час)	54	54		
Самостоятельная работа, всего (час)	75	75		
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Экз.	Экз.		

Примечание: ** кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

таолица 3 – газделы, темы дисциплины, их труд	Лекции		πъ	ICIT	CDC
Разделы, темы дисциплины		П3 (С3)	ЛР	КП	CPC
		(час)	(час)	(час)	(час)
Сем	естр 7				
Раздел 1. Принципы построения систем					
стабилизации, ориентации и навигации					
Тема 1.1. Задачи ориентации, навигации и					
стабилизации подвижных объектов	8		4		10
Тема 1.2. Классификация схем построения	O		4		10
инерциальных сенсоров параметров движения					
Тема 1.3. Инерциальные сенсоры параметров					
движения основания					
Раздел 2. Гироскопические приборы для решения					
задач стабилизации, ориентации и навигации					
Курсовые гироскопические системы					
Гироскопические указатели вертикали	9		4		25
Гиростабилизирование платформ					23
Приборы для измерения параметров угловой					
ориентации объекта относительно связанной					
системы координат					
Раздел 3. Инерциальные системы ориентации и					
навигации					
Платформенные инерциальные системы ориентации	9		4		25
и навигации	9		4		25
Бесплатформенные инерциальные системы					
ориентации и навигации					

Раздел 4. Перспективы развития инерциальных сенсоров параметров движения основания и ССОН Развитие инерциальных сенсоров параметров движения основания и ССОН			5		15
Итого в семестре:	34		17		75
Итого	34	0	17	0	75

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Номер раздела	вделов и тем лекционного цикла Название и содержание разделов и тем лекционных занятий		
1	Тема 1.1. Задачи ориентации, навигации и стабилизации		
	подвижных объектов. Базовые системы координат в задачах		
	ориентации и навигации. Принципы определения		
	параметров ориентации и навигации. Свойства		
	быстровращающихся тел. Момент гироскопической реакции.		
	Уравнения движения гироскопов в кардановом подвесе с		
	тремя и двумя степенями свободы. Поведение гироскопов с		
	двумя и тремя степенями свободы под воздействием		
	постоянных, мгновенных и гармонически изменяющихся		
	внешних моментов. Влияние движения основания на		
	поведение гироскопов с двумя и тремя степенями свободы.		
	Тема 1.2. Классификация схем построения инерциальных		
	сенсоров параметров движения. Основные схемы гироскопа		
	со сферическим подвесом ротора. Эффект 2радиальной		
	коррекции сферического гироскопа. Подвес р3отора в		
	электростатическом поле, подвес ротора в		
	эл4ектромагнитном поле. Криогенные гироскопы.		
	Гироскопы с обращенным подвесом ротора. Твердотельный		
	волновой гироскоп. Оптические гироскопы. Лазерные и		
	волоконно-оптические гироскопы		
	Тема 1.3 Инерциальные сенсоры параметров движения		
	основания. Датчики угловой скорости прямого		
	преобразования и компенсационного типа. Поплавковые		
	интегрирующие гироскопы. Динамически настраиваемые		
	гироскопы с двумя степенями свободы. Трехстепенные		
	гироскопы в кардановом подвесе. Динамически		
	настраиваемые гироскопы с тремя степенями свободы.		
	Микромеханические сенсоры линейны ускорений и угловых		
	скоростей, построенные с использованием MEMS		
	технологии. Гироблоки систем гироскопической		

	стабилизации. Гироскопические интеграторы линейных
	ускорений
2	Тема 2.1. Гиростабилизирование платформ. Области
	применения гироскопических стабилизаторов.
	Классификация гироскопических стабилизаторов.
	Одноосные гиростабилизаторы (ОГС). Уравнения динамики
	ОГС. Обеспечение устойчивости ОГС. Статические
	характеристики ОГС. Двухосные гиростабилизаторы (ДГС).
	Трехосные гиростабилизаторы (ТГС). Гироскопическая
	стабилизация космических летательных аппаратов.
	Гиродины.
	тема 2.2 Курсовые гироскопические системы. Гирокомпас
	Фуко Гироскопический указатель ортодромии.
	Азимутальная и горизонтальная коррекция гироскопа
	направления. Причины погрешностей курсовых приборов.
	Курсовые приборы для маневренных объектов. Гирокомпас.
	Построение невозмущаемого гирокомпаса. Гиромагнитный
	компас. Комплексирование курсовых систем.
	Тема 2.3. Гироскопические указатели вертикали.
	Гироскопические вертикали с различными типами
	коррекции. Инерциальная гировертикаль. Гировертикали для
	космических летательных аппаратов. Курсовертикали.
	Инерциальные курсовертикали.
	Тема 2.4. Приборы для измерения параметров угловой
	ориентации объекта относительно связанной системы
	координат. Датчики угловой ориентации на базе
	астатических гироскопов. Гироскопические приборы
	вертикант и горизонт. Причины погрешностей приборов на
	базе астатичеких гироскопов.
3	Тема 3.1. Платформенные инерциальные системы
	ориентации и навигации. Принцип действия и состав
	инерциальной навигационной системы (ИНС).
	Инерциальные сенсоры для построения ИНС. Особенности
	построения ИНС различного назначения. Классификация
	ИНС и сравнительная оценка систем различного типа.
	Инструментальные погрешности элементов ИНС.
	Тема 3.2. Бесплатформенные ИНС.(БИНС). Принципы
	построения и классификация. Инерциальные сенсоры для
	построения БИНС. Алгоритмы функционирования БИНС и
	требования к бортовым вычислителям. Метрические и
	инструментальные погрешности. Погрешности БИНС на
	лазерных гироскопах.
	Тема 3.3. Корректируемые ИНС. Используемые источники
	информации для реализации коррекции. Алгоритмы
	функционирования корректируемых ИНС.

	Модуль 4. Перспективы развития инерциальных сенсоров
	параметров движения основания и ССОН
4	Тема 4.1. Перспективы развития инерциальных сенсоров
	параметров движения основания. Классификация новых
	областей применения и задач, решаемых современными
	инерциальными сенсорами. Требования к точностным и
	стоимостным характеристикам инерциальных сенсоров.
	Состояние рынка инерциальных сенсоров на современном
	этапе. Направления совершенствования и дальнейшей
	микроминиатюризации сенсоров. Дорожная карта: от
	«микро»- к «нано»-системной технике.

4.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

				Из них	$N_{\underline{0}}$
№	Темы практических	Формы практических		практической	раздела
п/п	занятий	занятий	(час)	подготовки,	дисцип
				(час)	лины
		едусмотрено			
Всего					

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трулоемкость

	1 1		Из них	$N_{\underline{0}}$
№	Наименование лабораторных работ	Трудоемкость,	практической	раздела
Π/Π	паименование лаоораторных раоот	(час)	подготовки,	дисцип
			(час)	лины
	Семестр	7		
1	Закон прецессии	3	1	1
2	Видимый уход	3	1	1
3	Собственное движение гироскопа	3	2	2
4	Датчик угловой скорости	3	2	2
5	Одноосный гиростабилизатор	3	2	3
6	Исследование микромеханического	2	2	4
	гироскопа.			
	Bcero	17	10	

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся

Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего,	Семестр 7,
Вид самостоятельной расоты	час	час
1	2	3
Изучение теоретического материала	50	50
дисциплины (ТО)	30	30
Курсовое проектирование (КП, КР)		
Расчетно-графические задания (РГЗ)		
Выполнение реферата (Р)		
Подготовка к текущему контролю		
успеваемости (ТКУ)		
Домашнее задание (ДЗ)		
Контрольные работы заочников (КРЗ)		
Подготовка к промежуточной	25	25
аттестации (ПА)	23	23
Всего:	75	75

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8. Таблица 8– Перечень печатных и электронных учебных изданий

	перечень печатных и электронных ученных и	Количество экземпляров в
Шифр/	Библиографическая ссылка	библиотеке
URL адрес		(кроме электронных экземпляров)
681.2 P24	Распопов, В. Я. Приборы первичной	24
	информации: Микромеханические	
	приборы : учебное пособие / В. Я.	
	Распопов ; Тул. гос. ун-т Тула : [б. и.],	
	2002 390 с. : рис., табл Библиогр.: с.	
	382 - 389 (153 назв.) ISBN 5-8125-0239-0	
681.3	Северов Л.А. Механика гироскопических	50
C28	систем М.: МАИ, 1996, 212 с.	
681.3	Механика гироскопических систем:	50
C81	Методические указания к выполнению	
	лабораторных работ: Скорина С.Ф.,	
	Овчинникова Н.А. – СПб., ГУАП, 2018.	
	44c.	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 — Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет»

URL адрес	Наименование
http://window.edu.ru/window/catalog?p_rid=41604	Серегин В.В. Прикладная теория и
	принципы построения гироскопических
	систем. Учебное пособие. – СПб.,
	ИТМО, 2007. – 75 с.

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10– Перечень программного обеспечения

топпида	To Trope to the figure of the first of the f
№ п/п	Наименование
	Не предусмотрено

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п	Наименование
	Не предусмотрено

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Лекционная аудитория	13-03a
2	Мультимедийная лекционная аудитория	13-04
3	Специализированная лаборатория «Гироскопических приборов и систем»	13-03б
4	Кафедральные стенды препарированных гироскопических приборов и систем	

10. Оценочные средства для проведения промежуточной аттестации

10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Экзамен	Список вопросов к экзамену;
	Тесты.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

	оценки уровня сформированности компетенции
Оценка компетенции 5-балльная шкала	Характеристика сформированных компетенций
3-Оаллыная шкала	<u> </u>
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий.
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий.
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий.
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений.

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	Код
JN2 11/11	перечень вопросов (задач) для экзамена	индикатора
	Свойства быстровращающихся тел	УК-1.У.1
	Основная задача навигации	УК-1.У.1
	Используемые системы координат	
	Уравнения гироскопа в инерциальной системе координат	УК-2.У.1
	Уравнения гироскопа в подвижной системе координат	
	Собственное движение гироскопа	УК-2.У.1

Прецессионное движение гироскопа	УК-2.В.2
Видимый уход гироскопа	УК-2.В.2
Влияние вязкого трения	УК-2.В.2
Влияние сухого трения	ПК-1.В.1
Кинематические схемы гироскопа с 2 и 3 степенями	ПК-1.В.1
свободы	
Принципы построения гироскопическиз приборов	ПК-1.В.1
Приборы для измерения углов отклонения объекта от	ПК-3.3.1
заданного направления движения	
Причины погрешностей приборов на базе астатического	ПК-3.3.1
гироскопа	
Гирокомпас Фуко	ПК-3.3.1
Гироскоп направления	ПК-4.3.1
Азимутальная коррекция	ПК-4.3.1
Горизонтальная коррекция	ПК-4.3.1
Гиромагнитный компас	ПК-4.В.1
Гирокомпас на базе гироскопа с 3 степенями свободы	ПК-4.В.1
Гиро вертикаль с маятниковой коррекцией	ПК-4.В.1

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16. Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код индикатора
	Учебным планом не предусмотрено	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

№ п/п	Паутусануу үй ман аугауу раздагаар инд даалар	Код
	Примерный перечень вопросов для тестов	индикатора
1	Выберите правильный ответ: Какой из гироскопических приборов	
	используют для получения информации о положении направления	
	север-юг: гирогоризонт, гировертикаль, гироскоп направления,	
	гирокомпас Фуко.	
2	Выберите несколько правильных ответов: По каким причинам	УК-2.У.1
	применение гирокомпаса Фуко затруднено на подвижных объектах:	
	А – большие габариты, Б – недостаточная точность, В – высокая	
	частота собственных колебаний, Γ – проблемы работы в высоких	
	широтах, Д – высокая стоимость	
3	Соотнесите с видами гироприборов: А- тахометр, Б- гирокомпас, В-	УК-2.В.2
	гировертикаль, Г- динамически настраиваемый гироскоп	
	получаемую информацию: 1 - угол поворота основания, 2 - крен и	
	тангаж, 3 - угловую скорость вращения основания, 4 - курс и	

	рысканье.	
4	Определите предпочтительную последовательность проведения исследований метрологических характеристик микромеханического	УК-2.В.2
	датчика угловой скорости вращения основания: А- контроль	
	минимальной измеряемой скорости, Б – контроль линейности	
	статической характеристики, контроль максимальной измеряемой	
	скорости вращения основания, В- контроль влияния перекрестной	
	угловой скорости, Г- контрооль максимальной измеряемой	
	скорости.	
5	Дайте развернутый ответ на вопрос: Назначение, устройство и	ПК-1.В.1
	принцип действия волоконно-оптического гироскопа	
6	Выберите правильный ответ: Что лежит в основе принципа	ПК-1.В.1
	действия механических гироскопических приборов: свойства	
	быстро вращающихся тел, гравитационное взаимодействие рамок	
	подвеса ротора и самого ротора, влияние моментов сил сухого и	
	вязкого трения, корреляционное взаимодействие геофизических	
	полей.	
7	Выберите правильные ответы: Гироскопический момент возникает	ПК-1.В.1
	при: участии твердого тела одновременном в двух вращательных	
	движениях вокруг непараллельных осей, при участии твердого тела	
	во вращательном и линейном поступательном движениях, двух	
	линейных поступательных движениях, при ударе и линейном	
	поступательном движении.	
8	Соотнесите реакцию гироскопа с двумя степенями свободы в виде:	ПК-4.3.1
	поворота с постоянной скоростью, поворота с постоянно	
	увеличивающейся скоростью, поворота с постоянной скоростью и	
	гармонические колебания с видом момента по оси его подвеса:	
	гармонический, постоянный, момент мгновенных сил.	
9	Определите предпочтительную последовательность проведения	ПК-4.3.1
	исследований метрологических характеристик датчика угловой	
	скорости вращения основания: А- контроль минимальной	
	измеряемой скорости, Б – контроль линейности статической	
	характеристики, контроль максимальной измеряемой скорости	
	вращения основания, В- контроль влияния перекрестной угловой	
	скорости, Г- контрооль максимальной измеряемой скорости.	
10	Дайте развернутый ответ на вопрос: причины возникновения	ПК-4.В.1
	видимого ухода и мероприятия по минимизации его влияния	1

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п	Перечень контрольных ра	бот
	Не предусмотрено	

10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

11. Методические указания для обучающихся по освоению дисциплины

11.1. Методические указания для обучающихся по освоению лекционного материала.

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- Изложение теоретических вопросов, связанных с рассматриваемой темой;
- Описание методов определения параметров движения
- Описание принципа действия, кинематической схемы и математической модели прибора
- Обобщение изложенного материала;
- Ответы на возникающие вопросы по теме лекции.

11.2. Методические указания для обучающихся по прохождению практических занятий (если предусмотрено учебным планом по данной дисциплине)

Практическое занятие является одной из основных форм организации учебного процесса, заключающаяся в выполнении обучающимися под руководством преподавателя комплекса учебных заданий с целью усвоения научно-теоретических основ учебной дисциплины, приобретения умений и навыков, опыта творческой деятельности.

Целью практического занятия для обучающегося является привитие обучающимся умений и навыков практической деятельности по изучаемой дисциплине.

Планируемые результаты при освоении обучающимся практических занятий:

- закрепление, углубление, расширение и детализация знаний при решении конкретных задач;
- развитие познавательных способностей, самостоятельности мышления, творческой активности;

- овладение новыми методами и методиками изучения конкретной учебной дисциплины;
- выработка способности логического осмысления полученных знаний для выполнения заданий;
- обеспечение рационального сочетания коллективной и индивидуальной форм обучения.

Требования к проведению практических занятий

В ходе практических занятий студенты должны подготовит доклад и выступить с докладом по тематике, посвященной перспективным направлениям совершенствования инерциальных сенсоров параметров движения основания. Примерная структура доклада: актуальность, кинематическая схема, устройство, принцип действия, математическая модель, состояние рынка и перспективы развития данного вида.

Примерный перечень тем докладов:

Микромеханические гироскопы LL типа

Микромеханические гироскопы RR типв

Микромеханические акселерометры

Динамически настраиваемые гироскопы

Твердотельные волновые гироскопы

Волоконно-оптические гироскопы

Лазерные гироскопы

Гироскопы с подвесом ротора в электростатическом поле

Гироскопы с подвесом ротора в электромагнитном поле

Криогенные гироскопы

Ядерные и атомарные гироскопы

Акселерометр на базе коаксиальных нанотрубок

Пьезокерамические гироскопы

Гироскопы на поверхностно-акустических волнах

Перспективные (оптические и туннельные) методы измерения малых угловых и линейных перемещений

- 11.3. Методические указания для обучающихся по выполнению лабораторных работ
- В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задание и требования к проведению лабораторных работ

Вариант задания по каждой лабораторной работе обучающийся получает в соответствии с номером в списке группы. Перед проведением лабораторной работы

обучающемуся следует внимательно ознакомиться с методическими указаниями по ее выполнению. В соответствии с заданием обучающийся должен подготовить необходимые данные, получить от преподавателя допуск к выполнению лабораторной работы, выполнить указанную последовательность действий, получить требуемые результаты, оформить и защитить отчет по лабораторной работе.

Структура и форма отчета о лабораторной работе

Отчет о лабораторной работе должен содержать: титульный лист, формулировку задания (цель лабораторной работы), теоретические положения, используемые при выполнении лабораторной работы, описание процесса выполнения лабораторной работы, полученные результаты и выводы.

Требования к оформлению отчета о лабораторной работе

По каждой лабораторной работе выполняется отдельный отчет. Титульный лист оформляется в соответствии с шаблоном (образцом) приведенным на сайте ГУАП (www.guap.ru) в разделе «Сектор нормативной документации». Текстовые, расчетные и графические материалы оформляются в соответствии с действующими ГОСТами и требованиями, приведенными на сайте ГУАП (www.guap.ru) в разделе «Сектор нормативной документации».

11.4. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихсяявляются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ (для обучающихся по заочной форме обучения).
- 11.5. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

Для реализации текущего контроля в середине семестра проводится контрольная работа на знание основных свойств быстровращающихся тел. Методические указания и варианты контрольной работы содержатся в: Системы стабилизации, ориентации и навигации: методические указания к выполнению контрольных работ / С.-Петерб. гос. унтаэрокосм. приборостроения; сост.: А. П. Ковалев, С. Ф. Скорина. - СПб.: Изд-во ГУАП, 2018. - 35 с.: рис., табл. - Библиогр.: с. 31 - 32.

11.6. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

— экзамен — форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой